金属铁诱导复相铁氧体材料的制备和磁性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六角铁氧体是一种广泛应用在微波信号处理领域的重要材料,如何大幅度调控饱和磁化强度和矫顽力一直是此类材料研究的重点。本文以金属铁作为诱发剂、采用放电等离子体烧结(SPS)技术制备了一系列饱和磁化强度和矫顽力均可大幅度调控的M型、W型和Z型钡铁氧体诱变复相铁氧体材料,重点研究了复相铁氧体的物相组成、结晶反应机制、显微结构和磁性能。
     通过优化SPS烧结的温度、保温时间和压力,确定了制备M型钡铁氧体(BaM)诱变复相铁氧体材料的优化SPS工艺为900℃、保温30 min和压力20MPa。利用该工艺,以名义组成为xFe+BaFe_(12)O_(19)(0≤x≤1.0,△x=0.1)的共沉淀前驱体制备了BaM诱变复相铁氧体材料。0     在900℃、保温30 min和20 MPa的SPS条件下,分别用金属铁粉与单相BaM、BaCo_2Fe_(16)O_(27)(Co_2W)和Ba_3Co_2Fe_(24)O_(41)(Co_2Z)粉体构成的xFe+BaFe_(12)O_(19)、xFe+BaCo_2Fe_(16)O_(27)和xFe+Ba_3Co_2Fe_(24)O_(41)(0≤x≤1.0,△x=0.1)的均匀混合物制备了系列M型、W型和Z型钡铁氧体诱变复相铁氧体材料。
     BaM诱变复相铁氧体随x增加其晶粒尺寸、瓯和皿逐渐减小但致密度逐渐增大,物相组成为BaM、Fe_3O_4和Fe_2Y时结晶反应为BaM与Fe生成Fe_2Y和Fe_3O_4,为Fe_3O_4、Fe_2Y和BaFe_2O_4时结晶反应为BaM与Fe生成Fe_2Y和Fe_3O_4,Fe与Fe_2Y生成BaFe_2O_4和Fe_3O_4;CO_2W诱变复相铁氧体随x增加其致密度逐渐增大、σ_s逐渐降低、H_c先增大后降低,物相组成为Co_2W、Ba_2Co_2Fe_(12)O_(22)(Co_2Y)、CoFe_2O_4和Fe_3O_4时结晶反应为Co_2W与Fe生成Co_2Y、CoFe_2O_4和Fe_3O_4,为BaFe_2O_4、Fe_3O_4、CoFe_2O_4和Co_2Y时结晶反应为Co_2W与Fe生成CoFe_2O_4、Co_2Y和Fe_3O_4,Fe与Co_2Y生成BaFe_2O_4、Fe_3O_4和CoFe_2O_4;Co_2Z诱变复相铁氧体随x增加其致密度和H_c增大、σ_s降低,物相组成由Co_2Z、Fe_3O_4、BaFe_2O_4和Co_2Y组成,但x=1.0时Co_2Z消失,结晶反应为Co_2Z与Fe生成Co_2Y、Fe_3O_4和BaFe_2O_4。
The hexaferrite is an important material which is widely used in microwave processing, and how to regulate the saturation magnetization and the coercivity of the hexaferrite in large range is a significant research topic in preparing this microwave processing materials, In this paper, spark plasma sintering (SPS) technique was used to synthesize a series of M-type, W-type and Z-type barium ferrites induced multiphase ferrite mateials in large range to regulate saturation magnetizations and coercivities with metal iron as an induced agent. The phase composition, crystallization reaction mechanism, microsturcture and magnetic properties of the multiphase ferrite materials were comprehensively studied.
