跨平台整合微阵列数据筛选与胶质瘤级别相关基因的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性中枢神经系统肿瘤发病率约2-5/10万,85%为颅内肿瘤,最常见的肿瘤是胶质瘤,约占40%,其次是脑膜瘤约13%-19%,还有垂体瘤,神经鞘瘤,颅咽管瘤等。大量研究表明,神经系统肿瘤和其他部位的肿瘤一样是多基因异常导致的,并且肿瘤的恶性程度,病人的预后均与基因异常密切相关。寻找并验证能够用于临床的与病人肿瘤恶性程度和预后相关的标志基因一直是研究的热点。本研究通过整合不同平台的基因微阵列数据寻找与病人肿瘤恶性程度密切相关的标志基因并应用RT-PCR和Western blot进行验证。探讨有丝分裂检验点通路,MCM基因家族与胶质瘤WHO分级的关系。研究结果显示:(1)BUB1, BUB1B, BUB3, TTK, CDC20, CENPE在IV级肿瘤中表达较正常脑组织明显增高;BUB1和TTK在低级别胶质瘤(Ⅰ-Ⅱ级)中较正常组织明显增高;BUB1B, CDC20, CENPE, MAD1L1和MAD2L1的表达在低级别肿瘤和Ⅳ级肿瘤之间有明显差异;BUB1B和CDC20在不同级别之间都有明显差异。(2)MCMs基因的表达水平随着肿瘤级别增加而增高,MCM2-MCM5,MCM7和MCM10在WHOⅠ-Ⅱ级,Ⅲ级和Ⅳ级之间均有明显差异(p<0.05);MCM6在低级别胶质瘤(WHOⅠ-Ⅱ级)和高级别胶质瘤(Ⅲ-Ⅳ级)中有明显差异(p<0.05)。(3)目前国内外尚未见跨平台整合分析胶质瘤微阵列数据寻找与肿瘤级别相关基因的报道。
Central nervous system neoplasms are the kind of common human neoplasms. Glioma tumors are the most common and among the most deadly of central nervous system (CNS) neoplasms. It has high malignancy, strong invasion and recurrence so that the patients have a poor outcome. Thus it is an important thing how to manage patients after operation. In present, we have only depended on the traditional histological classification. The doctor suggested the patients to use different therapy according to the report of tumor slide. But there have some problem, and have not got the satisfied results. In the past years, human try to use the molecular biological technology to research the tumor. Tumor will be classified by the genes. Some hospital uses the model of genes to help patients to select the different therapy. Microarray technology could help us to realize the tumor on the level of the genome. Integrate the microarray of tumor, we could got more tumor samples and reduce the bias. Otherwise, multiple genes affect the regression of the tumor. That is not enough to use single gene to evaluate the grade, prognosis of the tumor. So multiple genes build model is better than single gene model.
     In the view of the above research background, this study took microarray datasets that come from GEO database. We integrated the gliomas microarray datasets focus on the tumor grade. Cluster analysis the candidate genes by pathway database. We focus on the several cell cycle pathway, include SAC gene, MCMs. These genes are relative with tumor grade. Validate the microarray results by RT-PCR in tumor samples. In this study, the experiments were carried out as follows:
     (1) Integrate microarray datatsets to search candidate genes by WebArrayDB
     Objective:Search candidate genes that are correlate with tumor grade. Methods:Data screening microarray datasets in GEO database. Integrated and analysis GSE4412, GSE16011, GSE12907. Include:WHOI-II 49;Ⅲ111;Ⅳ218; Normal 7. Cluster analysis the candidate genes (1-500). Results:Found some interesting pathway and genes that are correlated with glioma grade. Conclusion:SAC gene, MCMs gene that were correlated with glioma WHO grade.
     (2) Validate the candidate genes
     1) Over-expression levels of major mitotic spindle checkpoint genes are highly correlated to grade classification of gliomas
     Objective:Investigate the expression of SAC gene expression in glioma tissues, as well as its relationship with clinical pathological grade. Methods:Extracted RNA of forty glioma tissue samples and 6 normal brain tissues. Semi-quantitative RT-PCR method validated SAC gene mRNA expression in glioma tissue samples and normal brain tissue. Results:SAC genes are generally up-regulated in glioma samples, and the increase in the expression of SAC genes correlate closely with glioma WHO grade. ANCOVA analysis reveals the significant over-expressions of BUB 1 and TTK in low-grade gliomas. By mathematically modeling, we identified CDC20 as the most important gene for identification of WHO grades in gliomas.
     Conclusion:Our research suggests that SAC genes can be used for diagnosis, grade classification in gliomas.
