Hastelloy N合金的离子辐照损伤及辐照后熔盐腐蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔盐堆是第四代核反应堆国际研讨会提出的六个―候选‖开发的核能系统之一,同时也是中国科学院战略性先导科技专项《未来先进核裂变能》的重要部分,具有核燃料可持续利用、热转化效率高、核废料少、固有安全性等多种优点,钍增值熔盐堆技术是解决未来核燃料短缺的重要途径。熔盐堆的主冷却剂是一种熔融态的氟化盐,众所周知,高温熔融氟化盐具有极强的腐蚀性。Hastelloy N合金作为熔盐反应堆中堆芯容器、熔盐回路管道和换热器等结构材料,与液态氟化盐燃料直接接触,高温、辐照以及强腐蚀所引起的Hastelloy N合金的失效问题是影响熔盐堆堆结构材料使用寿命的关键问题。
     本论文采用常规正电子湮灭寿命谱、扫描电镜、失重法等多种传统研究手段,结合近年来刚刚兴起的具有高探测灵敏度、高空间分辨本领和样品低损伤分析的第三代同步辐射光源的X射线分析手段,研究He+离子辐照后的Hastelloy N合金在熔盐(FLiNaK)中的耐腐蚀性。Hastelloy N合金的耐腐蚀性能与其微观结构关系紧密,研究Hastelloy N合金在反应堆中中子辐照下的微观结构变化可以对合金在反应堆中的失效行为给出评价,预测材料的使用寿命。由于反应堆内中子辐照实验研究具有周期长、耗费大、感生放射性和实验条件苛刻等不利因素,自1960年起,研究者采用其它粒子,如电子、质子或离子辐照,模拟中子辐照,研究合金的相关性能或机理,这种方法周期短、效率高、低耗费并且实验方案容易实施,近来越来越受到人们的关注。因此本文用He+离子模拟中子辐照,研究Hastelloy N合金辐照后的微观结构变化与在熔融氟化盐中的耐腐蚀性,从而模拟熔盐堆内中子辐照下的合金熔盐腐蚀,进而推测Hastelloy N合金在中子辐照环境下的耐腐蚀性能。
     采用4.5MeV的He+离子辐照Hastelloy N合金,用SRIM2008程序计算对应辐照剂量0He+cm2、1×1015He+cm2、1×1016He+cm2和5×1016He+cm2的峰值损伤分别约为0dpa、0.05dpa、0.5dpa和2.5dpa,用常规正电子湮没寿命谱仪研究辐照剂量对合金空位大小和浓度的影响。实验结果表明:随着辐照剂量的增加,短寿命谱参数1基本保持在100ps,辐照产生了很多空位型缺陷,导致晶格的不稳定性增加,从而引起空位不停地迁移和聚集,使得空位型缺陷的浓度参数I1不断地减小;随着辐照剂量的增加,间隙型位错的形成使得长寿命谱参数2有不断减小的趋势,而间隙型位错的密度参数I2不断增加,表明新产生的空位不断增加。纳米压痕实验表明:随着辐照剂量的增加合金表面硬度增加,并且随着深度的增加,硬度减小。
     采用浸入法将4.5MeV He+离子辐照后的Hastelloy N合金在700℃高温下进行500h的腐蚀实验,在上海光源硬X射线微聚焦线站进行微束X射线荧光元素分布分析,测得对应辐照剂量0He+cm2、1×1015He+cm2、1×1016He+cm2和5×1016He+cm2的腐蚀深度分别为24μm、34μm、43μm和55μm,说明辐照对合金的耐腐蚀性能产生了比较严重的影响,随着辐照剂量的增加,合金的耐腐性有下降的趋势,这主要由于晶界和位错作为元素扩散的快速通道,随着He+离子注入剂量的增大,位错逐渐增多,高温下元素从合金基体扩散到表面和熔盐中的速度加快,从而导致合金的耐腐蚀性变差。若腐蚀过程中混入了过多的氧气和水蒸气,腐蚀将进一步加剧。同时发现合金中元素Cr的腐蚀情况最为严重,而其他元素Ni和Mo不易流失,说明合金的腐蚀主要表现为元素Cr的流失。
     最后,总结了镍基合金的高温熔盐腐蚀机理,对合金组分、温度等影响因素对熔盐腐蚀的影响机制进行了阐述,并对He+离子辐照引起的Cr元素的扩散影响机制进行了研究。
Molten salt reactor (MSR) is one of the six most promising Generation IVreactors in the International symposium on fourth generation nuclear reactor. Also itis an important part of the future advanced nuclear fission belonging to the strategicleading science and technology projects of Chinese academy of sciences. It hasincomparable advantages: fission fuel sustainable utilization, excellent heat transfercharacteristics, producing less long-lived wastes, inherent safety and so on.Thorium-based Molten Salt Reactor technology is an important way to supplylong-term nuclear energy for the future. It is well known that the primary coolant ofmolten salt reactor is a kind of molten salt with severe corrosion. Hastelloy N alloywas developed for high temperature structural materials, such as the core container ofmolten salt reactor, molten salt return piping and the heat exchanger. The structuralmaterials are directly contact with liquid fuel salt. The invalidation problems ofirradiated Hastelloy N alloy caused by high temperature, intense irradiation andsevere corrosion are the key issues for the service life of structural materials of MSR.
