碳基抗菌复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,我们研究了四种不同类型的多孔碳基材料,通过物理或化学的方法将银、铜等金属(或其离子)负载在碳基材料上制得系列无机复合抗菌材料,并采用各种测试方法对其结构与性能进行了表征与分析。具体内容总结如下:
     (1)以TiO2为核、蔗糖为碳源,采用水热法制备了TiO2@C核壳结构材料,然后通过在AgNO3溶液中浸渍后,将Ag+固定在TiO2@C载体上,得到了TiO2@C/Ag核壳复合材料。研究发现,制备TiO2@C载体的最佳条件是600℃、16 h。随着蔗糖/TiO2质量比的增加,炭壳的厚度也随之增加,锐钛矿相的TiO2越来越稳定。抗菌结果表明,由于银和TiO2协同抗菌作用,使得TiO2@C/Ag核壳复合材料具有良好的抗菌活性。
     (2)以无水醋酸锌为碳源,在密闭的高温反应釜中600℃反应8 h,得到ZnO@CNTs核壳结构材料,经化学还原法将银吸附在炭壳的表面,制备了ZnO@CNTs/Ag核壳复合抗菌材料。实验过程中,我们发现AgNO3溶液的浓度和超声时间对银的负载影响较大,并得到制备ZnO@CNTs/Ag的最佳条件:AgNO3的浓度为0.1 mol/L,超声搅拌时间为60 min。抗菌结果显示,ZnO@CNTs核壳结构材料具有微弱的抗菌活性,这是由于ZnO的光催化作用所致,而ZnO@CNTs/Ag却表现出了很强的抗菌活性。
     (3)以水热法合成的炭微球为原料,经KOH活化制备了活性炭微球,通过在氯化铜溶液中浸渍使铜吸附在活性炭微球上,得到载铜活性炭微球。研究表明,当Cu2+浓度适量,氨水与Cu2+的摩尔比为1:1时,是制备铜负载活性炭微球的最佳条件。活性炭微球表面负载的铜是以+2价形式存在,并且随着溶液中铜离子浓度的增加,载铜量增大,氨水的加入可明显提高铜的负载量。抗菌结果显示,载铜活性炭微球对大肠杆菌(E coil)和金黄色葡萄球菌(S. aureus)具有良好的杀灭能力。
     (4)采用独特孔隙结构、高比表面积的有序介孔炭CMK-3为载体,通过直接在CuCl2溶液中浸渍制备了Cu/CMK-3复合抗菌材料。研究表明,负载在CMK-3上的铜是以+2价形式存在,并且单纯的CMK-3是没有抗菌活性的,而Cu/CMK-3却具有良好的抗菌活性。
In this paper, we studied four different types of porous carbon-based materials, and uesd physical or chemical method to load silver or copper metal (Ag+or Cu2+) on the carbon-based materials to obtain series of inorganic antibacterial composites. The structures and properties of as-prepared samples were characterized and analyzed by various methods. The major contents were summarized as follows:
     (1) TiO2@C core-shell composite was prepared by a hydrothermal method using TiO2 as core and sucrose as carbon source. Then the synthesized TiO2@C served as a support for the immobilization of Ag by impregnation in AgN03 aqueous solution to obtain TiO2@C/Ag core-shell composite. It found that the optimized synthesis condition was identified at 600℃for 16 h. With the mass ratio of sucrose/TiO2 increasing, the carbon shell became thicker and the anatase TiO2 phase became more stable. The results indicate that the TiO2@C/Ag core-shell composite has excellent antibacterial activity due to the synergistic antibacterial effect of silver and TiO2.
     (2) ZnO@CNTs core-shell structure composite was synthesized in a closed reactor at 600℃for 8 h by using anhydrous zinc acetate as carbon source. Silver was absorbed on the surface of ZnO@CNTs core-shell composite by the chemical reduction method, and then the ZnO@CNTs/Ag core-shell composite was obtained. During the experiment, we found that the concentration of AgNO3 aqueous solution and the ultrasonic time have great influence on the loading of silver. When the AgNO3 concentration was 0.1 mol/L and the ultrasonic stirring time was 60 min, the optimal ZnO@CNTs/Ag core-shell composite was prepared. The antibacterial results indicate that ZnO@CNTs core-shell material has weak antibacterial activity owing to the photocatalysis of ZnO. However, the as-prepared ZnO@CNTs/Ag shows strong antibacterial activity.