     By regulating the SPS sintering temperature, holding time and pressure, the optimized condition is holding 30 min at 900℃and 20 MPa for synthesizing M-type barium ferrite (BaM) induced multiphase ferrite materials. M-type barium ferrite induced multiphase ferrite materials were synthesized by sintering the coprecipitation precursors with nominal composition of xFe + BaFe_(12)O_(19)(0≤x≤1,△x=0.1) under the optimized SPS condition. The multiphase ferrite mat1erials were composed of BaM, Fe_3O_4 and Ba_2Fe_(14)O_(22) (Fe_2Y) for 0     A series of M-type, W-type and Z-type barium ferrite induced multiphase ferrite materials fabricated by sintering the mixtures of irons and single phase BaM, BaCo_2Fe_(16)O_(27) (Co_2W) and Ba_3Co_2Fe_(24)O_(41) (Co_2Z) powders with nominal composition of xFe+BaFe_(12)O_(19), xFe + BaCo_2Fe_(16)O_(27) and xFe + Ba_3Co_2Fe_(24)O_(41) (0≤x≤1,△x=0.1) using SPS method at 900℃and 20 MPa holding for 30 min, respectively.
     To the M-type barium ferrite induced multiphase ferrite materials, the grain size, the saturation magnetization and the coercivity reduced gradually, but the density increased with the x increasing. The crystallization reaction is BaM and Fe to form Fe_2Y and Fe_3O_4, when multiphase ferrite materials were composed of BaM, Fe_3O_4 and Fe_2Y; the crystallization reaction are BaM and Fe to form Fe_2Y and Fe_3O_4, Fe and Fe_2Y to form BaFe_2O_4 and Fe_3O_4, when the multiphase ferrite materials were composed of Fe_3O_4, Fe_2Y and BaFe_2O_4. To the W-type barium ferrite induced multiphase ferrite materials, the density increased, the saturation magnetization reduced and the coercivity increased and then reduced with the x increasing. The crystallization reaction is Co_2W and Fe to form Ba_2Co_2Fe_(12)O_(22)(Co_2Y), CoFe_2O_4 and Fe_3O_4 when multiphase ferrite materials were composed of Co_2W, Fe_3O_4, Co_2Y and CoFe_2O_4; the crystallization reaction are Co_2W and Fe to form Co_2Y, CoFe_2O_4 and Fe_3O_4, Fe and Co_2Y to form BaFe_2O_4, Fe_3O_4 and CoFe_2O_4 when the multiphase ferrite materials were composed of Fe_3O_4, Co_2Y, BaFe_2O_4 and CoFe_2O_4. To the Z-type barium ferrite induced multiphase ferrite materials, the density and the coercivity increased but the saturation magnetization reduced with the x increasing. The multiphase ferrite materials were composed of Co_2Z, Fe_3O_4, BaFe_2O_4 and Co_2Y, the Co_2Z disappeared with x=1.0. The crystallization reaction mechanism is Co_2Z and Fe to form Co_2Y, Fe_3O_4 and BaFe_2O_4.
引文
[1]周志刚等.铁氧体磁性材料.北京:科学出版社,1981.1-12,27-50
    [2]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003.84-90
    [3]M. Pardavi-Horvath. Microwave applications of soft ferrites. J. Magn. Magn. Mater. 2000, 215-216: 171-183
    [4]J. J. Went. Ferroxdure. A clan of new permanent magnet materials, Philips Tech. Rev. 1952/1953, 13: 194-208
    [5]P. B. Braun. The crystal structures of a new group of ferromagnetic compounds. Philips Res. Rept. 1957,12:491-548
    [6]Mitsuo Sugimoto. The past, present, and future of ferrites. J. Am. Ceram. Soc., 1999, 82(2): 269-280
    [7]J. L. Snoek. New development in ferromagnetic materials. Elsevier, New York, 1947
    [8]李荫远,李国栋.铁氧体物理学,北京:科学出版社,1978
    [9]J. D. Adam, L. E. Davis, G. F. Dionne, et al. Ferrite devices and materials. IEEE Trans. Magn. 2002, 50: 721-737
    [10]张有纲,黄永杰,罗迪民.磁性材料,成都:成都电讯工程学院出版社,1988.
