甘氨酸盐燃烧法制备BaFe_(12)O_(19)纳米粉末及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料在军用及民用领域有着广泛的应用,已经成为各国军事装备隐身和民用防电磁辐射等技术领域研究的热点。铁氧体由于具有较好的性能和较低的成本,是广泛应用的吸波材料之一。但是传统的铁氧体材料普遍存在粒径大和比重大的特点,限制了其在某些特殊领域的应用。本研究首先采用溶胶凝胶-甘氨酸盐燃烧法成功制备出纳米钡铁氧体粉末,讨论了不同工艺条件对产物的影响。并在此基础上选择轻质漂珠为基核,采用溶胶凝胶-甘氨酸盐燃烧法在其表面包覆一层钡铁氧体涂层:
     1.利用甘氨酸作为有机络合剂制备纳米钡铁氧体粉末,为了得到磁性能更好的样品,从甘氨酸配比、金属离子配比、加热过程、乙二醇的作用以及煅烧温度五个方面进行了研究:
     (1)金属离子最佳配比Fe/Ba的范围为11~12,当配比小于11时,样品中出现中间相BaFe2O4。
     (2)甘氨酸和金属盐最佳配比为3:1。当有机物用量较少时,金属离子在有机链条上形成局域团聚,导致样品无法形成纯相钡铁氧体;当有机物用量较多时,金属离子在有机链条上过于分散,导致样品只有在高温下才能形成纯相。
     (3)在制备前驱体的过程中加入乙二醇,可以有效的避免颗粒之间的团聚,减少最终产物颗粒晶粒大小。
     (4)高温煅烧前先将前驱体在500℃预烧,可以避免了中间相α-Fe2O3的生成,降低钡铁氧体的晶化温度。
     (5)高矫顽力钡铁氧体的最佳煅烧温度为800℃,此时颗粒尺寸约为50~70nm,钡铁氧体在此温度下的磁性能为Hc=4960.3Oe,Ms=45.45emu/g;当温度升高到900℃时,钡铁氧体颗粒长大到200nm以上,颗粒尺寸的增大使磁畴均匀反转变为不均匀反转,导致样品矫顽力的下降。
     2.采用凝胶溶胶-甘氨酸燃烧法在漂珠表面包覆钡铁氧体的研究。
     (1)包覆钡铁氧体的关键是前处理工艺,碱洗和粗化处理可以使得漂珠表面的活性点增加,提高漂珠与溶胶结合能力。
     (2)采用溶胶凝胶-甘氨酸盐燃烧法可以在漂珠表面包裹一层完整的均匀钡铁氧体层,但涂层厚度较薄。在溶胶中预先加入一部分超细铁氧体粉末,能提高涂层的厚度。钡铁氧体溶胶颗粒主要通过化学吸附的方式在漂珠表面形成涂层,其形核机理为非均匀形核。
     (3)溶胶凝胶-甘氨酸盐燃烧法制备的漂珠钡铁氧体包覆层的复数介电常数实部和虚部都比钡铁氧体超细粉末的复数介电常数的实部和虚部要小。漂珠/钡铁氧体包覆层的反射率曲线中反射率随频率的变化与钡铁氧体粉末有相似之处,它们最大吸收所处的频率均为12.6GHz。
Microwave absorbing materials have been widely in stealth technology and in electro-magnetic compatibility (EMC) technology, and they are researching hotspot in these technology field. In most of absorbers, the ferrite is the main component because of good performance and low cost. But the defects of large crystal size and high density are not benefit for the preparation of light absorber. In response to the need for high performance absorber, in this paper, the composite-coating absorbers with hollow cenosphere as nuclear are prepared by sol-gel glycinate combustion technology.
     This thesis presents a new technology to synthesize barium ferrite based on sol-gel method by using the glycine as the chelator. 1. The barium ferrites have been successfully synthesized by using the glycine as the chelator. Different factors and treatment were selected to obtain better magnetic properties.
     (1) The optimal stoichiometry of metal ion (Fe/Ba) is 11-12. Antiferromagnetic BaFe2O4 can be found in the sample with less iron, the coercive force of barium ferrite are enhanced, which can be explained by the pinning effect of BaFe2O4.