     (3) Carbon microspheres were prepared via a hydrothermal method, and then activated with KOH to form activated carbon microspheres (ACMs). Copper-loaded activated carbon microspheres (Cu/ACMs) were obtained by the direct immersion in aqueous solution. It shows that when in the right concentration of Cu2+, the optimized preparation condition of Cu/ACMs is in the molar ratio of ammonia/Cu2+ =1:1. The experimental results show that the copper valence state of Cu-ACMs samples is Cu2+ion, and the amount of absorbed copper increases with the increase of copper ion concentration in solution. The addition of ammonia can significantly improve the amount of absorbed copper. The antibacterial activities of as-prepared materials were measured. The measured result indicates that the Cu/ACMs have the good activities to kill E. coli and S. aureus.
     (4) Cu/CMK-3 composite material was prepared by the direct immension in CuCl2 aqueous solution, using ordered mesoporous carbon (CMK-3) as a carrier, which has ordered pore structure and high specific surface area. The results show that the supported copper on CMK-3 was observed to be the bivalence state. Furthermore, pure CMK-3 has no antibacterial activity, but Cu/CMK-3 has good antibacterial activity.
引文
[1]The World Health Report. Life in the 21st century-A vision for all [R]. Geneva:World Health Organization,1998.
    [2]内田真志.银沸石[J].J. Antibact Antifung Agents,1996,21(11):735-742.
    [3]王小健,乔学亮,陈建国等.无机抗菌剂的研究现状及发展趋势[J].陶瓷学报,2003,24(4):239-244.
    [4]孙剑,乔学亮,陈建国.无机抗菌剂的研究进展[J].材料导报,2007,21(8):344-348.
    [5]童忠良等.无机抗菌新材料与技术[M].北京:化学工业出版社,2006:60.
    [6]张文钲,王广文.机抗菌剂变色抑制剂研发现状[J].化工新型材料,2002,30(4):23-25.
    [7]刘文宏,吕建平,袁怀波.通过柠檬酸改性提高载银活性炭的抗菌性能[J].应用化学,2007,24(12):1414-1417.
    [8]Ortiz-Ibarra H, Casillas N, Soto V, et al. Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes[J]. J. Colloid Interf. Sci.,2007,314(2):562-571.
    [9]俞波,王芳.复合金属离子抗菌沸石的制备及研究[J].无机材料学报,2005,20(4):921-926.
    [10]Rivera-Garza M, Olguin M T, Garcia-Sosa I, et al. Silver supported on natural Mexican zeolite as an antibacterial material[J]. Micropor. Mesopor. Mater.,2000,39(3):431-444.
    [11]叶瑛,周玉航,夏枚生等.新型无机抗菌材料:载铜蒙脱土及其抗菌机理讨论[J].无机材料学报,2003,18(3):569-574.
    [12]张葵花,谭绍早,刘应亮等.季铵盐改性蒙脱土的制备与表征[J].化工新型材料,2005,33(11):44-47.
    [13]Magana S M, Quintana P, Aguilar D H, et al. Antibacterial activity of montmorillonites modified with silver[J]. J. Mol. Catal. A:Chem.,2008,281(1-2):192-199.
    [14]Tan S, Ouyang Y, Zhang L, et al. Study on the structure and antibacterial activity of silver-carried zirconium phosphate[J]. Mater. Lett.,2008,62:2122-2124.
    [15]李吉东,李玉宝,王学江等.载铜锌纳米羟基磷灰石的抗菌性能及机理研究[J].2006,21(1):162-168.
    [16]Park S J, JangY S. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior[J]. J. Colloid Interf. Sci.,2003,261(2):238-243.
    [17]Oya A, Yoshida S. preparation and properties of an antibacterial activated carbon fiber containing mesopores[J]. Carbon,1996,34(1):53-57.
