磁性流体动量和热量传递的模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了磁性流体动量和热量传递过程。用FVM(finite volume method)、FEM(finite element method)方法离散微分方程,通过实验与模拟结合的方法,达到宏观动力学、传热模拟。
     (1)考察了单突扩管下突扩管比例对流场的影响,研究了随着雷诺数变化突扩管内流场从稳态对称型到稳态非对称型的转变。通过外加磁场的耦合作用,研究磁场的“消涡”作用。
     (2)基于单突扩模型,研究了突扩-突缩管中流体流动。结果表明,在低雷诺数下管内流动呈稳态对称型。随着雷诺数增大,管内会出现涡阶分离。根据(1)的经验,在管中央外加电磁场实现“消涡”。
     (3)考察了突扩管内含圆柱空洞的管内流体流动。根据卡门涡街原理,对突扩管涡流、圆柱绕流进行分析。通过引入电磁场,使用N-S方程/电磁场方程耦合求解,达到高雷诺数下的流动稳定。
     (4)以硝酸锶、氯化铁、氢氧化钠以及多种表面活性剂为原料,使用共沉淀法合成纳米锶铁氧体。通过TEM、XRD、VSM等方法表征锶铁氧体性能,获得最佳制备条件。
     (5)将制备好的锶铁氧体纳米颗粒溶于水相中置于热疗仪器的螺旋管中。通过改变表观电流实现对磁性流体的升温效应研究。结果显示低固含量锶铁氧体的升温效果明显。
     (6)使用数学模拟的方法研究了磁性流体的热疗温度分布。建立合理的二维模型,使用生物传热方程进行计算。研究了不同磁场强度,不同交变频率,不同颗粒粒径,不同磁性流体固含量对升温效果的影响。
The momentum and heat transfer of magnetic fluid were studied. FVM (finite volume method) and FEM (finite element method) were used to discrete partial differential equation. With the combination of experimental method and numerical simulation, macrodynamics and heat transfer were investigated.
     (1) The expansion ratio was investigated in this part. The streamline pattern changed from symmetric to asymmetric as Raynolds number increased. The "elimination of vortexes" was also studied under the application of external magnetic field.
     (2) The expansion-contraction model was simulated later based on expansion model in (1), results of which showed that the flow pattern remained symmetrical under low Raynolds number. As Raynolds number increased, the asymmetric phenomenon and bifurcation appeared successively. The external magnetic field was also applied to make the vortexes disappeared.
     (3) The model of an expansion with a cylinder was investigated. The fluid flowing across the sudden expansion and around cylinder was comprehensively considered. Results showed that the flow pattern was stable under high Raynolds number with the introduction of magnetic field.
     (4) Nano-strontium hexaferrite (SrFe12O19) particles were prepared by co-precipitation method, using strontium nitrate (Sr(NO3)2), ferric chloride (FeCl3·6H2O), sodium hydroxide and several surfactants as starting materials. The optimum preparation conditions were obtained by TEM, XRD and VSM analysis.
     (5) The prepared strontium hexaferrite nano-particles were dispersed in water and then placed in hyperthermia apparatus. The temperature rise effect was investigated by changing the apparent current. Results showed that aqueous with low solid content had remarkable heating effect.
     (6) Numerical method was applied to investigate the temperature distribution of hyperthermia. 2 dimensional (2-D) model was established and the bioheat transfer equation was used for calculation. Different conditions such as magnetic field strength, AC frequency, particle size and solid content were considered.
引文
(1) Vorobiev A., Gordeev G., Konovalov O., Orlova D., Surface structure of sterically stabilized ferrofluids in a normal magnetic field: Grazing-incidence x-ray study, Phys. Rev. E, 2009, 79, 031403.
    (2) Moeser G. D., Roach K. A., Green W. H., Laibinis P. E., Hatton T.A., Water-based magnetic fluids as extractants for synthetic organic compounds, Ind. Eng. Chem. Res., 2002, 41, 4739-4749.
    (3) Papell S.S., Method for preparation of stable magnetic fluid, US [P] 19653-215-572,.
