纳米复合磁性材料的制备及磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的复合化是材料发展的必然趋势之一,复合材料己成为21世纪最重要、最有发展潜力的领域。本文利用溶胶-凝胶燃烧合成法、溶胶-凝胶包裹法及胶溶法制备了纳米复合碱土(稀土)永磁材料以及复合磁性液体,所得样品主要用于吸波材料、磁记录、磁存储介质和润滑。在深入进行了大量实验研究的基础上,查明了各种工艺条件对所制备复合磁性材料物相结构、粒度及磁学性能影响的规律,确定了最佳制备工艺;利用X射线衍射仪(XRD)和红外光谱仪(IR)确定样品物相,扫描电镜(SEM)观察样品的形貌,振动样品磁强计(VSM)进行磁性测量,热重-差热分析仪(TG/DTA)研究凝胶的燃烧和析晶过程。
     本研究的主要内容如下:
     一、制备了新型纳米复合永磁粉体并建立了溶胶-凝胶包裹法
     1、在查明了最佳工艺条件的基础上,制备了软硬磁相复合、粒径细小(20nm左右)、粒度均匀且磁性能优良的纳米复合碱土及稀土永磁粉体,即BaFe12O19/γ-Fe2O3、SrFe12O19/γ-Fe2O3、SmFeO3/γ-Fe2O3及NdFeO3/γ-Fe2O3。
     2、将溶胶-凝胶法和液相包裹法相结合,建立了一种兼具二者优点的纳米粉体合成方法——溶胶-凝胶包裹法。该方法能较好的解决纳米粉体团聚问题。
     3、应用所制备的纳米复合永磁粉体作为吸波剂进行了一定的分析和研究。
     二、纳米复合碱土永磁粉体通过溶胶-凝胶燃烧法制备了纳米复合碱土永磁粉体BaFe12O19/γ-Fe2O3和SrFe12O19/γ-Fe2O3。
     1、研究了原料配比与粉末的磁学性能之间的关系。柠檬酸配比对粉末的物相结构影响不大,随着柠檬酸用量的增加,粉末的磁学性能明显得到改善。
     2、得到溶胶-凝胶燃烧合成法制备纳米复合永磁粉体的最佳工艺及参数。纳米复合样品的剩磁和最大磁能积比分段煅烧样品的单相有了较大提高,与前人合成的样品相比有了较大的改善。同时也证明了纳米复合粒子间产生了硬磁相和软磁相之间的交换耦合。
     三、纳米复合稀土永磁粉体
     通过溶胶-凝胶包裹法制备了纳米复合稀土永磁粉体SmFeO3/γ-Fe2O3及NdFeO3/γ-Fe2O3。
     1、利用溶胶-凝胶包裹法在纳米尺度上对核壳复合粒子的结构和组成进行设计和剪裁,并较好地改善了纳米粉末的分散性。由此粉体制作出的块状磁晶纳米复合磁体最大磁能积可达221 kJ·m-3。
     2、溶胶-凝胶包裹法制备的复合永磁体中稀土含量比传统快淬法和机械合金化法生产的稀土永磁体含量低,成本得以降低,并具有较高的磁性能。同时,由于具有纳米结构并含有软磁相,因此断裂韧性也得到改善。
     四、复合磁性液体
     制备了Fe3O4和CoFe2O4作为磁性粒子的煤油基、水基、辛烷基磁性液体。
     1、采用改进的胶溶法制备出纳米Fe3O4及CoFe2O4磁性粒子,确定了合成最佳工艺条件。将制备的Fe3O4和CoFe2O4颗粒在一定条件下包覆表面活性剂后分散在基载液中,制备出复合磁性液体。探讨了表面活性剂种类的选择及其用量、改性温度、改性时间、酸碱条件、超声波分散作用、离心分离等对磁性液体的影响。对磁性液体的物理性质如密度、粘度也进行了测定。
     2、利用磁性液体中总铁Fe[x]含量来表示磁性液体的稳定性,讨论了重力、离心力、存放条件等对磁性液体中总铁Fe[x]含量的影响,进而讨论了对磁性能的影响。
The permanent magnetic nanocomposite with alkali-earth and rare-earth powders, magnetic fluid were firstly synthesized using novel techniques---sol-gel combustion synthesis method, sol-gel packing method and sol-gel process. Samples are using as compound absorber, medium of magnetic record, magnetic memory and lubricant. Based on theoretical analysis and experimental studies, the effects of the pH of solution, the kinds and amounts of complexing agents, the adding of dispersant, and the condition in heat treatment of the gel on crystal phase, particle size and magnetic properties of ultra-fine powders were firstly investigated systematically to clarify the optimum forming conditions.