     (2) The optimal ratio of glycine matter (glycine:metal ions) is 3:1. When the quantity of organic material becomes less, the metal ions were too agglomerated in the chain of glycine to form the pure barium ferrite; On the contrary, the metal ions can be dispersed in the chain of organic matter when more organic materials were used in the experimental process, thus pure barium ferrite can only be obtained after higher temperature treatment.
     (3) The aggregation of the particles can be significantly decreased by adding glycol to the precursor solution. And particles with smaller grain size could be finally obtained.
     (4) By pre-calcining the precurser at 500℃before high-temperature calcination, the formation ofα-Fe2O3 phase can be avoided, and the crystallization temperature can be lowered.
     (5) The optimal calcined temperature is 800℃. The resultant magnetic parameters of barium ferrite is Hc=4960.3Oe,Ms=45.45emu/g, and the grain size is about 50~70nm; When the calcined temperature is 900℃, the grain size is above 200nm, and the coercive force decrease.
     2. Thin films of barium hexaferrite are prepared on fly ash cenpsphere particles by sol-gel glycinate combustion method.
     (1) Pretreatment process is very important in the preparation of the BaFe12O19-coating hollow glass microspheres. The research showed that coupled microspheres had an enhanced of the combination with gel, resulting in more active points on the surface of micro-spheres.
     (2) Repetitious coatings or adding some ultrafine BaFe12O19 powder to the precursor solution are the two ways to improve the thickness of film. The saturation magnetization and the remanent magnetization of Barium hexaferrite coated cenospheres are smaller than those of ultrafine BaFe12O19 powder. The sol particles of M-BaFe12O19 are absorbed on cenospheres to form films by chemisorption. The formation mechanism is hetergeneous. Adding ultrafine BaFe12O19 powder into the sol can accelerate nucleation, and then thick films can be prepared.
     (3) The real part and imaginary part in the complex dielectric permittivity of the BaFe12O19-coated cenospheres is smaller than those of BaFe12O19 ultrafine powder. The microwave absorbance curves of BaFe12O19-coated cenospheres and BaFe12O19 ultrafine powder are similar, which both have the largest value at 12.6GHz.
引文
[1]周敏,杨觉明,周建军.吸波材料研究进展[J].西安工业学院学报, 2000, 20(4):296
    [2]施冬梅,邓辉,杜仕国等.雷达隐身材料技术的发展[J].兵器材料科学与工程, 2002, 25(1):64
    [3]何益艳,杜仕国.吸收雷达波包装材料的研究进展[J].包装工程, 2002, 23(3):92
    [4]刘祥营,王煊军.雷达波吸收剂的研究进展[J].电子对抗技术, 2002, 17(4): 44
    [5] M Z Wu, H Zhang, X Yao. Microwave characterization of ferrite particles[J]. Phys. D: Appl. Phys., 2001, 34: 889
    [6] H W Zhang, Y Shi, Z Y Zhong. Electric and Magnetic Properties of a New Ferrite-Ceramic Composite Material[J]. Chin. Phys. Lett., 2002, 19(2): 269
    [7] H L Luo, G H Wang. A study of the induced magnetic anisotropy mechanism in acicular cobalt-ferrite particles[J]. J. Phys. D: Appl. Phys., 1994, 27: 892
    [8] M A Tsankov, S I Ganchev, B I Vichev. A simplified technique for measuring the effective resonance linewidth and the permittivity of microwave ferrites[J]. J. Phys. E: Sci. Instrum., 1985, 18: 708
    [9] H J Mastersony, J G Lunney, J M Dcoey. An investigation of the low-temperature Faraday rotation spectrum of BaFe12O19[J]. J. Phys.: Condens. Matter, 1997, 9: 4761
    [10] Q A Pankhuurst. Anisotropy field measurement in barium ferrite powders by applied field mossbauer spectroscopy[J]. J. Phys.: Condens. Matter, 1991, 3: 1323
    [11] P C Fannin, S W Charles, T Relihan. Broad-band measurement of the complex susceptibility of magnetic fluids[J]. Meas. Sci. Technol., 1993, 4: 1160
    [12] H Leblond, M Manna. Coalescence of electromagnetic travelling waves in a saturated ferrite[J]. J. Phys. A: Math. Gen., 1993, 26: 6451
    [13] N Rezlescu, E Rezlescu, C Pasniou. Effects of the rare-earth ions on some properties of a nickel-zinc ferrite[J]. J. Phys. Condens. Matter, 1994, 6: 5707
    [14] H Leblond. Electromagnetic waves in ferrites from linear absorption to the nonlinear Schrdinger equation[J]. J. Phys. A: Math. Gen., 1996, 29: 4623
    [15] S A Mazen, F Metawe, S F Mansour. IR absorption and dielectric properties ofLi -Ti ferrite[J]. J. Phys. D: Appl. Phys., 1997, 30: 1799
    [16]周至刚,廖绍彬,池玉清等.铁氧体磁性材料[M].北京:科学出版社, 1981.