    (4) Neuringer J.L., Rosensweig R.E., Ferrohydrodynamics, Phys. Fluid, 1964, 7, 1958-1988.
    (5) Khalafalla S., Reimers G., Preparation of dilution-stable aqueous magnetic fluids, IEEE Trans. Magn., 1980, 16, 178-183.
    (6) Lefort J., Memoire sur les oxydes ferroso-ferriques et leurs combinasions, J. Comptes Rendus Acad. Sci., 1852, 34, 488-492.
    (7) Massart R., Preparation of magnetite nanoparticles, IEEE T. Magn., 1981, 17, 1247.
    (8)邹涛,郭灿雄,段雪,等,强磁性Fe3O4纳米粒子制备及其性能表征,精细化工,2002,19,707-710.
    (9) Valenzuela R., Fuentes M.C., Parr C., Baeza J., Duran N., Sharmad S.K., Knobeld M., Freer J., Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method., J. Alloys Compd., 2009, 488, 227-231.
    (10) Tada M., Hatanaka S., Sanbonsugi H., Matsushita N., Abe M., Method for synthesizing ferrite nanoparticles 30nm in diameter on neutral pH condition for biomedical applications. J. Appl. Phys., 2003, 93, 7566-7668.
    (11)崔升,沈晓东,林本兰,四氧化三铁纳米粉的制备方法及应用,无机盐工业,2005,37,4-6.
    (12) Yu L.Q., Zheng L.J., Yang J.X., Study of preparation and properties onmagnetization and stability for ferromagnetic fluids, Mater. Chem. Phy., 2000, 66, 6-9.
    (13) Rockenberger J., Scher E.C., Alivisatos P.A., A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides, J. Am. Chem. Soc., 1999, 121, 11595-11596.
    (14) Hyeon T., Lee S.S., Park J., et al., Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process, J. Am. Chem. Soc., 2001, 123, 12798-12801.
    (15) Guo Q., Teng X., Rahman S., et al., Patterned langmuir-blodgett films of monodisperse nanoparticles of iron oxide using soft lithography, J. Am. Chem. Soc., 2003, 125, 630-631.
    (16) Murray C.B., Sun S., Gaschler W., et al., New aspects of nanocrystal research, J. Res. & Dev., 2004, 45, 47-52.
    (17) Sun S., Murray C.B., Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys., 1999, 85, 4325-4330.
    (18) Li Z., Chen H., Bao H., et al., One-pot reaction to synthesis water-soluble magnetite nanocrystals, Chem. Mater., 2004, 16, 1391-1393.
    (19)刘蕾,杨海涛,刘勇健,液相法制备纳米Fe3O4的研究进展,应用化工,2003,32,6-10.
    (20) Zhou Z.H., Wang J., Liu X., et al., Synthesis of Fe3O4 nano-particles from emulsions, J. Mater. Chem., 2001, 11, 1704-1709.
    (21) Arturo M., Lopez Q., Jose R., Magnetic iron oxide nanoparticles synthesized via microemulsions, J. Colloid. Interf. Sci., 1993, 158, 446-451.
    (22)唐波,葛介超,王春先,等,金属氧化物纳米材料的制备新进展,化学进展,2002,21(10),707-712.
    (23) Fan R., Chen X.H., Gui Z., et al., A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4, Mater. Res. Bull., 2001, 36, 497-502.
    (24) Vijayakumar R., Koltypin Y., Felner Z., et al., Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles, Mater. Sci. Eng. A-Struct., 2000, 286, 101-105.
    (25)任欢鱼,刘勇健,牛亚丰,醇-水共热法Fe3O4磁性流体,化工进展,2003,1,49-52.
    (26) Butter K., Philipse A.P., Vroege G.J., Synthesis and properties of iron ferrfluids, J. Magn. Magn. Mater., 2002, 252, 1-3.
    (27) Wang S.Z., Xin H.W., Qian Y.T., Preparation of nanocrystalline Fe3O4 byγ-ray radiation, Mater. Lett., 1997, 33, 113-116.