    [11]P. Wartewig, M. K. Krause, P. Esquinazi, et al. Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J Magn. Magn. Mater. 1999,192: 83-99
    [12]G. Albanese, A. Deriu. Magnetic properties of Al, Ga, Sc, In substituted barium ferrites: A comparative analysis. Ceramurgia Int. 1979, 5: 3-10
    [13]S. P. Marshall, J. B. Sokoloff. Phonon spectrum for barium ferrite. Phys. Rev. B 1991, 44: 619-627
    [14]赵文俞.多尺度铁氧体和纳米壳铁核复合粒子的合成与性能研究:[博士论文].武汉理工大学,2004,6-7
    [15]F. K. Lotgering. Magnetic anisotropy and saturation of LaFe_(12)O_(19) and some related compounds. J. Phys. Chem. Solids. 1974, 35: 1633-1639
    [16]F. K. Lotgering, P. R. Locher, R. P. Van Stapele. Anisotropy of hexagonal ferrites with M, W and Y structures containing Fe~(3+) and Fe~(2+) as magnetic ions. J. Phys. Chem. Solids. 1980, 41: 481-487
    [17]R. Grossinger. A critical examination of the law of approach to saturation. Ⅰ.Fit procedure. Phys. Status Solidi A 1981, 66: 665-674
    [18]R. Grossinger. Correlation between the inhomogeneity and the magnetic anisotropy in polycrystalline ferromagnetic materials. J. Magn. Magn. Mater. 1982,28: 137-142
    [19]Z. W. Li, C. K. Ong, Z. Yang, et al. Site preference and magnetic properties for a perpendicular recording material: BaFe_(12-x)Zn_(x/2)Zr_(x/2)O_(19) nanoparticles. Phys. Rev. B, 2000, 62: 6530-6537
    [20]Z. W. Li, L. F. Chen, C. K. Ong. Studies of static and high-frequency magnetic properties for M-type ferrite BaFe_(12-2x)Co_xZr_xO_(19). J. Appl. Phys. 2002, 92: 3902-3907
    [21]周文运.(Ba,Sr)Me_2W型永磁铁氧体的特性与研究进展.磁性材料及器件,2004,35(5):32-35
    [22]罗辉华.六角铁氧体的电磁波吸收特性:[硕士论文].电子科技大学,2002,10
    [23]李红英.稀土六方铁氧体的合成、表征及微波性能的研究:[博士论文].吉林大学,2007,6
    [24]燕小斌,高峰,刘向春,田长生.Co_2Z型高频软磁铁氧体材料的研究进展.磁性材料及器件,2006,20(2):29-32
    [25]Q. Q. Fang, H. W. Bao, D. M. Fang, et al. Temperature dependence of magnetic properties of zinc and niobium doped strontium hexaferrite nanoparticles. J. Appl. Phys. 2004, 95: 6360-6363
    [26]Q. Q. Fang, H. W. Bao, D. M. Fang, et al. The effect of Zn-Nb substitution on magnetic properties of strontium hexaferrite nanoparticles. J. Magn. Magn. Mater. 2004,278: 122-126
    [27]D. J. De Bitetto. Anisotropy fields in hexagonal ferrimagnetic oxides by ferrimagnetic resonance. J. Appl. Phys. 1964, 35: 3482
    [28]J. Kreisel, H. Vincent, F. Tasset, et al. An investigation of the magnetic anisotropy change in BaFe_(12-2x)Ti_xCo_xO_(19) single crystals. J. Magn. Magn. Mater. 2001,224: 17-19
    [29]S. Y. An, I. B. Shim, C. S. Kim. Mossbauer and magnetic properties of Co-Ti substituted barium hexaferrite nanoparticles. J. Appl. Phys. 2002, 91: 8465
    [30]Z. Somogyv(?)ri, E. Sv(?)b, Gy. M(?)sz(?)ros, et al. Nanosize effects on the microstructure of BaFe_(10.3)Co_(0.85)Ti_(0.85)O_(19) hexaferrite. J. Appl. Phys. 2002, 91: 6185