    [17] P Braun. The crystal structures of a new group of ferro- magnetic compounds[J]. Philips Research. Report,1957,12: 491
    [18]焦洪震,叶英,都有为. BaFe12-2xCr2xO19的穆斯堡尔谱学研究[J].核技术, 1994,17(12): 737
    [19] N S Walmsley, G N Coverdale, R W Chantrell. Monte Carlo calculations of the microstructure of barium ferrite dispersions [J]. J. Phys. D: Appl. Phys., 1998, 31: 1652
    [20] M D Sundararajan, A Narayanasamy, T Nagarajan. Mossbauer investigation of magnesium ferrite-aluminate[J]. J. Phys. C: Solid State Phys., 1984, 17: 2953
    [21] Hsuan-Fu Yu, Kao-Chao Huang. Preparation and characterization of ester-derived BaFe12O19 powder[J]. Journal of Materials Research, 2002, 17(1):199
    [22] D R Franklin, A J Pointon, R C LJenkins. Resonance linewidths and crystallite alignment in oriented samples of polycrystalline barium hexaferrite[J]. J. Phys. D: Appl.Phys., 1996, 29: 1268
    [23] S C Bhargava, A H Morrish, H Kunkel. Spin-glass ordering in a spinel ferrite Mg(Al,Fe)2O4[J]. J. Phys.: Condens. Matter, 2000, 12: 9667
    [24]车平,陈博,甘树才.铁氧体磁性材料应用的进展及合成方法[J].世界地质, 2000,19(2):205
    [25] C N Chinnasamy, A Narayanasamy, N Ponpandian. Magnetic properties of nanostructured ferrimagnetic zinc ferrite[J]. J. Phys.: Condens. Matter, 2001, 13: 1179
    [26] P Novák, K Idland, A V Zalesskij. Magnons and sublattice magnetisations in hexagonal Ba ferrite[J]. J. Phys.: Condens. Matter, 1989, 1: 8171
    [27] J Kreisel, H Vincent, F Tasset, et al. An investigation of the magnetic anisotropy change in BaFe12-2xTixCoxO19 single crystals[J]. Journal of Magnetism and Magnetic Materials, 2001, 224:17
    [28] J Bursik, Z gimsa, R Tesar, et al. Magneto-optical properties of Co- and Ti-substituted hexagonal ferrite films prepared by sol-gel method[J]. Journal of Magnetism and Magnetic Materials, 1996, 158:311
    [29] C Wang, L Li, J Zhou, et al. Microstructures and high-frequency magnetic properties of low-temperature sintered Co-Ti substituted barium ferrites[J]. Journal of Magnetism and Magnetic Materials, 2003, 257:100
    [30] J Williams, J Adetunji, M Gregori. Mossbauer spectroscopic determination of magnetic moments of Fe3+ and Co2+ in substituted barium hexaferrite, Ba(Co,Ti)xFe12-2xO19[J].Journal of Magnetism and Magnetic Materials, 2000, 220: 124
    [31] Z Simsa, J Kolacek, K Fischer, et al. Faraday rotation in cobalt- and titanium-substituted barium hexaferrite[J]. Journal of Magnetism and Magnetic Materials, 1992,104-107:403404
    [32] Z Simsa, S Lego, R Gerber, et al. Cation distribution in Co-Ti- substituted barium hexaferrites: a consistent model[J]. Journal of Magnetism and Magnetic Materials, 1995, 140-144:2103
    [33] W Kaczarek, B Ldzikowski, K Muller. XRD and VSM study of ball-milled SrFe12O19 powder[J]. Journal of Magnetism and Magnetic Materials, 1998, 177-181:921
    [34] C Mee and J Jeschke. Single-domain properties in hexagonal ferrites[J]. Journal of Applied Physics,1963,34:1271
    [35] K Haneda, C Miyakawa and H Kojima. Preparation of high coercivity BaFe12O19[J]. Journal of American Ceramic Society, 1974, 57:354