    (28) Darken L.S., Gurry R.W., The system iron-oxygen II equilibrium and thermodynamics of liquid oxide and other phases, J. Am. Chem. Soc., 1946, 68, 798-816.
    (29) Volder M. De., Reynaerts D., Development of a hybrid ferrofluid seal technology for miniature pneumatic and hydraulic actuators, Sensor. Actuat. A: Phys., 2009, 152, 234-240.
    (30) Mitamura Y., Arioka S., Sakota D., Application of a magnetic fluid seal to rotary blood pumps, J. phys.: condensed mater., 2008, 20, 4145-4149.
    (31) Odenbach S., Ferrofluids: magnetically controllable liquids, Proc. Appl. Math. Mech., 2002, 1, 28-32.
    (32) Ravaud R.G., Design of ironless loudspeakers with ferrofluid seals: analytical study based on the coulombian model, Prog. Electromagnetics Res. B, 2009, 14, 285-309.
    (33) Zhou G.Y., Sun L.Z., Smart colloidal dampers with on-demand controllable damping capability, Smart Mater. Struct., 2008, 17, 055023.
    (34) Urreta H., Leicht Z., Sanchez A., Agirre A., Kuzhir P., Magnac G., Hydrodynamic bearing lubricated with magnetic fluids. J. Phys.: Conf. Ser., 2009, 149, 012113.
    (35) Sonvico F., Mornet S., et al., Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments, Bioconjugate Chem., 2005, 16, 1181-1188.
    (36) Zhang L.Y., Gu H.C., Wang X.M., Magnetite ferro?uid with high specific absorption rate for application in hyperthermia, J. Magn. Magn. Mater., 2007, 311, 228-233.
    (37) Jordan A., Wust P., F?hling H., et al., Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia, Int. J. Hyperther., 2009, 25, 499-511.
    (38) Zhai Y., Xie H., Gu H.C., Effects of hyperthermia with dextran magnetic fluid on the growth of grafted H22 tumor in mice, Int. J. Hyperther., 2009, 25, 65-71.
    (39) Oliveira P.J., Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansions, Int. J. Heat Fluid Fl., 1997, 18, 518-529
    (40) Rosa S., Pinho F.T., Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers, Int. J. Heat Fluid Fl., 2006, 27, 319-328.
    (41) Pinho F.T., Oliveira P.J., Miranda J.P., Pressure losses in the laminar flow of shear-thinning power-law fluids across a sudden axisymmetric expansion, Int. J. Heat Fluid Fl., 2003, 24, 747-761.
    (42)赵妍.应用FLUENT对管路细部流场的数值模拟,大连理工大学,2004.
    (43)尹则高,张土乔,黄亚东,等.连续突扩管流的数值模拟,流体机械,2005,33,24-27.
    (44)王小华,鞠硕华,朱文芳.突扩流的数值模拟,低温建筑技术,2003,1,59-60.
    (45) Alleborn N., Nandakumar Raszillier K., H., Durst F., Further contributions on the two-dimensional flow in a sudden expansion, J. Fluid Mech., 1997, 330, 169-188.
    (46) Mitsoulis E., Abdali S.S., Markatos N.C., Flow simulation of Herschel-Bulkley fluids through extrusion dies, Can. J. Chem. Eng., 1993, 71, 147-160.
    (47) Alexandrou A.N., Flow instabilities of Herschel-Bulkley fluids, J. Non-Newtonian Fluid Mech., 2003, 116, 19-32.
    (48) Vradis G.C., Otugen N.V., The axisymmetric sudden expansion flow of a non-Newtonian viscoplastic fluid, J. Fluids Eng., 1997, 119, 193-199.
    (49) Mitsoulis E., Huilgol R.R., Entry flows of Bingham plastics in expansions, J. Non-Newtonian Fluid Mech., 2004, 122, 45-54.
    (50) Beaulne M., Mitsoulis E., Creeping motion of a sphere in tubes filled with Herschel-Bulkley fluids, J. Non-Newtonian Fluid Mech., 1997, 72, 55-62.
    (51) Burgos G.R., Alexandrou A.N., Flow development of Herschel-Bulkley fluids in a sudden 3-D square expansion, J. Rheol., 1999, 43, 485-498.