     The thermal analyse of dried gel was carried out by means of differential thermal analysis (DTA) with a heating rate of 10℃/ min. The phase of the samples was determined by X-ray diffraction (XRD) and infrared spectrometer (IR). The microstructure was observed by scanning electronic microscope (SEM). Magnetic measurements were conducted by vibrating sample magnetometer (VSM). Some important results are summarized as follows:
     Ⅰ. Preparation of new pattern permanent magnetic nanocomposite and foundation of sol-gel packing method.
     1 On the base of clarifying the optimum forming conditions, BaFe12O19/γ-Fe2O3, SrFe12O19/γ-Fe2O3, SmFeO3/γ-Fe2O3 and NdFeO3/γ-Fe2O3 were prepared, which are new pattern permanent magnetic nanocomposite with small size (about 20nm), narrow size distribution and high magnetic properties. These four powders are not seen to report.
     2 Sol-gel packing method was founded, which combines sol-gel with liquid packing.this method can solve powder dispersing preferably.
     3 The permanent magnetic nanocomposite as compound absorber and medium of magnetic record is analyzed and studied.
     Ⅱ. The permanent magnetic nanocomposite powders with alkali-earth The permanent magnetic nanocomposite powders with alkali-earth BaFe12O19/γ-Fe2O3 and SrFe12O19/γ-Fe2O3 were synthesized by sol-gel combustion synthesis method
     1 The automatism combustion of the gel is correlation with the mol ratio of nitrate and citric acid. The ratio influence little on the structure of powders, but the magnetic properties will be improved when the amount of citric acid increase.
     2 The optimum forming conditions is gained, these small magnetic particles allow effective exchange coupling between hard and soft magnetic phases and result in the simultaneous enhancement of the magnetic properties.
     Ⅲ. The permanent magnetic nanocomposite powders with rare-earth
     The permanent magnetic nanocomposite powders with rare-earth were synthesized by sol-gel packing method
     1 Sol-gel packing method can design and clipping the pit-shell composite particles in the structure and can improve the disperse of nano-powders. The (BH)max of its block is 221 kJ m-3.
     2 The permanent magnetic nanocomposite prepared by sol-gel packing method has less rare-earth than tradition quench quickly, mechanical alloying method, and the cost is depressed, which display enhancement of permanent magnetic and antisepsis properties. The tenacity property has been improved because the permanent magnetic nanocomposite contains soft magnetic.
     Ⅳ. Magnetic fluid
     The magnetic fluid of Fe3O4 and CoFe2O4 were prepared, which take the coal oil, water and alkyl as the carrier liquid .
     1 Fe3O4 and CoFe2O4 magnetic particles were prepared by novel sol-gel process. The optimum parameter of prepared Fe3O4 and CoFe2O4 nanoparticles were determined. When the pH was about 7, the particles modified by the surfactant were scattered in the carrier liquid. The magnetic fluid was prepared. The factors, which influence magnetic fluid properties, such as type of surfactant, quantity of surfactant, modified temperature, modified time, pH, action of ultrasonic, centrifugal effect, were discussed. The density and the viscosity of magnetic fluid were also measured.
     2 The total iron—Fe[x] in the magnetic fluid was used to express the stability of magnetic fluid, The effects on the stability of magnetic fluid were discussed, such as the gravity, the centrifugal force, the depositing condition, then the effects on the magnetism of magnetic fluid were discussed.
引文
[1]张立德,牟季美.纳米材料和纳米结构.第一版.北京:科学出版社,2001
    [2]孙琦,盛京.纳米材料技术发展及应用[J].化工进展,1997(1):48-49.