    [36] S Jacobo, L Civale and M Blesa. Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrite (VI) solutions[J]. Journal of Magnetism and Magnetic Materials, 2003, 260:37
    [37] K Haneda and A H Morrish. Magnetic properties of BaFe12O19 small particles[J]. IEEE Transactions on Magnetics, 1989, 25(3):2597
    [38] K Haneda, C Miyakawa, K Goto. Preparation of small particles of SrFel2O19 with high coercivity by hydrolysis of metal- organic complexs[J]. IEEE Transactions on Magnetics, 1987, 23(5):3134
    [39] F Licci and T Besagni. Organic resin method for highly reactive and homogeneous hexaferrite powders[J]. IEEE Transactions on Magnetics, 1984, MAG-20(5):1639
    [40] O Kubo, T Ido and H Yokoyama. Properties of Ba ferrite particles for perpendicular magnetic recording media[J]. IEEE Transactions on Magnetics, 1982, MAG-18(6):1122
    [41] N Sugita, M Maekawa, Y Ohta, et al. Advances in fine magnetic particles for high density recording[J].IEEE Transactions on Magnetics,1995,31(6):2854
    [42] M Guyot, A Lisfi, R Krishnan, et al. Ferrimagnetic thin films prepared by pulsed laser deposition[J].Applied Surface Science,1996,96-98:802
    [43] M Koleva, P Atanasov, R Tomov, et al. Pulsed laser deposition of barium hexaferrite (BaFe12O19) thin films[J]. Applied Surface Science, 2000, 154-155: 485
    [44] M Koleva, R Tomov, P Atanasov, et al. Simultaneous laser-magnetic field treatment of SrFe12O19 thin films grown by pulsed laser deposition[J].Applied Surface Science, 2002, 186:463
    [45] I Wane, A Bessaudou, F Cosset, et al. Thick barium hexaferrite (Ba-M) films prepared by electron-beam evaporation for microwave application[J]. Journal of Magnetism and Magnetic Materials,2000,211:309
    [46] I Nedkov, A Petkov, V Karpov. Microwave absorption in Sc- and CoTi- substituted Ba hexaferrite powders[J].IEEE Transactions on Magnetics, 1990, 26(5): 1483
    [47] V Pankov, M Pernet, P Germi, et al. Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an iner component[J]. Journal of Magnetism and Magnetic Materials, 1993,120:69
    [48]王常生,齐西伟,周济等. Co-Ti替代钡铁氧体的高频磁性研究[J].压电与声光, 2003,25(2):139
    [49] B Scrosati. Recent advances in lithium ion battery materials [J], Electrochemical Acta, 2000, 45: 2461
    [50] A A Shiryaev, M D Nersesyan. Thermodynamic feasibility of SHS of SOFC materials[J]. Journal of Materials Synthesis and Processing, 1999, 2: 83
    [51] K L Choy, S L Charogrochku, B C Stelle. Fabrication of cathode for solid oxide fuel cell using flame assisted vapor deposition technique[J]. Solid State Ionics, 1997, 96: 49
    [52] L J Zhao, H Yang, L X Yu, et a1. Fabrication and magnetic properties of nanocrystalline La-, Nd-, or Gd-substituted Ni-Mn ferrite[J]. Jpn J Appl Phys, 2006, 45(5A): 4030
    [53] SATO T, LIJIMA T, SEKI M, et al. Magnetic properties of ultrafine ferrite particles [J]. J Magn Magn Mater, 1987, 65:252
    [54]司新文等.钡铁氧体磁粉的制备研究[J].化工冶金, 1996, 17(4): 357
    [55]郭载兵,钟伟,章建荣等.盐熔法生成锶铁氧体的相变过程及磁性[J].磁性材料及兵器, 1995, 26(1):1