    (52) Abdali S.S., Mitsoulis E., Markatos N.C., Entry and exit flows of Bingham fluids, J. Rheol., 1992, 36, 389-407.
    (53) Tsamopoulos J.A., Chen M.F., Borkar A.V., On the spin coating of viscoplastic fluids, Rheol. Acta, 1996, 35, 597-615.
    (54) Burgos G.R., Alexandrou A.N., Flow of Herschel-Bulkley fluids through a sudden 3-D expansion, in: Proceedings of the 1998 ASME Fluids Engineering Division Summer Meeting, ASME, Washington, DC, 21-25 June 1998.
    (55) Craster R.V., Yield surfaces for Herschel-Bulkley flows in complex geometries, IMA J. Appl. Math., 1996, 56, 253-276.
    (56) Deshpande N.S., Vibrational flow of non-Newtonian fluids, Chem. Eng. Sci., 2001, 56, 3845-3853.
    (57) Oliveira P.J., Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries, J. Non-Newtonian Fluid Mech., 2003, 114, 33-63.
    (58) Fearn R.M., Mullin T., Cliffe K.A., Nonlinear flow phenomena in a symmetric sudden expansion, J. Fluid Mech., 1990, 211, 595-608.
    (59) Durst F., Melling A., Whitelaw J.H., Low Reynolds number flow over a plane symmetric sudden expansion, J. Fluid Mech., 1974, 64, 111-128.
    (60) Durst F., Pereira J.C.F., Tropea C., The plane symmetric sudden-expansion flow at low Reynolds numbers, J. Fluid Mech., 1993, 248 567-581.
    (61) Manica R., Bortoli A.L.D., Simulation of sudden expansion flows for power-law fluids, J. Non-Newtonian Fluid Mech., 2004, 121, 35-40.
    (62) Mishra S., Jayaraman K., Asymmetric flows in planar symmetric channels with large expansion ratio, Int. J. Numer. Methods Fluids, 2002, 38, 945-962.
    (63) Cherdron W., Durst F., Whitelaw J.H., Asymmetric flows and instabilities in symmetric ducts with sudden expansions, J. Fluid Mech., 1978, 84, 13-31.
    (64) Hawa T., Rusak Z., The dynamics of a laminar flow in a symmetric channel with a sudden expansion, J. Fluid Mech., 2001, 436, 283-320.
    (65) Abbot D.E., Kline S., Experimental investigation of subsonic turbulent flow over single and double backward facing steps, J. Basic Eng., 1962, 84, 317-325.
    (66) Restivo A., Whitelaw J. H., Turbulence characteristics of the flow downstream of asymmetric plane sudden expansion, J. Fluids Eng. Trans. ASME, 1978, 100, 308-310.
    (67) Panagiotis Neofytou, Dimitris Drikakis, Non-Newtonian flow instability in a channel with a sudden expansion, J. Non-Newtonian Fluid Mech., 2003, 111, 127-150.
    (68) Rocha G.N., Poole R.J., Oliveira P.J., Bifurcation phenomena in viscoelastic flows through a symmetric 1:4 expansion, J. Non-Newtonian Fluid Mech., 2007, 141, 1-17.
    (69) Thiruvengadam M., Nie J.H., Armaly B.F., Bifurcated three-dimensional forced convection in plane symmetric sudden expansion, Int. J. Heat Mass Tran., 2005, 48, 3128-3139.
    (70) Perera M.G.N., Walters K., Long-range memory effects in flows involving abrupt changes in geometry, Part II, The expansion/contraction/expansion problem, J. Non-Newton. Fluid Mech., 1977, 2, 191-204.
    (71) Cartalos U., Piau J.M., Pressure drop scaling laws and structural stress contributions for complex flows of flexible polymer solutions in thick solvents, J. Non-Newton. Fluid Mech., 1992, 44, 55-83.
    (72) Martyn M.T., Nakason C., Coates P.D., Flow visualisation of polymer melts in abrupt contraction extrusion dies: quantification of melt recirculation and ?ow patterns, J. Non-Newtonian Fluid Mech., 2000, 91, 109-122.