    [31]W. Y. Zhao, P. Wei, Q. J. Zhang, et al. FTIR spectra, lattice shrinkage and magnetic properties of CoTi-substituted M-type barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 2007, 90: 2095
    [32]I. Ndekov, A. Petkov, V. Karpov. Microwave absorption in Sc- and CoTi-substituted Ba hexaferrite powders. IEEE Trans. Magn. 1990, 26: 1483
    [33] G. Turilli, A. Paoluzi. Anisotroy field measurement and magnetization reversal in (Co-Ti) substituted hexaferrites. IEEE Trans. Magn. 1988,24: 2865-2867
    [34] R. Atkinson, P. Papakonstantinou, I. W. Salter, et al. Optical and magneto-optical properties of Co-Ti-substituted barium hexaferrite single crystals and thin films produced by laser ablation deposition. J. Magn. Magn. Mater. 1994,138: 222-231
    [35] Z. Simsa, S. Lego, R. Gerber, et al. Cation distribution in Co-Ti-substituted barium hexaferrites: a consistent model. J. Magn. Magn. Mater. 1995, 140-144: 2103-2104
    [36] J. Bursik, Z. Simsa, L. Stichauer, et al. Magneto-optical properties of Co- and Ti-substituted hexagonal ferrite films prepared by the sol-gel method. J. Magn. Magn. Mater. 1996, 157-158:311-312
    [37] J. M. Williams, J. Adetunji, M. Gregori. M(?)ssbauer spectroscopic determination of magnetic moments of Fe ~(3+) and Co~(2+) in substituted barium hexaferrite, Ba(Co,Ti)_xFe_(12-2x)O_(19). J. Magn. Magn. Mater. 2000,220: 124-128
    [38] 赵文俞,张清杰.钴钛取代M型钡铁氧体纳米粒子的晶体结构变化.陶瓷学报,2006,27(3):268-273
    [39] B. Sugg, H. Vincent. Magnetic properties of new M-type hexaferrites BaFe_(12-2x)Ir_xCo_xO_(19). J. Magn. Magn. Mater. 1995, 139 : 364-370
    [40] A. Tauber, J. A. Kohn, R. O. Savage. Single-crystal ferroxdure, BaFe_(12-2x)Ir_xZn_xO_(19) with strong planar anisotropy. J. Appl. Phys. 1963, 34: 1265
    [41] H. Vincent, B. Sugg, V. Lefez, et al. Crystal growth, X-ray and magnetic studies of planar anisotropy M-hexaferrites BaFe_(12-2x)Ir_xMe_xO_(19) (Me = Zn, Co). J. Magn. Magn. Mater. 1991, 101:170
    [42] J. Kreisel, H. Vincent, F. Tasset, et al. The magnetic anisotropy change of BaFe_(12-2x)Ir_xCo_xO_(19): a single-crystal neutron diffraction study of the accompanying atomic and magnetic structures. J. Magn. Magn. Mater. 2000, 213: 262-270
    [43] S. Pignard, H. Vincent, E. Flavin, et al. Magnetic and electromagnetic properties of RuZn and RuCo substituted BaFe_(12)O_(19). J. Magn. Magn. Mater. 2003, 260: 437-446
    [44] Xiaohui Wang, Longtu Li, Zhenxing Yue, et al. Preparation and magnetic characterization of the ferroxplana ferrites Ba_3Co_(2-x)Zn_xFe_(24)O_(41). J. Magn. Magn. Mater. 2002, 246: 434-439
    [45] Xiaohui Wang, Longtu Li, Shuiyuan Su. Electromagnetic properties of low-temperature-sintered Ba_3Co_(2-x)Zn_xFe_(24)O_(41) ferrites prepared by solid state reaction method. J. Magn. Magn. Mater. 2004,280:10-13
    [46] Z. W. Li, Lin Guoqing, Nai-Li Di, et al. Mossbauer spectra of CoZn-substituted Z -type barium ferrite Ba_3Co_(2-x)Zn_xFe_(24)O_(41). Phys. Rev. B. 2005, 72:104420