    [18]Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon,2004,42:3209-3216.
    [19]刘康时,江显异,赵英.银系无机抗菌剂作用机理的研究进展[J].佛山陶瓷,2001,11(11):1-5.
    [20]顾浩.银铜无机抗菌材料[P].2001:00112290.
    [21]Jiang G H, Zeng J F. Preparation of nano-TiO2/polystyrene hybride microspheres and their antibacterial properties[J]. J. Appl. Polym. Sci.,2010,116(2):779-784.
    [22]Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification affects of TiO2thin film photocatalysts[J]. Environ. Sci. Technol.,1998,32(5):726-728.
    [23]Fu G, Vary P S, Lin C T. Anatase TiO2 nanocomposites for antimicrobial coatings[J]. J. Phys. Chem. B,2005,109(18):8889-8898.
    [24]Shantikumar N, Abhilash S, Divya Rani V V, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells[J]. J. Mater. Sci.. Mater. Med.,2009,20:S235-41.
    [25]Zhang L, Ding Y, Povey M, et al. ZnO nanofluids-A potential antibacterial agent[J]. Prog. Nat. Sci.,2008,18:939-944.
    [26]季君晖,史维明编著.抗菌材料[M].化学工业出版社,2003:74-84.
    [27]Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders[J]. FEMS Microbiol. Lett.,1985,29(1-2):211-214.
    [28]Davies R L, Etris S F. The development and functions of silver in water purification and disease control[J]. Catal. Today,1997,36:107-114.
    [29]Kim T N, Feng Q L, Kim J Q, et al. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite[J]. J. Mater. Sci. Mater. Med.,1998,9(3):129-134.
    [30]Inoue Y, Hoshino M, Takahashi H, et al. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions[J]. J. Inorg. Biochem.,2002,92(1):37-42.
    [31]于向阳,程继健,杜用娟.Ti02光催化抗菌材料[J].玻璃与搪瓷,2000,28(4):42-47.
    [32]王德平,黄文旵.有源无机抗菌材料的研究进展[J].建筑材料学报,2000,3(1):73-79.
    [33]李晓平,徐宝琨,刘国范等.纳米Ti02光催化降解水中有机污染物的研究与发展[J].功能材料,1999,30(3):242-248.
    [34]Kikuchi Y, Sunada K, Hashimoto, et al. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect[J]. Photochem. Photobiol. A:Chemstry,1997,106:51-56.
    [35]Kuhn K P, Chaberny I F, Massholder K, et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light[J]. Chemosphere,2003,53(1):71-77.
    [36]Huang Z, Maness P C, Blake D M, et al. Bactericidal mode of titanium dioxide photocatalysis[J]. J. Photochem. Photobiol. A:Chemistry,2000,130(2):163-170.
    [37]Huang N P, Xu M H, Yuan C W, et al. The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U937 cells[J]. J. Photochem. Photobiol. A:Chemistry,1997, 108(2):229-233.
    [38]Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film[J]. J. Photochem. Photobiol. A:Chemistry,2003,156(1):227-233.
    [39]Amezaga-Madrid P, Nevarez-Moorillon G V, Orrantia-Borunda E, et al. Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2/based thin films[J]. FEMS Microbiol. Lett.,2002,211(2):183-188.
    [40]Maness P C, Smoliski S, Blake D M, et al. Bactericidal activity of photocatalytic TiO2 reaction:toward an understanding of its killing mechanism[J]. Appl. Environ. Microbiol., 1999,65(9):4094-4098.
    [41]Wu D C, Fu R W, Dresselhaus M S, et al. Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method[J]. Carbon,2006, 44(4):675-681.
    [42]Wu D C, Fu R W, Zhang S T, et al. Preparation of low-density carbon aerogels by ambient pressure drying[J]. Carbon,2004,42(10):2033-2039.
    [43]Han B H, Zhou W Z, Sayari A. Direct preparation of nanoporous carbon by nanocasting[J]. J. Am. Chem. Soc.,2003,125(12):3444-3445.