     2) Minichromosome Maintenance (MCM) Family as potential diagnostic and prognostic tumor markers for human gliomas
     Objective:Investigate the expression of MCMs gene expression in glioma tissues, as well as its relationship with clinical pathological grade. Methods:Extracted RNA of forty glioma tissue samples and 6 normal brain tissues. RT-PCR method validated MCMs gene mRNA expression in glioma tissue samples and normal brain tissue. Western blot test the protein expression of MCMs gene. Results:We found that MCMs expression was significantly up-regulated in glioma samples. MCM2-7 and MCM10 expression were associated with glioma grade. Conclusions:Our research suggests that MCMs can be used for diagnosis, grade classification in gliomas.
引文
[1]Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function[J]. Cell 1991; 66:507-517.
    [2]Li R, Murray AW. Feedback control of mitosis in budding yeast[J]. Cell 1991; 66: 519-531.
    [3]Musahl C, Holthoff HP, Lesch R, Knippers R. Stability of the replicative Mcm3 protein in proliferating and differentiating human cells[J]. Exp Cell Res 1998; 241:260-264.
    [4]Walker DG, Kaye AH. Low grade glial neoplasms[J]. J Clin Neurosci 2003; 10:1-13.
    [5]Claus EB, Black PM. Survival rates and patterns of care for patients diagnosed with supratentorial low-grade gliomas:data from the SEER program,1973-2001 [J]. Cancer 2006; 106:1358-1363.
    [6]DeAngelis LM. Brain tumors[J]. N Engl J Med 2001; 344:114-123.
    [7]Garside R, Pitt M, Anderson R, et al. The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma:a systematic review and economic evaluation[J]. Health Technol Assess 2007; 11: iii-iv, ix-221.
    [8]Tran B, Rosenthal MA. Survival comparison between glioblastoma multiforme and other incurable cancers[J]. J Clin Neurosci; 17:417-421.
    [9]Wen PY, Kesari S. Malignant gliomas in adults[J]. N Engl J Med 2008; 359:492-507.
    [10]Louis DN. Molecular pathology of malignant gliomas[J]. Annu Rev Pathol 2006; 1: 97-117.
    [11]Mason WP, Cairncross JG. Invited article:the expanding impact of molecular biology on the diagnosis and treatment of gliomas[J]. Neurology 2008; 71:365-373.
    [12]Sathornsumetee S, Rich JN. Designer therapies for glioblastoma multiforme [J]. Ann N Y Acad Sci 2008; 1142:108-132.
    [13]Everhard S, Kaloshi G, Criniere E, et al. MGMT methylation:a marker of response to temozolomide in low-grade gliomas [J]. Ann Neurol 2006; 60:740-743.
    [14]Hegi ME, Diserens AC, Gorlia T. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med 2005; 352:997-1003.
    [15]Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltrans-ferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity [J]. J Clin Oncol 2008; 26:4189-4199.
    [16]Weller M, Felsberg J, Hartmann C, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma:a prospective translati-onal study of the German Glioma Network[J]. J Clin Oncol 2009; 27:5743-5750.
    [17]Rivera AL, Pelloski CE, Gilbert MR, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma[J]. Neuro Oncol; 12:116-121.
    [18]Kong DS, Lee JI, Kim JH, et al. Phase II trial of low-dose continuous (metronomic) treatment of temozolomide for recurrent glioblastoma[J]. Neuro Oncol; 12:289-296.
    [19]Wick A, Pascher C, Wick W, et al. Rechallenge with temozolomide in patients with recurrent gliomas[J]. J Neurol 2009; 256:734-741.
    [20]Brandes AA, Franceschi E, Tosoni A, et al. O(6)-methylguanine DNA-methyltran-sferase methylation status can change between first surgery for newly diagnosed glioblastoma and second surgery for recurrence:clinical implications[J]. Neuro Oncol; 12:283-288.
    [21]Costa BM, Caeiro C, Guimaraes I, et al. Prognostic value of MGMT promoter methylation in glioblastoma patients treated with temozolomide-based chemoradiation:a Portuguese multicentre study[J]. Oncol Rep; 23:1655-1662.
    [22]Karayan-Tapon L, Quillien V, Guilhot J, et al. Prognostic value of O6-methylg-uanine-DNA methyltransferase status in glioblastoma patients, assessed by five different methods[J]. J Neurooncol; 97:311-322.
    [23]Cairncross JG, Ueki K, Zlatescu MC, et al. Specific genetic predictors of chemother-apeutic response and survival in patients with anaplastic oligodendrogliomas[J]. J Natl Cancer Inst 1998; 90:1473-1479.
    [24]Jenkins RB, Blair H, Ballman KV, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma[J]. Cancer Res 2006; 66:9852-9861.