    [56] Chin Tsung-shune, Hsu S L, Deng M C. Barium ferrite particulates prepared by a salt -melt method[J]. J. Magn. Magn. Mater, 1993, 120(1-3):64
    [57]曹健等.熔盐法合成BaFe11Co0.5Ti0.5O19磁性粉体及其性能分析[J].功能材料, 1996, 27 (5):446
    [58] Z B Guo, Ding W P, Zhong W, et al. Preparation and magnetic properties of SrFe12O19 particles prepared by the salt-melt method[J]. J. Magn. Magn. Mater, 1997, 175:333
    [59]孟凡君,茹森众,刘爱祥等.替代M-型钡铁氧体纳米粒子的微波吸收性能[J].无机化学学报, 2002,18(10):1067
    [60] Lin C H, Shih Z W, Chin T S, et al. Hydrothermal processing to produce magnetic particulates[J]. IEEE Transactions on Magnetsms, 1990, 26(1):15
    [61] Corradi A R, Speliotis D E, Morrish A H, et al. Effect of the cation site occupancy on the magnetization reversal machanism of hydrothermal barium ferrites[J]. IEEE Trans Magn,1988, 24(6):2862
    [62] Liu Xiangyuan, Wang John, Gan Leong-Ming. Improving the magnetic properties of hydrothermally synthesized barium ferrite[J]. Journal of Magnetism and Magnetic Materials, 1999, 195(2):452
    [63] Ataie A, Harris R, Ponton C B, et al. Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions[J]. J. Mater. Sci., 1995, 30(6):1429
    [64]都有为等.水热法生成BaFe12O19铁氧体的相变过程[J].物理学报, 1984, 33(4):579
    [65]岳振星,周济,张洪国等.溶胶凝胶自燃烧法合成Ni-Zn铁氧体纳米粉末材料[J],材料研究学报, 1999, 13(5): 483
    [66] R E van de Leest, F Roozeboom. Nickel-Zinc ferrite films by rapid thermal processing of sol-gel precursors[J]. Applied Surface Science, 2002, 187:68
    [67]赖琼钰,卢集政,周燕. CoxFe3-xO4纳米晶的水热氧化合成研究[J].化学世界, 2000, 3:124
    [68]阎鑫,胡小玲,岳红等.纳米微孔NixZn(1-x)Fe2O4的水热合成研究[J].无机化学学报, 2002, 18(7):693
    [69]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999.
    [70]刘辉,魏雨,张艳峰等.纳米铁酸盐的制备研究-低温催化相转化法合成纳米级铁酸锌及表[J].无机材料学报, 2002, 17(1):56
    [71]范薇.磁铅石型六角铁氧体纳米磁粉的制备[J].矿冶工程, 1998(7): 63
    [72]李垚,赵九蓬,韩杰才等.铁氧体粉料制备工艺的新进展[J].粉末冶金技术, 2000, 18:51
    [73] Vereshchagina TA, Anshits NN, Maksimov NG, et al. The nature and properties of iron-containing nanoparticles dispersed in an aluminosilicate matrix of cenospheres[J]. Glass Physics and Chemistry, 2004, 30 (3): 247
    [74] Lu S G, Zhu L. Effect of fly ash on physical properties of ultisols from subtropical China[J]. Communications in Soil Science and Plant Analysis, 2004, 35 (5-6): 703
    [75] Barbare N, Shukla A, Bose A. Uptake and loss of water in a cenosphere-concrete composite material[J]. Cement and Concrete Research, 2003, 33 (10): 1681
    [76] Wang D J, Tang Y, Dong A G, et al. Zeolitization of fly ash cenosphere to create hollow composite spheres[J]. Acta Chimica Sinica, 2003, 61 (9): 1425
    [77]李云凯,王勇,高勇等.空心微珠简介[J].兵器材料科学与工程, 2002, 25(3): 51
    [78]韩怀强,蒋挺大.粉煤灰利用技术[M].北京:化学工业出版社, 2001.
    [79]葛凯勇.空心微珠表面改性及其吸波特性[J].功能材料与器件学报, 2003, 9(1): 67
    [80] Tiwari V, Shukla A, Bose A. Acoustic properties of cenosphere reinforced cement and asphalt concrete[J]. Applied Acoustics, 2004, 65 (3): 263
    [81] Rams, E.Estevez, Garcia. Structural transformation with milling on sol-gel precursor for BaM hexaferrite[J]. Journal of Physics. D: Applied Physics, 2000, 7: 2708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700