    [44]Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons[J]. Adv. Mater.,2001,13(9): 677-681.
    [45]李文,李军.载银活性炭在饮水净化中的若干问题探讨[J].四川环境,1996,15(1):48-52.
    [46]Byeon J H, Yoon K Y, Park J H, et al. Characteristics of electroless copper-deposited activated carbon fibers for antibacterial action and adsorption-desorption of volatile organic compounds[J]. Carbon,2007,45:2313-2316.
    [47]Chen S, Liu J, Zeng H. Structure and antibacterial activity of silver-supporting activated carbon fibers[J]. J. Mater. Sci.,2005,40:6223-6231.
    [48]Zhang S, Wu D, Wan L, et al. Adsorption and antibacterial activity of silver-dispersed carbon aerogels[J]. J. Appl. Polym. Sci.,2006,102(2):1030-1037.
    [49]Kennedy L J, Kumar A G, Ravindran B, et al. Copper impregnated mesoporous activated
    carbon as a high efficient catalyst for the complete destruction of pathogens in water[J]. Environ. Prog.,2007,27(1):40-50.
    [50]Liu T, Tang H Q, Cai X M, et al. A study on bactericidal properties of Ag coated carbon nanotubes[J]. Nucl. Instrum. Meth. B,2007,264:282-286.
    [51]谢志刚,刘成伦.活性炭的制备及其应用进展[J].工业水处理,2005,25(7):10-12.
    [52]沈渊玮,陆善忠.活性炭在水处理中的应用[J].工业水处理,2007,27(4):13-16.
    [53]陈水挟,曾汉民,陆耘.高效吸附分离功能纤维及其应用[J].材料科学与程,1999,17(3):1-13.
    [54]Oya A, Yoshida S, Abe Y, et al. Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate[J]. Carbon,1993,31(1):71-73.
    [55]Oya A, Wakahara T, Yoshida S. Preparation of pitch-based antibacterial activated carbon fiber[J]. Carbon,1993,31(8):1243-1247.
    [56]朱征.具有灭菌功能活性碳纤维的研究[J].离子交换与吸附,1995,11(3):200-205.
    [57]Fu R, Zeng H, Lu Y. The reduction property of activated carbon fibers[J]. Carbon,1993, 31(7):1089-1094.
    [58]Fu R, Zeng H, Lu Y, et al. The reduction of Pt(Ⅳ) with activated carbon fibers-An XPS study[J]. Carbon,1995,33(5):657-661.
    [59]Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. J. Mater. Sci.,1989,24(9):3221-3227.
    [60]Maldonado-Hodar F J, Moreno-Castilla C, Rivera-Utrilla J, et al. Catalytic graphitization of carbon aerogels by transition metals[J]. Langmuir,2000,16(9):4367-4373.
    [61]Bekyarova E, Kaneko K. Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels[J]. Adv. Mater.,2000,12(21):1625-1628.
    [62]Lee Y J, Jung J C, Park S, et al. Preparation and characterization of metal-doped carbon aerogel for supercapacitor[J]. Curr. Appl. Phys.,2010,10(3):947-951.
    [63]Lv G, Wu D, Fu R. Preparation and electrochemical characterizations of MnO2-dispersed carbon aerogel as supercapacitor electrode material [J]. J. Non-Cryst. Solids,2009, 355(50-51):2461-2465.
    [64]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [65]Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel[J]. Science,2006,
    311:622-627.
    [66]Donaldson K, Stone V, Tran C L, et al. Nanotocicology[J]. Occup. Environ. Med.,2004, 61(9):727-728.
    [67]Jia G, Wang H F, Yan L, et al. Cytotoxicity of carbon nanomaterials:Single-wall nanotube, multi-wall nanotube, and fullerene[J]. Environ. Sci. Technol.,2005,39(5):1378-1383.
    [68]Shvedova A A, Castranova V, Kisin E R, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells[J]. Toxicol. Environ. Health, Part A,2003,66:1909-1926.
    [69]Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of carbon nanotubes:Size does matter![J]. Langmuir,2008,24(13):6409-6413.