    [25]Smith JS, Perry A, Borell TJ, et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas[J]. J Clin Oncol 2000; 18:636-645.
    [26]Cairncross G, Berkey B, Shaw E, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendro-glioma: Intergroup Radiation Therapy Oncology Group Trial 9402[J]. J Clin Oncol 2006; 24:2707-2714.
    [27]van den Bent MJ, Carpentier AF, Brandes AA, et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas:a randomized European Organisation for Research and Treatment of Cancer phase III trial[J]. J Cin Oncol 2006; 24:2715-2722.
    [28]Iwamoto FM, Nicolardi L, Demopoulos A, et al. Clinical relevance of 1p and 19q deletion for patients with WHO grade 2 and 3 gliomas[J]. J Neurooncol 2008; 88:293-298.
    [29]Weller M, Berger H, Hartmann C, et al. Combined lp/19q loss in oligodendroglial tumors:predictive or prognostic biomarker?[J]. Clin Cancer Res 2007; 13:6933-6937.
    [30]Abrey LE, Louis DN, Paleologos N, et al. Survey of treatment recommendations for anaplastic oligodendroglioma[J]. Neuro Oncol 2007; 9:314-318.
    [31]Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas[J]. N Engl J Med 2009; 360:765-773.
    [32]Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age:a study of 1,010 diffuse gliomas[J]. Acta Neuropathol 2009; 118:469-474.
    [33]Labussiere M, Idbaih A, Wang XW, et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2[J]. Neurology; 74:1886-1890.
    [34]Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-lalpha[J]. Science 2009; 324:261-265.
    [35]Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate[J]. Nature 2009; 462:739-744.
    [36]Korshunov A, Meyer J, Capper D, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma[J]. Acta Neuropathol 2009; 118:401-405.
    [37]Pelloski CE, Ballman KV, Furth AF, et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma[J]. J Clin Oncol 2007; 25: 2288-2294.
    [38]Ohgaki H, Dessen P, Jourde B, et al. Genetic pathways to glioblastoma:a population-based study[J]. Cancer Res 2004; 64:6892-6899.
    [39]Liu L, Backlund LM, Nilsson BR, et al. Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas[J]. J Mol Med 2005; 83:917-926.
    [40]Lai A, Tran A, Nghiemphu PL, et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme[J]. J Clin Oncol; 29:142-148.
    [41]Raizer JJ, Abrey LE, Lassman AB, et al. A phase Ⅰ trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas[J]. Neuro Oncol; 12:87-94.
    [42]Rich JN, Reardon DA, Peery T, et al. Phase Ⅱ trial of gefitinib in recurrent glioblastoma[J]. J Clin Oncol 2004; 22:133-142.
    [43]Peereboom DM, Shepard DR, Ahluwalia MS, et al. Phase Ⅱ trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme[J]. J Neurooncol; 98:93-99.
    [44]Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors[J]. Annu Rev Pathol;5:33-50.
    [45]Pfister S, Janzarik WG, Remke M, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas[J]. J Clin Invest 2008; 118:1739-1749.
    [46]Bigner SH, Matthews MR, Rasheed BK, et al. Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization[J]. Am J Pathol 1999; 155:375-386.
    [47]Smith JS, Wang XY, Qian J, et al. Amplification of the platelet-derived growth factor receptor-A (PDGFRA) gene occurs in oligodendrogliomas with grade Ⅳ anaplastic features[J]. J Neuropathol Exp Neurol 2000; 59:495-503.
    [48]Sasaki H, Zlatescu MC, Beten sky RA, Ino Y, Cairncross JG, Louis DN. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis[J]. Am J Pathol 2001; 159:359-367.
    [49]Wiencke JK, Zheng S, Jelluma N, et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma[J]. Neuro Oncol 2007; 9:271-279.
    [50]Rao RD, Uhm JH, Krishnan S, James CD. Genetic and signaling pathway alterations in glioblastoma:relevance to novel targeted therapies[J]. Front Biosci 2003; 8: e270-280.
    [51]Mohapatra G, Betensky RA, Miller ER, et al. Glioma test array for use with formalin-fixed, paraffin-embedded tissue:array comparative genomic hybridization correlates with loss of heterozygosity and fluorescence in situ hybridization[J]. J Mol Diagn 2006; 8: 268-276.
    [52]Smith JS, Alderete B, Minn Y, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype[J]. Oncogene 1999; 18:4144-4152.
    [53]Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells:evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors[J]. Cancer Res 2002; 62:3729-3735.
    [54]Puputti M, Tynninen O, Sihto H, et al. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas[J]. Mol Cancer Res 2006; 4:927-934.
    [55]Fleming TP, Saxena A, Clark WC, et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors[J]. Cancer Res 1992; 52:4550-4553.