    (73) Binding D.M., Phillips P.M., Phillips T.N., Contraction/expansion flows: The pressure drop and related issues, J. Non-Newton. Fluid Mech., 2006, 137, 31-38.
    (74) Naccache M.F., Barbosa R.S., Creeping flow of viscoplastic materials through a planar expansion followed by a contraction, Mech. Res. Commun., 2007, 34, 423-431.
    (75) Lin J.Z., Ku X.K., Orientation Fiber Distributions in a Suspension Flow through a Parallel Plate Channel Containing a Cylinder, J. Compos. Mater., 2009, 43, 1373-1390.
    (76) Li Y., Zhang R., Shock R., and Chen H., Prediction of vortex shedding from a circular cylinder using a volumetric Lattice-Boltzmann boundary approach, Eur.Phys. J. Special Topics, 2009, 171, 91-97.
    (77) Hofer K.G., Choppin D.A., Hofer M.C., Effect of hyperthermia on the radiosensitivity of normal and malignant cells in mice, Cancer, 1976, 38, 279-287.
    (78) Moroz P., Jones S.K., Gray B.N., Magnetically mediated hyperthermia: current status an future direction, Int. J. Hyperthermia, 2002, 18, 267-284.
    (79) Jordan A., Scholz R., Wust P., et al., Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater., 1999, 201, 413-419.
    (80) Gilchrist R.K., Medal R., Shorey W.D.,et al., Selective Inductive Heating of Lymph Nodes, Ann. Surg., 1957, 146, 596-606.
    (81) Chan D.C.F., Kirpotin D.B., Bunn P.A., Synthesis and evaluation of colloidal magnetic iron oxide for the site-specific radiofrequency-induced hyperthermia of cancer, J. Magn. Magn. Mater., 1993, 122, 374-378.
    (82) Jordan A., Scholz R., Wust P., et al., Endocytosis of dextran and silane-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro, J. Magn. Magn. Mater., 1999, 194, 185-196.
    (83)李人宪,有限体积法基础,北京:国防工业出版社,2005.
    (84) Hong R.Y., Ren Z.Q., Han Y. P., et al., Rheological properties of water-based Fe3O4 ferrofluids, Chem. Eng. Sci., 2007, 62, 5912-5924.
    (85) Rosensweig R. E., Heating magnetic ?uid with alternating magnetic field, J. Magn. Magn. Mater., 2002, 252, 370-374.
    (86) Shapira M., Degani D., Weihs D., Stability and existence of multiple solutions for viscous flow in suddenly enlarged channels, Comput. Fluids, 1990, 18, 239-258.
    (87) Drikakis D., Study of bifurcation flow phenomena in incompressible sudden expansion flows, Phys. Fluids, 1997, 9, 76-87.
    (88) Battaglia F., Tavener S.J., Kulkarni A.K., Merkle C.L., Bifurcation of low Reynolds number flows in symmetric channels, AIAA J., 1997, 35, 99-105.
    (89) Hawa T., Rusak Z., Viscous flow in a slightly asymmetric channel with a sudden expansion, Phys. Fluids, 2000, 12, 2257-2267.
    (90) Schreck E., Sch?fer M., Numerical study of bifurcation in three-dimensionalsudden channel expansions, Comput. Fluids, 2000, 29, 583-593.
    (91) Alexandroua A., Bardinet F., LouéW., Mathematical and computational modeling of die filling in semisolid metal processing, J. Mater. Process. Tech., 1999, 96, 59-72.
    (92) Sousa M.H., Tourinho F.A., Depeyrot J., et al., New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures, J. Phys. Chem. B, 2001, 105, 1168-1175.
    (93) Mekala S.R., Ding J., Magnetic properties of cobalt ferrite/SiO2 nanocomposite, J. Alloys Compd., 2000, 296, 152-156.
    (94) Jacobo S.E., Civale L., Blesa M.A., Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate (VI) solutions, J. Magn. Magn. Mater., 2000, 260, 37-41.