    [3]费金喜,朱维婷,吴红玉.纳米材料的物理制备方法.丽水师范专科学校学报,2001,23(2):29-31
    [4]冯琳,宋延林,万梅香,江雷.磁性氧化铁纳米粒子的研究进展.科学通报,2001,46(16):1321-1325
    [5]周寿增,董清飞.超强永磁体,北京:冶金工业出版社, 1999
    [6] H.Kojima, Ferromagnetic Materials, Vol3(1982)
    [7] Katsuki H, Komarneni S. [J]. J Am Ceram Soc, 2001,84(10):2313-2317
    [8]郭睿倩.博士学位论文.中南大学, 2002
    [9] Verma S, Joy P A, Khollam Y B, et al. [J]. Materials Letters, 2004,58(6):1092-1095
    [10]李国栋.生物磁学, 2004:4
    [11] Tehrani S, et al. [J]. IEEE Trans Magn, 2000,36(5):2752
    [12]田民波.磁性材料.北京;清华大学出版社. 2000
    [13] Coehoorn R, Mooij D B, Waard C D. J.Magn.Magn.Mater., 1989,80:101
    [14] E.Kneller and R.Hawig. IEEE Trans.Magn., 1991,27:3588-3593
    [15] Hawig, et al..J.Magn.Magn.Mater., 64(1991):391
    [16] Kaneko Y.[J]. IEEE Trans Magn, 2000,36(5):3275
    [17] Skomski R, CoeyJMD. Phys Rev B., 1993,48:15812
    [18] Fisher R, Schrefl T, Kronmtller H, et al..J Magn Magn Mater, 2001,150:329-344
    [19] Yang Choong Jin, Eno Byung Park..IEEE Trans Magn, 2000,32(5):4428-4430
    [20] Nelcy D S Mohallem, Luciana M Seara..Applied Surface Science, 2003,214:143-150
    [21] Donneell Ko, Rao X-L, Cullen J R, et al.. IEEE Trans Magn, 2003,33(5):3886-3888
    [22] R C Pullar, A K Bhattacharya. Materials Letters, 2002(57):357-538
    [23] Wang H W, Hall D A, Sale F R.. Jam Ceram Soc, 1992,75(1):124-130
    [24]吴人洁.复合材料.北京:科学出版社, 2003
    [25]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002:110-112
    [26] Fischer R, Schrefl T, Kronmoller H, et al.. Magn. Magn.Mater., 1996,153:35
    [27] Coehoorn R, de Mooij D B, Duchateau J P W E. J.de Phys.c.8, 1988,49:669~674
    [28] E.C.Stoner and E.P.Wohlfarth. Philos.Trans., 1948, A245:599
    [29] G.B.Clemette, J.E.Keemand, J.P.Bradley. J.Appl.Phys., 1988,64:5299
    [30]都有为.物理, 29(6)323(2000)
    [31] H.R.Kirchmayr. J.Appl.Phys. 29(1996):2763
    [32] Fischer R, Schrefl T, Kronmoller H, et al. Magn. Magn.Mater., 1995,150:329
    [33]李校远,韩爱军,刘永峙.江苏化工, 2003, 31(6): 5-7
    [34] Tie Chenyang, Bao jianchun, Xu Zheng. Chinese Journal of Materials Research[J], 2002,16(5): 46
    [35]邹继斌,陆永平.磁性流体密封原理与设计.北京:国防工业出版社, 2000:8
    [36]赖欣,毕剑.磁性材料及器件, 2000,31(3):15-18
    [37]徐晖.金属学报, 1998:86
    [38]许孙曲,许菱.磁性材料与器件, 2005,2:23
    [39]刘颖等.北京理工大学学报, 1997,6:52
    [40]马来鹏,尹衍升.四川化工, 2005,3:16-20
    [41] Lai Qiong Yu, lu Ji Zheng et al. Materials Chemistry and Physics, 2000,66:6-9
    [42] SangIm Park, JongHee Kim, ChongOh Kim. Journal of Magnetism and Magnetic Materials, 272–276(2004):2340–2342
    [43]李德才.磁性液体理论及应用.北京:科学出版社, 2003
    [44] M Fauconnier, A Bee et al. J Molecular Liquids, 1999,83:133-242
    [45] Ganesh Skandan, Ruvee Yao, et al..Scripta. Mater, 2001,44:1699-1702
    [46] C N Machioa, G Akdogan, M J Witcom. S. Luyckx. Wear, 2005,258:434-442
    [47] Tokoro H. [J].Joint MMM- Intermag Conf Abstr, 2001,100:BG-01
    [48] Nelcy D S Mohallem, Luciana M Seara.. Applied Surface Science, 2003214:143-150
    [49] Donneell Ko, Rao X-L, Cullen J R, et al.. IEEE Trans Magn, 2003,33(5):3886-3888
    [50]孙琦,盛京.化工进展, 1997(1): 48-49
    [51]洪广言,王丽萍.功能材料, 1998(10): 1081-1082
    [52]丁子上,翁文剑,杨娟.硅酸盐学报, 1995, 23 (5): 571-572
    [53] M F da Silva et al. Journal of Magnetism and Magnetic Materials, 2003(122):57-61
    [54]王尔德,石刚等.粉末冶金技术, 2005, 1:55-61
    [55] Skomski R, Coey J M D. Phys. Rev B, 1993, 48:15812-15816
    [1]王培铭,许乾慰.材料研究方法.北京:科学出版社, 2005
    [2] Rath C, Sahu K K, Anand S, et al..J. Magn. Magn. Mater., 1999,202:77
    [3]常铁军.近代分析测试方法.哈尔滨:哈尔滨工业大学出版社, 1999
    [4]王绪明译.红外光谱分析100例.北京:科学出版社, 1984
    [5] Miha Drofenik, Andrej Znidarsic, Darko Makovec..Communication of the American Ceramic Society, 2003,86(9): 1601
    [6]田民波.磁性材料.北京:清华大学出版社, 2001
    [1]张立德,牟季美.纳米科学[M],沈阳:辽宁科学技术出版社,1994: 120-105.