    [56]Campomenosi P, Ottaggio L, Moro F, et al. Study on aneuploidy and p53 mutations in astrocytomas[J]. Cancer Genet Cytogenet 1996; 88:95-102.
    [57]Thangnipon W, Mizoguchi M, Kukita Y, et al. Distinct pattern of PCR-SSCP analysis of p53 mutations in human astrocytomas[J]. Cancer Lett 1999; 141:195-201.
    [58]Henson JW, Schnitker BL, Correa KM, et al. The retinoblastoma gene is involved in malignant progression of astrocytomas[J]. AnnNeurol 1994; 36:714-721.
    [59]Tsuzuki T, Tsunoda S, Sakaki T, Konishi N, Hiasa Y, Nakamura M. Alterations of retinoblastoma, p53, pl6(CDKN2), and p15 genes in human astrocytomas[J]. Cancer 1996; 78:287-293.
    [60]von Deimling A, Bender B, Jahnke R, et al. Loci associated with malignant progression in astrocytomas:a candidate on chromosome 19q[J]. Cancer Res 1994; 54: 1397-1401.
    [61]Dehais C, Laigle-Donadey F, Marie Y, et al. Prognostic stratification of patients with anaplastic gliomas according to genetic profile[J]. Cancer 2006; 107:1891-1897.
    [62]Brat DJ, Seiferheld WF, Perry A, et al. Analysis of 1p,19q,9p, and 10q as prognostic markers for high-grade astrocytomas using fluorescence in situ hybridization on tissue microarrays from Radiation Therapy Oncology Group trials[J]. Neuro Oncol 2004; 6: 96-103.
    [63]Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations[J]. Cancer Res 1993; 53:2736-2739.
    [64]Hulleman E, Helin K. Molecular mechanisms in gliomagenesis[J]. Adv Cancer Res 2005; 94:1-27.
    [65]Korkolopoulou P, Christodoulou P, Kouzelis K, et al. MDM2 and p53 expression in gliomas:a multivariate survival analysis including proliferation markers and epidermal growth factor receptor[J]. Br J Cancer 1997; 75:1269-1278.
    [66]Ino Y, Silver JS, Blazejewski L, et al. Common regions of deletion on chromosome 22q12.3-q13.1 and 22q13.2 in human astrocytomas appear related to malignancy grade[J]. J Neuropathol ExpNeurol 1999; 58:881-885.
    [67]Schrock E, Blume C, Meffert MC, et al. Recurrent gain of chromosome arm 7q in low-grade astrocytic tumors studied by comparative genomic hybridization[J]. Genes Chromosomes Cancer 1996; 15:199-205.
    [68]Joensuu H, Puputti M, Sihto H, Tynninen O, Nupponen NN. Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme[J]. J Pathol 2005; 207:224-231.
    [69]Soni D, King JA, Kaye AH, Hovens CM. Genetics of glioblastoma multiforme: mitogenic signaling and cell cycle pathways converge[J]. J Clin Neurosci 2005; 12:1-5.
    [70]Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma[J]. Am J Pathol 2007; 170:1445-1453.
    [71]Shinojima N, Tada K, Shiraishi S, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme [J]. Cancer Res 2003; 63:6962-6970.
    [72]Fujisawa H, Reis RM, Nakamura M, et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas[J]. Lab Invest 2000; 80:65-72.
    [73]Hui AB, Lo KW, Yin XL, Poon WS, Ng HK. Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization [J]. Lab Invest 2001; 81:717-723.
    [74]Kraus JA, Glesmann N, Beck M, et al. Molecular analysis of the PTEN, TP53 and CDKN2A tumor suppressor genes in long-term survivors of glioblastoma multiforme [J]. J Neurooncol 2000; 48:89-94.
    [75]Schmidt EE, Ichimura K, Goike HM, Moshref A, Liu L, Collins VP. Mutational profile of the PTEN gene in primary human astrocytic tumors and cultivated xenografts[J]. J Neuropathol Exp Neurol 1999; 58:1170-1183.
    [76]Wang SI, Puc J, Li J, et al. Somatic mutations of PTEN in glioblastoma multiforme[J]. Cancer Res 1997; 57:4183-4186.
    [77]Shih AH, Holland EC. Platelet-derived growth factor (PDGF) and glial tumorigenesis[J]. Cancer Lett 2006; 232:139-147.
    [78]Liang ML, Ma J, Ho M, et al. Tyrosine kinase expression in pediatric high grade astrocytoma[J]. J Neurooncol 2008; 87:247-253.
    [79]Shiraishi S, Tada K, Nakamura H, et al. Influence of p53 mutations on prognosis of patients with glioblastoma[J]. Cancer 2002; 95:249-257.