    [70]Kang S, Pinault M, Pfefferle L D, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity[J]. Langmuir,2007,23(17):8670-8673.
    [71]Brady-Estevez A S, Kang S, Elimelech M. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens[J]. Small,2008,4(4):481-484.
    [72]刘桐,唐慧琴,张学华等.镀铜碳纳米管的抗菌性研究[J].透析与人工器官,2006,17(4):1-5.
    [73]Wang Y L, Wan Y Z, Dong X H, et al. Preparation and characterzation of antibacterial viscose-based activated carbon fiber supporting silver[J]. Carbon,1998,36(11):1567-1571.
    [74]Yoon K Y, Byeon J H, Park C W, et al. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers[J]. Environ. Sci. Technol.,2008,42(4):1251-1255.
    [75]Tang H Q, Liu T, Liu X, et al. A study on biocompatibility and bactericidal properties of pyrolytic carbon by silver ion implantation[J]. Nucl. Instrum. Meth. B,2007,255:304-308.
    [76]Tang H Q, Feng H J, Zheng J H, et al. A study on antibacterial properties of Ag+-implanted pyrolytic carbon[J]. Surf. Coat. Technol.,2007,201:5633-5636.
    [1]Zhang S T, Fu R W, Wu D C, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon,2004,42(15):3209-3216.
    [2]Yuan D S, Tan S Z, Liu Y L, et al. Pt supported on highly graphitized lace-like carbon for methanol electrooxidation[J]. Carbon,2008,46(3):531-536.
    [3]Xiao S J, Li Y F, Huang C Z. Detection of antibacterial activity of berberine hydrochloride by multiwalled carbon nanotubes[J]. Chem. Lett.,2007,36(6):798-799.
    [4]Vukcevic M, Kalijadis A, Dimitrijevic-Brankovic S, et al. Sci. Technol. Surface characteristics and antibacterial activity of a silver-doped carbon monolith[J]. Adv. Mater.,2008,9:015006.
    [5]Zhang S T, Wu D C, Wan L, et al. Adsorption and antibacterial activity of silver-dispersed carbon aerogels[J]. J. Appl. Polym. Sci.,2006,102(2):1030-1037.
    [6]Damm C, Munstedt H, Rosch A. The antimicrobial efficacy of polyamide 6/silver-nano and microcomposites[J]. Mater. Chem. Phys.,2008,108(1):61-66.
    [7]Xu K, Wang J X, Kang X L et al. Fabrication of antibacterial monodispersed Ag-SiO2 core-shell nanoparticles with high concentration[J]. Mater. Lett.,2009,63:31-33.
    [8]Zhu Y, Shi J, Shen W, et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure[J]. Angew. Chem. Int. Ed.,2005,44(32):5083-5087.
    [9]Chan Y, Zimmer J P, Stroh M, et al. Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres[J]. Adv. Mater.,2004,16(23-24):2092-2097.
    [10]Liu S, Zhang Z, Han M. Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection[J]. Anal. Chem.,2005,77(8):2595-2600.
    [11]Fleischhaker F, Zentel R. Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots[J]. Chem. Mater.,2005,17(6):1346-1351.
    [12]Song J H, Atay T, Shi S, et al. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons[J]. Nano Lett.,2005,5(8):1557-1561.
    [13]Yamamoto O, Nakakoshi K, Sasamoto T, et al. Adsorption and growth inhibition of bacteria on carbon materials containing zinc oxide[J]. Carbon,2001,39(11):1643-1651.
    [14]Kangwansupamonkon W, Lauruengtana V, Surassmo S, et al. Antibacterial effect of apatite-coated titanium dioxide for textiles applications[J]. Nanomedicine:Nanotechnology, Biology, and Medicine,2009,5:240-249.
    [15]Wang H, Wingett D, Engelhard M H, et al. Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications[J]. J. Mater. Sci.:Mater. Med.,2009,20:11-22.
    [16]Chen W J, Tsai P J, Chen Y C. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria[J]. Small,2008,4(4):485-491.