    [2]S Sakka.Science of Sol-Gel Methods,Tokgo:Uchidarokakuhv,Public.Co,1988.
    [3]J L Woodhead.Science of Ceramics,2003,49:321
    [4]A cheaterzee,D Chaterzee,D Chakravorty,J Mater Sci,1993,27:4115.
    [5]岳振星,周济,张洪国,等.硅酸盐学报,1999,27(4):466 470.
    [6]殷声,赖和怡.自蔓延高温合成法(SHS)的发展,自蔓延高温合成技术和材料,冶金工业出版社,1995,P:3.2
    [7]江国建,庄汉锐等.化学进展,1998,9:33
    [8]Fischer Kuo, Coey J M D. Journal of Magnetsim and Magnetic Materials. 200(1999): 373-375.
    [9]韩杰才,王华彬,杜善义.材料科学与工程,1997,6:15
    [10]向传三,张树格.对于SHS燃烧波方程的讨论,蔓延高温合成技术研究进展,武汉工业大学出版社,1994:13.
    [11]Rui Zhang, Lian Gao, Jingkun Guo.Surf. Coat. Technol. 2003, 166: 67-71.
    [12]D H Kuo, K W Huang. Thin Solid Films. 2001:394-529
    [13]Hadjipanayis G C. Journal of Magnetsim and Magnetic Materials, 226-230(2001): 2107- 2112
    [14]Coey J M D. Journal of Magnetsim and Magnetic Materials. 200(1999):373-375
    [15]郭睿倩.中南大学博士论文稀土掺杂磁铅石型钡铁氧体超细粉末的制备及其磁性研究2002
    [16]Yue Zhenxing , Zhou Ji , Wang Xiaohui. Journal of European Ceramic Society , 2004(23):189-193
    [17]李定.物理化学学报, 2003,19(3):275-277
    [18]Wu Kuohui, Chang Yinchiung, Wang Gawpying. Journal of Magnetism and Magnetic Materials, 2004(2269):150-155
    [19]L C Konigsberger. Ceramics International. 27(2001) 925-930
    [1]云洋,励杭泉.高分子材料科学与工程,2001,17(5):144
    [2]邵刚勤,段兴龙,谢济仁,等.硅酸盐学报,2002,30(1):40
    [3]官建国,马永梅,王长胜.高分子学报,1997,(3):277—282
    [4]Antipov A A,Sukhorukov G B,Fedutik Y A,etal.Langmuir,2002,18:6687—6693
    [5]罗付生,丁建东,李凤生.中国粉体技术,2002,8(3):10—12
    [6]程彬,朱玉瑞,江万权,等.化学物理学报,2000,13:359—362
    [7]J B da Silva,NDS mohallen .Journal of magnetism and magnetic materials .226-230(2001)1393-1396.
    [8]高家化.复合材料学报,1994:3
    
    
    [1]杨丽珍,郝燕萍等.北京印刷学院学报, 2005(4):43-45.
    [2] Sang Im Park, Jong Hee Kim, Chong Oh Kim. Journal of Magnetism and Magnetic Materials, 272–276(2004):2340–2342.
    [3]戴道生,钱昆明,钟文定等.铁磁学.北京:科学出版社, 1992
    [4]神山新一.磁性流体入门.东京:产业图书株式会社, 1989
    [5]池长青,王之珊,赵胚智.铁磁性流体力学.北京:航空航天大学出版社, 1993
    [6] R E Rosensweig. Ferrohydrodynamics. New York, 1984
    [7] Lai Qiong Yu,lu Ji Zheng et al. Materials Chemistry and Physics,2000,66:6-9
    [8]成都科技大学分析化学教研室组,浙江大学分析化学教研室组.分析化学实验.第二版.北京:高等教育出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700