    [80]Mollenhauer J, Wiemann S, Scheurlen W, et al. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours [J]. Nat Genet 1997; 17:32-39.
    [81]Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma:genetics and biology of a grave matter [J]. Genes Dev 2001; 15:1311-1333.
    [82]Wechsler DS, Shelly CA, Petroff CA, Dang CV. MX11, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells[J]. Cancer Res 1997; 57:4905-4912.
    [83]Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas[J]. Acta Neuropathol 1997; 94:303-309.
    [84]He J, Reifenberger G, Liu L, Collins VP, James CD. Analysis of glioma cell lines for amplification and overexpression of MDM2[J]. Genes Chromosomes Cancer 1994; 11:91-96.
    [85]Holtkamp N, Ziegenhagen N, Malzer E, Hartmann C, Giese A, von Deimling A. Characterization of the amplicon on chromosomal segment 4q12 in glioblastoma multiforme[J]. Neuro Oncol 2007; 9:291-297.
    [86]Watts GS, Pieper RO, Costello JF, Peng YM, Dalton WS, Futscher BW. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene[J]. Mol Cell Biol 1997; 17:5612-5619.
    [87]Mrugala MM, Chamberlain MC. Mechanisms of disease:temozolomide and glioblastoma--look to the future[J]. Nat Clin Pract Oncol 2008; 5:476-486.
    [88]Qian XC, Brent TP. Methylation hot spots in the 5'flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene[J]. Cancer Res 1997; 57:3672-3677.
    [89]Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G. Molecular diagnostics of gliomas:state of the art[J]. Acta Neuropathol; 120:567-584.
    [90]de Tayrac M, Aubry M, Saikali S, et al. A 4-Gene Signature Associated with Clinical Outcome in High-Grade Gliomas[J]. Clin Cancer Res; 17:317-327.
    [91]Colman H, Zhang L, Sulman EP, et al. A multigene predictor of outcome in glioblastoma[J]. Neuro Oncol; 12:49-57.
    [92]Bosotti R, Locatelli G, Healy S, et al. Cross platform microarray analysis for robust identification of differentially expressed genes[J]. BMC Bioinformatics 2007; 8 Suppl 1:S5.
    [93]Pan F, Kamath K, Zhang K, et al. Integrative Array Analyzer:a software package for analysis of cross-platform and cross-species microarray data[J]. Bioinformatics 2006; 22: 1665-1667.
    [94]Bussey KJ, Kane D, Sunshine M, et al. MatchMiner:a tool for batch navigation among gene and gene product identifiers[J]. Genome Biol 2003; 4:R27.
    [95]Tarraga J, Medina I, Carbonell J, et al. GEPAS, a web-based tool for microarray data analysis and interpretation [J]. Nucleic Acids Res 2008; 36:W308-314.
    [96]Kapushesky M, Kemmeren P, Culhane AC, et al. Expression Profiler:next generation--an online platform for analysis of microarray data[J]. Nucleic Acids Res 2004; 32: W465-470.
    [97]Parkinson H, Kapushesky M, Shojatalab M, et al. ArrayExpress--a public database of microarray experiments and gene expression profiles[J]. Nucleic Acids Res 2007; 35: D747-750.
    [98]Demeter J, Beauheim C, Gollub J, et al. The Stanford Microarray Database: implementation of new analysis tools and open source release of software [J]. Nucleic Acids Res 2007;35:D766-770.
    [99]Killion PJ, Sherlock G, Iyer VR. The Longhorn Array Database (LAD):an open-source, MIAME compliant implementation of the Stanford Microarray Database (SMD)[J]. BMC Bioinformatics 2003; 4:32.
    [100]Troein C, Vallon-Christersson J, Saal LH. An introduction to BioArray Software Environment[J]. Methods Enzymol 2006; 411:99-119.
    [101]Churchill GA. Fundamentals of experimental design for cDNA microarrays[J]. Nat Genet 2002; 32 Suppl:490-495.
    [102]Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer[J]. Oncogene 2004; 23:2016-2027.
    [103]Taylor SS, Scott MI, Holland AJ. The spindle checkpoint:a quality control mechanism which ensures accurate chromosome segregation[J]. Chromosome Res 2004; 12: 599-616.
    [104]Hartwell LH, Weinert TA. Checkpoints:controls that ensure the order of cell cycle events[J]. Science 1989; 246:629-634.
    [105]Kops GJ, Weaver BA, Cleveland DW. On the road to cancer:aneuploidy and the mitotic checkpoint[J]. Nat Rev Cancer 2005; 5:773-785.
    [106]Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time[J]. Nat Rev Mol Cell Biol 2007; 8:379-393.