    (95) Lu Y.F., Song W.D., Properties of BaFe12O19 films prepared by laser deposition with in situ heating and post annealing, Appl. Phys. Lett., 2000, 76, 490-492.
    (96) Sui X., Scherge M., Kryder M.H., et al., Barium ferrite thin-film recording media, J. Magn. Magn. Mater., 1996, 155, 132-139.
    (97) Chen D.H., Chen Y.Y., Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid, Mater. Res. Bull., 2002, 37, 801-810.
    (98) Ataie A., Heshmati-Manesh S., Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method, J. Eur. Ceram. Soc., 2001, 21, 1951-1955.
    (99) Uskokovi? V., Makovec D., Drofenik M., Synthesis of Lanthanum-Strontium manganites by a hydroxide-precursor co-precipitation method in solution and in reverse micellar microemulsion, Mater. Sci. Forum, 2005, 494, 155-160.
    (100) Zi Z.F., Sun Y.P., Zhu X.B., et al., Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method, J. Magn. Magn. Mater., 2008, 320, 2746-2751.
    (101) Hessien M.M., Rashad M.M., El-Barawy K., Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitationmethod, J. Magn. Magn. Mater., 2008, 320, 336-343.
    (102) Ghasemi A., Morisako A., Liu X., Magnetic properties of hexagonal strontium ferrite thick film synthesized by sol-gel processing using SrM nanoparticles, J. Magn. Magn. Mater., 2008, 320, 2300-2304.
    (103) Wang Y., Li Q., Zhang C., Jing H., Preparation and magnetic properties of different morphology nano-SrFe12O19 particles prepared by sol-gel method, J. Alloys Compd., 2009, 467, 284-287.
    (104) Wang Y., Li Q., Zhang C., Li B., Effect of Fe/Sr mole ratios on the formation and magnetic properties of SrFe12O19 microtubules prepared by sol-gel method, J. Magn. Magn. Mater., 2009, 321, 3368-3372.
    (105) Sato H., Umeda T., Grain growth of strontium ferrite crystallized from amorphous phases, J. Mater. Trans., 1993, 34, 76-81.
    (106) Ding J., Miao W.F., McCormick P.G., Street R., High-coercivity ferrite magnets prepared by mechanical alloying, J. Alloys Compd., 1998, 281, 32-36.
    (107) Kaczmarek W.A., Idzikowski B., Muller K.H., XRD and VSM study of ball-milled SrFe12O19 powder, J. Magn. Magn. Mater., 1998, 177, 921-922.
    (108) Ketov S.V., Yagodkin Y.D., Lebed A.L., et al., Structure and magnetic properties of nanocrystalline SrFe12O19 alloy produced by high-energy ball milling and annealing, J. Magn. Magn. Mater., 2006, 300, 479-481.
    (109) Yang X., Li Q., Zhao J., et al., Preparation and magnetic properties of controllable-morphologies nano-SrFe12O19 particles prepared by sol-gel self-propagation synthesis, J. Alloys Compd., 2009, 475, 312-315.
    (110) You L., Qiao L., Zheng J., et al., Magnetic properties of La-Zn substituted Sr-hexaferrites by self-propagation high-temperature synthesis, J. Rare Earth., 2008, 26, 81-84.
    (111) Chaudhury S., Rakshit S.K., Parida S.C.,et al., Studies on structural and thermo-chemical behavior of MFe12O19(s) (M=Sr, Ba and Pb) prepared by citrate-nitrate gel combustion method, J. Alloy Compd., 2008, 455, 25-30.
    (112) Perelshtein I., Perkas N., Magdassi S.,et al., Ultrasound-assisted dispersion of SrFe12O19 nanoparticles in organic solvents and the use of the dispersion asmagnetic cosmetics, J. Nanopart. Res., 2008, 10, 191-195.
    (113) Yamaura M., Camilo R.L., Sampaio L.C.,et al., Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles, J. Magn. Magn. Mater., 2004, 279, 210-217.
    (114) Lisiecki I., Billoudet F., Pileni M.P., Control of the shape and the size of copper metallic particles, J. Phys. Chem., 1996, 100, 4160-4166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700