    [47] Z.W.Li, Y.P.Wu, G.Q.Lin. Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba_3Co_(2-x)Zn_xFe_(24)O_(41) composites. J. Magn. Magn. Mater. 2007, 310:145-151
    [48] Xiao-Hui Wang, Tian-Ling Ren, Long-Yu Li, et al. Preparation and magnetic properties of BaZn_(2-x)CoxFe_(16)O_(27) nanocrystalline powders. J. Magn. Magn. Mater. 1998,184: 95-100
    [49] Xiaohui Wang, Gang Xiong, Xin WangM, et al. Preparation and magnetic properties of BaZn_(2-x)CoxFe_(16)O_(27)nanocrystalline powders by the stearic acid gel method. J. Magn. Magn. Mater.l998,189:96-100
    [50] Li, Z. W., Chen, Linfeng, Wu, Yuping, et al. Microwave attenuation properties of W-type barium ferrite BaZn_(2-x)Co_xFe_(16)O_(27) composites. J. Appl. Phys. 2004, 96(1): 534-539
    [51] C. Sudakar, G. N. Subbanna, T. R. N. Kuttyb. Hexaferrite-FeCo nanocomposite particles and their electricaland magnetic properties at high frequencies. J. Appl. Phys. 2003, 94(9): 6030-6033
    [52] C. Sudakar, T.R.N. Kutty. Electrical and Magnetoresistance Properties of Composites Consisting of Iron Nanoparticles within the Hexaferrites. J.electro.mater.2004,22(11): 1280-1288
    [53] L. Zhang, L.J. Deng, P.H.Zhou. Synthesis and microwave magnetic properties of α-Fe/ferrite composites with sandwich structure. J Magn Magn Mater, 2007, 312:224-227
    [54] Pal M , Bid S , Pradhanb S K, Nath B K, et al. Synthesis of nanocomposites comprising iron and barium hexaferrites . J Magn Magn Mater, 2004,269(1): 42-47
    [55] 张丽,谢建良,周佩珩,等.α-Fe/W型六角铁氧体复合材料微波特性研究.电子科技大学学报,2008,37(3):446-449
    [56] M. I. Montero, F. Cebollada, M. P. Morales, et al.Magnetic interactions in Fe-Ba hexaferrite nanocomposite materials. J.Appl.Phys.1998, 93(11): 6277-6279
    [57] Bahgat M , Radwan M , Hessien M M . Reduction behavior of barium hexaferrite into metallic iron nanocrystallites . J Magn Magn Mater, 2007, 310(1): 107-115.
    [58] 刘兴阶,李震,胡用时,李佐宜.α铁-铁氧体材料粘结混合磁体.金属功能材料,2001,8(1):33-34
    [59] Jiu Rong Liu, Masahiro Itoh, Ken-ichi Machida. Magnetic and electromagnetic wave absorption properties of α-Fe/Z-type Ba-ferrite nanocomposites. J.Appl.Phys. 2006, 88(062503)
    [60] S.A. Seyyed Ebrahimi, A. Kianvash, C.B. Ponton, et al.The effect of hydrogen on composition, microstructure and magnetic properties of strontium hexaferrite. Ceramics International,2000,26 :379-381
    [61] Bercoff P G , Bertorello H R . High-energy ball milling of Ba-hexaferrite/Fe magnetic composite . J Magn Magn Mater, 1998, 187(2): 169-176.
    [62] Darkp M , Miha D . Synthesis of Plate-like Spinel Particles and Spinel-Hexaferrite Intergrowth Nanocomposite Particles Using the Hydrothermal Decomposition of Ba-Hexaferrite .Crystal Growth & Design , 2008, 8(7) :2182-2186.
    [63] Vevrka P, Pollertukzaveta E , Vasseur S , et al.Sr-hexaferrit/maghemite composite nanoparticles- possible new mediators formagnetic hyperthermia . Nanotechnology, 2008, 19(21):215705.