    [107]May KM, Hardwick KG. The spindle checkpoin[J]. J Cell Sci 2006; 119: 4139-4142.
    [108]Kang J, Chen Y, Zhao Y, Yu H. Autophosphorylation-dependent activation of human Mpsl is required for the spindle checkpoint[J]. Proc Natl Acad Sci U S A 2007; 104: 20232-20237.
    [109]Baker DJ, Chen J, van Deursen JM. The mitotic checkpoint in cancer and aging: what have mice taught us?[J]. Curr Opin Cell Biol 2005; 17:583-589.
    [110]Babu JR, Jeganathan KB, Baker DJ, Wu X, Kang-Decker N, van Deursen JM. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation[J]. J Cell Biol 2003; 160:341-353.
    [111]Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells[J]. Nature 2001; 409: 355-359.
    [112]Weaver BA, Cleveland DW. Does aneuploidy cause cancer?[J]. Curr Opin Cell Biol 2006; 18:658-667.
    [113]Rajagopalan H, Lengauer C. Aneuploidy and cancer[J]. Nature 2004; 432:338-341.
    [114]de Reynies A, Assie G, Rickman DS, et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival[J]. J Clin Oncol 2009; 27:1108-1115.
    [115]Ando K, Kakeji Y, Kitao H, et al. High expression of BUBR1 is one of the factors for inducing DNA aneuploidy and progression in gastric cancer[J], Cancer Sci; 101:639-645.
    [116]Lee YK, Choi E, Kim MA, Park PG, Park NH, Lee H. BubRl as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers[J]. Br J Cancer 2009; 101:504-510.
    [117]Gladhaug IP, Westgaard A, Schjolberg AR, Burum-Auensen E, Pomianowska E, Clausen OP. Spindle proteins in resected pancreatic head adenocarcinomas:BubRl is an independent prognostic factor in pancreatobiliary-type tumours[J]. Histopathology; 56:345-355.
    [118]Shichiri M, Yoshinaga K, Hisatomi H, Sugihara K, Hirata Y. Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival[J]. Cancer Res 2002; 62:13-17.
    [119]Yuan B, Xu Y, Woo JH, et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability [J]. Clin Cancer Res 2006; 12:405-410.
    [120]Olesen SH, Thykjaer T, Orntoft TF. Mitotic checkpoint genes hBUB1, hBUB1B, hBUB3 and TTK in human bladder cancer, screening for mutations and loss of heterozygosity[J]. Carcinogenesis 2001; 22:813-815.
    [121]Shigeishi H, Yokozaki H, Kuniyasu H, et al. No mutations of the Bubl gene in human gastric carcinomas[J]. Oncol Rep 2001; 8:791-794.
    [122]Reis RM, Nakamura M, Masuoka J, et al. Mutation analysis of hBUBl, hBUBR1 and hBUB3 genes in glioblastomas[J]. Acta Neuropathol 2001; 101:297-304.
    [123]Ouellet V, Guyot MC, Le Page C, et al. Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer[J]. Int J Cancer 2006; 119:599-607.
    [124]Kim JM, Sohn HY, Yoon SY, et al. Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells[J]. Clin Cancer Res 2005; 11:473-482.
    [125]Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S. Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer[J]. Carcinogenesis 2007; 28:81-92.
    [126]Marucci G, Morandi L, Magrini E, et al. Gene expression profiling in glioblastoma and immunohistochemical evaluation of IGFBP-2 and CDC20[J]. Virchows Arch 2008; 453: 599-609.
    [127]Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K. CDC20, a potential cancer therapeutic target, is negatively regulated by p53[J]. Oncogene 2008; 27:1562-1571.
    [128]Howell BJ, McEwen BF, Canman JC, et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation[J].J Cell Biol 2001; 155:1159-1172.
    [129]Tsukasaki K, Miller CW, Greenspun E, et al. Mutations in the mitotic check point gene, MAD1L1, in human cancers[J]. Oncogene 2001; 20:3301-3305.
    [130]Han S, Park K, Kim HY, et al. Clinical implication of altered expression of Madl protein in human breast carcinoma[J]. Cancer 2000; 88:1623-1632.
    [131]Wang X, Jin DY, Ng RW, et al. Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells[J]. Cancer Res 2002; 62:1662-1668.
    [132]Wang X, Jin DY, Wong YC, et al. Correlation of defective mitotic checkpoint with aberrantly reduced expression of MAD2 protein in nasopharyngeal carcinoma cells[J]. Carcinogenesis 2000; 21:2293-2297.
    [133]Pinto M, Soares MJ, Cerveira N, et al. Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes[J]. Virchows Arch 2007; 450:379-385.