    [17]Shanmugam S, Gabashvili A, Jacob D S, et al. Synthesis and characterization of TiO2@C core-shell composite nanoparticles and evaluation of their photocatalytic activities[J]. Chem. Mater.,2006,18(9):2275-2282.
    [18]Zhang L X, Liu P, Su Z X. A new route for preparation of TiO2/C hybrids and their photocatalytic properties[J]. J. Mol. Catal. A:Chem.,2006,248(1-2):189-197.
    [19]Fu L J, Liu H, Zhang H P, et al. Novel TiO2/C nanocomposites for anode materials of lithium ion batteries[J]. J. Power Sources,2006,159(1):219-222.
    [20]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J. Photochem. Photobiol.C,2000,1:1-21.
    [21]Gratzel M. Photoelectrochemical cells[J]. Nature,2001,414:338-344.
    [22]Fu G, Vary P S, Lin C T. Anatase TiO2 Nanocomposites for antimicrobial coatings[J]. J. Phys. Chem. B,2005,109(18):8889-8898.
    [23]Yuan D S, Chen J X, Zeng J H, et al. Preparation of monodisperse carbon nanospheres for electrochemical capacitors[J]. Electrochem. Commun.,2008,10(7):1067-1070.
    [24]Tan S Z, Ouyang Y S, Zhang L L, et al. Study on the structure and antibacterial activity of silver-carried zirconium phosphate[J]. Mater. Lett.,2008,62(14):2122-2124.
    [25]Garza M R, Olguin M T, Sosa I G, et al. Silver supported on natural mexican zeolite as an antibacterial material[J]. Micropor. Mesopor. Mater.,2000,39(3):431-444.
    [26]Degussa Technical Bulletin Pigment Report[R].1990,56:p13.
    [27]Inagaki M, Hirose Y, Matsunaga T, et al. Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution[J]. Carbon,2003,41:2619-2624.
    [28]Tsumura T, Kojitani N, Izumu I, et al. Carbon coating of anatase-type TiO2 and photoactivity[J]. J. Mater. Chem.,2002,12:1391-1396.
    [29]Yue Z R, Jiang W, Wang L, et al:Adsorption of precious metal ions onto electrochemically oxidized carbon fibers[J]. Carbon,1999,37(10):1607-1618.
    [30]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem.,1985,57(4):603-619.
    [31]Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water[J]. J. Phys. Chem. B,2000,104(19):4815-4820.
    [32]Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Org. Geochem.,2006,37(11):1477-1488.
    [33]Bond A M, Miao W J, Raston C L. Mercury(II) immobilized on carbon nanotubes:synthesis, characterization, and redox properties[J]. Langmuir,2000,16(14):6004-6012.
    [34]Maness P C, Smolinski S, Blake D M, et al. Bactericidal activity of photocatalytic TiO2 reaction:toward an understanding of its killing mechanism[J]. Appl. Environ. Microbiol., 1999,65(9):4094-4098.
    [35]Shrivastava S, Bera T, Roy A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles[J]. Nanotechnology,2007,18:225103.
    [36]Marini M, De Niederhausern N, Iseppi R, et al. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes[J]. Biomacromolecules,2007,8(4):1246-1254.
    [37]Baker C, Pradhan A, Pakstis L, et al. Synthesis and antibacterial properties of silver nanoparticles[J]. J. Nanosci. Nanotechnol.,2005,5(2):244-249.
    [38]Zhao D F, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior[J]. Appl. Clay Sci.,2006,33(3-4): 161-170.
    [1]庄叶凯,郑典模.核-壳型复合纳米粒子的研究现状及展望[J].江西化工,2006(1):18-19.
    [2]张小塔,宋武林,胡木林等.核壳结构纳米复合材料的研究进展[J].材料导报,2006,20(专辑Ⅶ):209-211.
    [3]Lu Y, Yin Y, Mayers B T, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano. Lett.,2002,2(3):183-186.
    [4]Sakai H, Kanda T, Shibata H, et al. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle[J]. J. Am. Chem. Soc.2006,128(15): 4944-4945.