    [64] I. Nedkov, S. Kolev, K. Zadro, et al. Crystalline anisotropy and cation distribution in nanosized quasi-spherical ferroxide particles. J Magn Magn Mater, 2004,212-276 e1175-e1176
    [65] P.G. Berco, H.R. Bertorello. Magnetic properties of Ba hexaferrite and Fe compounds produced by milling and annealing in air. J Magn Magn Mater, 1999,205:261-269
    [66] S. A. S. Ebrahimi, C. B. Ponton, I. R. Harris.Comparative effects of the hydrogen and nitrogen gas treatment and re-calcination (GTR)routes on the composition, microstructure, and magnetic properties of conventionally synthesized Sr-hexaferrite. J.mater.sci.1999, 34 :53-58
    [67] Hongguo Zhang, Longtu Li, Pinggui Wu, et al. Investigation on structure and properties of low-temperature sintered composite ferrites. Mater.res.bul.2000,35:2207-2215
    [68] C. Sudakar, G.N. Subbanna, T.R.N. Kutty. Nanoparticle composites having structural intergrowths of hexaferrite and spinel ferrites prepared by gel-to-crystallite conversion and their magnetic properties. J Magn Magn Mater, 2004,268:75-88
    [69] Han Zhidong , Dong Limin , Zhang Dawe, et al. Synthesis of BaFe_(12)0_(19)/MFe_2O_4(M=Co,Mn) by sol-gel method. Rare metals, 2006,25:462-464
    [70] Na Chen, Guohong Mu, Xifeng Pan, et al. Microwave absorption properties of SrFe_(12)O_(19)/ZnFe_2O_4 composite powders. Mater.sci.eng.B,2007,139:256-260
    [71] 赵文俞,张清杰,唐新峰,等.非化学计量M型钡铁氧体纳米带的放电等离子烧结法合成.科学通报,2005,13(50):1412-1416.
    [72] 魏平,赵文俞,吴晓艳,等.铁过量M型钡铁氧体的放电等离子体烧结合成.硅酸盐学报,2008,36(z1):12-15.
    [73] Zhao W Y, Wei P, Cheng H B, et al. FTIR Spectra, Lattice Shrinkage, and Magnetic Properties of CoTi-Substituted M-Type Barium Hexaferrite. J Am Ceram Soc , 2007, 90(7): 2095-2103.
    [74]Zhao W Y, Wei P,Wu X Y, et al. Lattice vibration characterization and magnetic properties of M-type barium hexaferrite with excessive ironJ Appl Phys , 2008, 103 (6): 063902.
    [75]张冠东,官月平,单国彬,安振涛,刘会洲.纳米Fe_3O_4颗粒的表面包覆及其在磁性氧化铝载体制备中的应用.过程工程学报,2002,2(4):319-324.
    [76]Shirk B T, Bvessem W R. Temperature dependence of M_s and K_l of BaFe_(12)O_(19) and SrFe_(12)O_(19) single crystals. J Appl Phys , 1969,40(3): 1294-1296.
    [77]Hadj M A, Joubert J C . Hydrothermal synthesis and characterization of the hexagonal ferrite Fe_2-Y J Magn Magn Mater, 1986, 62(2-3):353-358.
    [78]Temuujin J , Aoyama M , Senna M , et al. Synthesis of Y-type hexaferrites via a soft mechanochemical route. J Solid State Chem, 2004, 177(11): 3903-3908.
    [79]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003.52.
    [80]邓龙江,过璧君,郑宗瑜.W型六角铁氧体的研制.电子科技大学学报,1990,19(4): 389-392.
    [81]张有纲,黄永杰,罗迪民.磁性材料.成都:成都电讯工程学院出版社,1988.84
    [82]张有纲,黄永杰,罗迪民.磁性材料.成都:成都电讯工程学院出版社,1988.22.
    [83]张有纲,黄永杰,罗迪民.磁性材料.成都:成都电讯工程学院出版社,1988.87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700