    [134]Hernando E, Nahle Z, Juan G, et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control[J]. Nature 2004; 430:797-802.
    [135]Rimkus C, Friederichs J, Rosenberg R, Holzmann B, Siewert JR, Janssen KP. Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer[J]. Int J Cancer 2007; 120:207-211.
    [136]Tighe A, Staples O, Taylor S. Mpsl kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores[J]. J Cell Biol 2008; 181:893-901.
    [137]Wei JH, Chou YF, Ou YH, et al. TTK/hMpsl participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68[J]. J Biol Chem 2005; 280:7748-7757.
    [138]Salvatore G, Nappi TC, Salerno P, et al. A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma[J]. Cancer Res 2007; 67:10148-10158.
    [139]Abrieu A, Kahana JA, Wood KW, Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro[J]. Cell 2000; 102:817-826.
    [140]Weaver BA, Bonday ZQ, Putkey FR, Kops GJ, Silk AD, Cleveland DW. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss[J]. J Cell Biol 2003; 162:551-563.
    [141]Raverot G, Wierinckx A, Dantony E, et al. Prognostic factors in prolactin pituitary tumors:clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up[J]. J Clin Endocrinol Metab; 95:1708-1716.
    [142]Balamuth NJ, Wood A, Wang Q, et al. Serial transcriptome analysis and cross-species integration identifies centromere-associated protein E as a novel neuroblastoma target[J]. Cancer Res; 70:2749-2758.
    [143]Tye BK. MCM proteins in DNA replication[J]. Annu Rev Biochem 1999; 68:649-686.
    [144]Maiorano D, Lutzmann M, Mechali M. MCM proteins and DNA replication[J]. Curr Opin Cell Biol 2006; 18:130-136.
    [145]Liku ME, Nguyen VQ, Rosales AW, Irie K, Li JJ. CDK phosphorylation of a novel NLS-NES module distributed between two subunits of the Mcm2-7 complex prevents chromosomal rereplication[J]. Mol Biol Cell 2005; 16:5026-5039.
    [146]Ricke RM, Bielinsky AK. Mcm 10 regulates the stability and chromatin association of DNA polymerase-alpha[J]. Mol Cell 2004; 16:173-185.
    [147]Chang VK, Fitch MJ, Donato JJ, Christensen TW, Merchant AM, Tye BK. Mcml binds replication origins[J]. J Biol Chem 2003; 278:6093-6100.
    [148]Maiorano D, Cuvier O, Danis E, Mechali M. MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation[J]. Cell 2005; 120:315-328.
    [149]MacCallum DE, Hall PA. The location of pKi67 in the outer dense fibrillary compartment of the nucleolus points to a role in ribosome biogenesis during the cell division cycle[J]. J Pathol 2000; 190:537-544.
    [150]Ha SA, Shin SM, Namkoong H, et al. Cancer-associated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis[J]. Clin Cancer Res 2004; 10:8386-8395.
    [151]Sakamoto I, Takahara K, Yamashita M, Iwao Y. Changes in cyclin B during oocyte maturation and early embryonic cell cycle in the newt, Cynops pyrrhogaster:requirement of germinal vesicle for MPF activation[J]. Dev Biol 1998; 195:60-69.
    [152]Giaginis C, Georgiadou M, Dimakopoulou K, et al. Clinical significance of MCM-2 and MCM-5 expression in colon cancer:association with clinicopathological parameters and tumor proliferative capacity[J]. Dig Dis Sci 2009; 54:282-291.
    [153]Huang HY, Huang WW, Lin CN, et al. Immunohistochemical expression of p16INK4A, Ki-67, and Mcm2 proteins in gastrointestinal stromal tumors:prognostic implications and correlations with risk stratification of NIH consensus criteria[J]. Ann Surg Oncol 2006; 13:1633-1644.
    [154]Quaglia A, McStay M, Stoeber K, et al. Novel markers of cell kinetics to evaluate progression from cirrhosis to hepatocellular carcinoma[J]. Liver Int 2006; 26:424-432.
    [155]Yang J, Ramnath N, Moysich KB, et al. Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer[J]. BMC Cancer 2006; 6:203.
    [156]Hashimoto K, Araki K, Osaki M, et al. MCM2 and Ki-67 expression in human lung adenocarcinoma:prognostic implications[J]. Pathobiology 2004; 71:193-200.
    [157]Shima N, Buske TR, Schimenti JC. Genetic screen for chromosome instability in mice:Mcm4 and breast cancer[J]. Cell Cycle 2007; 6:1135-1140.
    [158]Huse JT, Holland EC. Targeting brain cancer:advances in the molecular pathology of malignant glioma and medulloblastoma[J]. Nat Rev Cancer; 10:319-331.