    [5]Zhang L, Li Z. Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core-shell structure[J]. J. Alloys Compd.,2009,469(1-2):422-426.
    [6]Liu G, Hong G. Synthesis of SiO2/Y2O3:Eu core-shell materials and hollow spheres[J]. J. Solid State Chem.,2005,178(5):1647-1651.
    [7]Fu L J, Liu H, Zhang H P, et al. Novel TiO2/C nanocomposites for anode materials of lithium ion batteries[J]. J. Power Sources,2006,159:219-222.
    [8]Pol V G, Srivastava D N, Palchik O, et al. Sonochemical deposition of silver nanoparticles on silica spheres[J]. Langmuir,2002,18(8):3352-3357.
    [9]Zhu Y, Hong D, Yang X, et al. Preparation and characterization of core-shell monodispersed magnetic silica microspheres[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2003, 231(1-3):123-129.
    [10]Yuan D, Liu Y, Xiao Y, et al. Preparation and characterization of Z-shaped carbon nanotubes via decomposing magnesium acetate[J]. Mater. Chem. Phys.,2008,112(1):27-30.
    [11]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [12]周祚万,刘国梅,罗雁彬.国内外无机抗菌材料研究动态[J].新材料产业,2007,3:80-82.
    [13]Zhang L, Yu J C, Yip H Y, et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities[J]. Langmuir,2003,19(24):10372-10380.
    [14]Soga M, Naganuma Y. Ag/TiO2 Composite Ultra-fine particle studied with FE-SAM[J]. J. Surf. Anal.,1999,5(2):326-329.
    [15]Yuan D, Liu Y. Electroless deposition of Cu on multiwalled carbon nanotubles[J]. Rare Met., 2006,25(3):237-240.
    [1]Oya A, Yoshida S, Abe Y, et al. Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate[J]. Carbon,1993,31(1):71-73.
    [2]Ortiz-Ibarra H, Casillas N, Soto V, et al. Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes[J]. J. Colloid Interf. Sci.,2007,314(2):562-571.
    [3]Park S J, Jane Y S. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior[J]. J. Colloid Interf. Sci.,2003,261(2):238-243.
    [4]Zhang S, Fu R, Wu D, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon,2004,42(15):3209-3216.
    [5]Jin Y Z, Gao C, Hsu K W, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons[J]. Carbon,2005,43(9):1944-1953.
    [6]Xu L, Zhang W, Yang Q, et al. A novel route to hollow and solid carbon spheres[J]. Carbon, 2005,43(5):1090-1092.
    [7]Yang J B, Ling L C, Liu L, et al. Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution[J]. Carbon,2002,40(6):911-916.
    [8]Wang Q, Cao F, Chen Q, et al. Preparation of carbon microspheres by hydrothermal treatment of methylcellulose sol[J]. Mater. Lett.,2005,59(28):3738-3741.
    [9]Kim T N, Feng Q L, Kim J O, et al. Antimicrobial effects ofmetal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite[J]. J. Mater. Sci.:Mater. Med.1998,9(3):129-134.
    [10]叶瑛,周玉航,夏枚生等.新型无机抗菌材料:载铜蒙脱石及其抗菌机理讨论[J].无机材料学报,2003,18(3):569-574.
    [11]张彬,唐晓宁,张皓东.铜,银双组分无机抗菌材料的制备和性能研究[J].化工新型材料,2007,35(2):73-75.
    [12]Tan S Z, Zhang L L, Huang L H, et al. Study on the heat treating process of silver-carried antibacterial agent[J]. J. Ceram. Soc. Japan,2007,115(4):269-271.
    [13]Tan S Z, Ouyang Y S, Zhang L L, et al. Study on the structure and antibacterial activity of silver-carried zirconium phosphate[J]. Mater. Lett.,2008,62(14):2122-2124.
    [14]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & App. Chem.,1985,57(4):603-619.
    [15]Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids:Priciples, Methodology, Applications[M]. New York, Academic Press,1999.
    [16]Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries[J]. Funct. Mater.,2005, 15(4):547-556.