    [159]Wharton SB, Chan KK, Anderson JR, Stoeber K, Williams GH. Replicative Mcm2 protein as a novel proliferation marker in oligodendrogliomas and its relationship to Ki67 labelling index, histological grade and prognosis[J]. Neuropathol Appl Neurobiol 2001; 27: 305-313.
    [160]Scott IS, Morris LS, Rushbrook SM, et al. Immunohistochemical estimation of cell cycle entry and phase distribution in astrocytomas:applications in diagnostic neuropath-ology[J]. Neuropathol Appl Neurobiol 2005; 31:455-466.
    [161]Soling A, Sackewitz M, Volkmar M, et al. Minichromosome maintenance protein 3 elicits a cancer-restricted immune response in patients with brain malignancies and is a strong independent predictor of survival in patients with anaplastic astrocytoma[J], Clin Cancer Res 2005; 11:249-258.
    [162]Gruber-Olipitz M, Yang JW, Stroebel T, Slavc I, Lubec G. The medulloblastoma cell line DAOY but not eleven other tumor cell lines expresses minichromosome maintenance protein 4[J]. Cancer Lett 2006; 238:76-84.
    [163]Koppen A, Ait-Aissa R, Koster J, et al. Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma[J]. Eur J Cancer 2007; 43:2413-2422.
    [164]Whittle IR, Smith C, Navoo P, Collie D. Meningiomas[J]. Lancet 2004; 363: 1535-1543.
    [165]Nakasu S, Li DH, Okabe H, Nakajima M, Matsuda M. Significance of MIB-1 staining indices in meningiomas:comparison of two counting methods[J]. Am J Surg Pathol 2001; 25:472-478.
    [166]Perry A, Cai DX, Scheithauer BW, et al. Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma:a correlative immunohistochemical study of 175 cases[J]. J Neuropathol Exp Neurol 2000; 59:872-879.
    [167]Hunt DP, Freeman A, Morris LS, et al. Early recurrence of benign meningioma correlates with expression of mini-chromosome maintenance-2 protein[J]. Br J Neurosurg 2002; 16:10-15.
    [168]Xu J, Zhang S, You C, Huang S, Cai B, Wang X. Expression of human MCM6 and DNA Topo Ⅱ alpha in craniopharyngiomas and its correlation with recurrence of the tumor [J]. J Neurooncol 2007; 83:183-189.
    [169]Freije WA, Castro-Vargas FE, Fang Z, et al. Gene expression profiling of gliomas strongly predicts survival[J]. Cancer Res 2004; 64:6503-6510.
    [170]Gravendeel LA, Kouwenhoven MC, Gevaert O, et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology[J]. Cancer Res 2009; 69: 9065-9072.
    [171]Wong KK, Chang YM, Tsang YT, et al. Expression analysis of juvenile pilocytic astrocytomas by oligonucleotide microarray reveals two potential subgroups[J]. Cancer Res 2005; 65:76-84.
    [172]Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system [J]. Acta Neuropathol 2007; 114:97-109.
    [173]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res 2001; 29:e45.
    [174]Chang EF, Clark A, Jensen RL, et al. Multiinstitutional validation of the University of California at San Francisco Low-Grade Glioma Prognostic Scoring System. Clinical article[J]. J Neurosurg 2009; 111:203-210.
    [175]Hodgson JG, Yeh RF, Ray A, et al. Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts[J]. Neuro Oncol 2009; 11:477-487.
    [176]Yamamoto Y, Matsuyama H, Chochi Y, et al. Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer[J]. Cancer Genet Cytogenet 2007; 174:42-47.
    [177]Grabsch H, Takeno S, Parsons WJ, et al. Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer-association with tumour cell proliferation[J]. J Pathol 2003; 200:16-22.
    [178]Burum-Auensen E, DeAngelis PM, Schjolberg AR, Roislien J, Mjaland O, Clausen OP. Reduced level of the spindle checkpoint protein BUB1B is associated with aneuploidy in colorectal cancers[J]. Cell Prolif 2008; 41:645-659.
    [179]Wang YW, Zhu ZG, Liu BY, et al. [Expression and clinical significance of cancer-related gene MPS-1 in gastric cancer][J]. Zhonghua Wei Chang Wai Ke Za Zhi 2005; 8: 503-506.
    [180]Parkins CS, Darling JL, Gill SS, Revesz T, Thomas DG. Cell proliferation in serial biopsies through human malignant brain tumours:measurement using Ki67 antibody labelling[J]. Br J Neurosurg 1991; 5:289-298.
    [181]Torp SH. Diagnostic and prognostic role of Ki67 immunostaining in human astrocytomas using four different antibodies [J]. Clin Neuropathol 2002; 21:252-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700