    [17]Wang Z, Ergang N S, Al-Daous M A, et al. Synthesis and characterization of three-dimensionally ordered macroporous carbon/titaniananoparticle composites[J]. Chem. Mater., 2005,17(26):6805-6813.
    [18]Kim Y H, Lee D K, Cha H G, et al. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles[J]. J. Phys. Chem. B,2006,110(49): 24923-24928.
    [19]Zhang W, Zhang Y H, Ji J H, et al. Antimicrobial properties of copper plasma-modified polyethylene[J]. Polymer,2006,47(21):7441-7445.
    [20]Bond A M, Miao W J, Raston C L. Mercury (Ⅱ) immobilized on carbon nanotubes:synthesis, characterization and redox properties[J]. Langmuir,2000,16(14):6004-6012.
    [21]Yuan D, Liu Y. Electroless deposition of Cu on multiwalled carbon nanotubes[J]. Rare Met., 2006,25(3):237-240.
    [22]Zhao D F, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior[J]. Appl. Clay Sci.,2006,33(3-4): 161-170.
    [23]Trapalis C C, Kokkoris M, Perdikakis G, et al. Study of antibacterial composite Cu/SiO2 thin coatings[J]. J. Sol-Gel Sci. Technol.,2003,26(3):1213-1218.
    [24]李炜罡,吕维平,王海滨等.抗菌材料进展[J].化工新型材料,2003,31(3):7-10.
    [1]Foley H C. Carbogenic molecular sieves:synthesis, properties and applications[J]. Microporous Mater.1995,4:407-433.
    [2]Kyotani T. Control of pore structure in carbon[J]. Carbon,2000,38:269-286.
    [3]Sotiropoulou S, Gavalas V, Vamvakaki V, et al. Novel carbon materials in biosensor systems. Biosens[J]. Bioelectron.,2003,18:211-215.
    [4]Zhang S T, Fu R W, Wu D C, et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels[J]. Carbon,2004,42(15):3209-3216.
    [5]Kennedy L J, Kumar A G, Ravindran B, et al. Copper impregnated mesoporous activated carbon as a high efficient catalyst for the complete destruction of pathogens in water[J]. Environ. Prog.,2008,27:40-50.
    [6]Ortiz-Ibarra H, Casillas N, Soto V, et al. Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes[J]. J. Colloid Interf. Sci.,2007,314:562-571.
    [7]Oya A, Yoshida S. Preparation and properties of an antibacterial activated carbon fiber containing mesopores. Carbon,1996,34(1):53-57.
    [8]Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J. Phys. Chem. B,1999,103(37):7743-7746.
    [9]Fan J, Wang T, Yu C, et al. Order, nanostructured Tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries[J]. Adv. Mater.,2004,16(16):1432-1436.
    [10]Park S J, Jang Y S. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior[J]. J. Colloid Interf. Sci.,2003,261:238-243.
    [11]Kim Y H, Lee D K, Cha H G, et al. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles[J]. J. Phys. Chem. B,2006,110: 24923-24928.
    [12]Cioffi N, Torsi L, Ditaranto N, et al. Antifungal activity of polymer-based copper nanocomposite coatings[J]. Appl. Phys. Lett.,2004,85:2417-2419.
    [13]Zhang W, Zhang Y H, Ji J H, et al. Antimicrobial properties of copper plasma-modified polyethylene[J]. Polymer,2006,47:7441-7445.
    [14]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998,279:548-552.
    [15]Tan S Z, Zhang L L, Huang L H, et al. Study on the heat treating process of silver-carried antibacterial agent[J]. J. Ceram. Soc. Japan,2007,115:269-271.
    [16]Zhou H, Zhu S, Hibono M, et al. Lithium storage in order mesoporoous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance[J]. Adv. Mater., 2003,15(24):2107-2111.
    [17]Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J. Am. Chem. Soc.,2000,122(43):10712-10713.
    [18]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem.,1985,57(4):603-619.
    [19]Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy [M]. Perkin-Elmer Corporation,1979,82-83.
    [20]王艳萍,赵虎山编.化妆品微生物学[M].北京:中国轻工业出版社,2002,24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700