     In this study, we adopted a variety of traditional research methods, such aspositron annihilation lifetime spectroscopy, scanning electron microscopy,weight-loss method and so on. As the development of the third generationsynchrotron radiation source, synchrotron radiation X-ray analytic techniquesgradually grew up with some advantages, such as samples of low damage analysis,high detection sensitivity and high spatial resolution. It is well-known that thecorrosion resistances of Hastelloy N alloy is related to its microstructure, theinvestigation of the microstructure changes under neutron irradiation in the reactor onHastelloy N alloy can evaluate the invalid problems of alloy in the reactor, predictingthe service life of materials. Direct neutron irradiation testing is vitally important, butthe experiment condition is restricted due to some unfavorable factors, for instance,long cycle, high cost, harsh experimental condition and so on. Since the1960s,simulation irradiation researches have turned up by using the other particles, such aselectrons, protons and ions instead of neutrons to investigate the related performanceand mechanism of the alloy, in recent years, this method got more and more attentionfrom people with short cycle, high efficiency, low cost and easily implementedexperiment scheme. Therefore, this paper presents some investigation results on thecorrosion of Hastelloy N alloy after4.5MeV He+ion irradiation performed in moltenfluoride salt at700℃for500h to simulate the corrosion irradiation in reactors.
     Hastelloy N samples were irradiated by4.5MeV He+ions. The irradiation doseis0He+cm2、1×1015He+cm2、1×1016He+cm2、5×1016He+cm2,thecorresponding peak damage is0,0.05,0.5,2.5dpa calculated by SRIM2008code.The results showed that with dose accumulation I1constantly decreased, and1wasabout100ps from beginning to end. The helium irradiation produced many vacancytype defects. The instability in crystal lattice resulted in that the vacancies incessantlymigrated and gathered, which brought about the decrease of I1unceasingly. Withincreasing irradiation dose, I2increased, which implied that the new generatedvacancies increased constantly, which led I2to increase. The generated vacancieswould form voids. The decrease of2suggested the formation of interstitial clusterswhich kept the trend of decrease of2. The nano indentation experiments show thatwith the increasing irradiation dose the hardness of the alloy surface increases, and thehardness decrease with the increase of depth.
     Hastelloy N alloy irradiated by4.5MeV He+ions was performed in moltenfluoride salts at700℃for500h. Then the samples were analyzed using synchrotronradiation microbeam hard X-ray fluorescence analysis at BL15U1beamline station ofShanghai Synchrotron Radiation Facility. The results show that with the doseincreasing from0,1×1015He+cm2,1×1016He+cm2,5×1016He+cm2, significantdepletion of Cr rose from the depth of24μm,34μm,43μm and55μm, which showsthat the irradiation has a serious impact on the corrosion resistance of alloy. That isbecause that grain boundaries and dislocations act as quick paths for Cr elementdiffusion, the dislocations of Hastelloy N alloy increased with increasing irradiationdose, so that the Cr element diffusing out of matrix became fast, and then thecorrosion resistance became weak. If in the process of corrosion mixed with too muchoxygen and water vapor, and the corrosion will be further intensified. The element Crin the matrix suffered from the most serious corrosion, and other element Ni and Modidn‘t drain easily, which illustrated that the corrosion of ally was mainly due to theloss of element Cr.
     Finally, we summarized the corrosion mechanism of Ni-based alloys under hightemperature molten salt, and expounded the molten salt corrosion mechanism of thecomposition, temperature and other influence factors. Furthermore, we studied theinfluence mechanism of the diffusion of the element Cr caused by the He+ionirradiation.
引文
[1]李春曦,王佳,叶学民等.我国新能源发展现状及前景[J].电力科学与工程,2012,28(4):1-8.
    [2]缪仁杰,李淑兰.太阳能利用现状与发展前景[J].应用能源技术,2007,5:28-33.
    [3]史永谦.核能发电的优点及世界核电发展动向[J].能源工程,2007(1):1-6.
    [4]张永胜.关于我国发展核能的现实思考[J].人民论坛,2010,23:081.
    [5]宋嘉颖.核能安全发展的伦理研究[D].南京理工大学,2013.
    [6] U. DoE, A technology roadmap for generation IV nuclear energy systems, inNuclear Energy Research Advisory Committee and the Generation IVInternational Forum,2002.
    [7] J. A. Lake, The fourth generation of nuclear power, Progress in Nuclear Energy,2002,40:301-307.
    [8]左嘉旭,张春明.熔盐堆的安全性介绍.核安全,2011,3:73-78.
    [9] S. Delpech, C. Cabet, C. Slim, and G. S. Picard, Molten fluorides for nuclearapplications, Materials Today,2010,13:34-41.
    [10] C. W. Forsberg, Thermal-and fast-spectrum molten salt reactors for actinideburning and fuel production, ChemInform,2009,40: i.
    [11]唐宇,第四代国际论坛的第四代核能系统研究开发情况综述,国外核动力,2003,24:1-12.
    [12] L. Mathieu, D. Heuer, R. Brissot, C. Garzenne, C. Le Brun, D. Lecarpentier, etal., The thorium molten salt reactor: Moving on from the MSBR, Progress inNuclear Energy,2006,48:664-679
    [13] P. Alekseev, I. Belov, N. Ponomarev Stepnoi, N. Kukharkin, S. Subbotin, Y. N.Udyanskii, et al., MARS low-power liquid-salt micropellet-fuel reactor, AtomicEnergy,2002,93:537-546.
    [14] C. L. Brun, Molten salts and nuclear energy production, Journal of nuclearmaterials,2007,360:1-5.
    [15] C. L. Brun, Molten salts and nuclear energy production, Journal of nuclearmaterials,2007,360:1-5.
    [16]哈琳.六种第四代核反应堆概念.国外核新闻,20031:15-19
    [17] M. Rosenthal, P. Kasten, and R. Briggs, Molten Salt Reactors-History, Status,and Potential, Nuclear Applications and Technology,1970,8:107-117
    [18] D. LeBlanc, Too Good to Leave on the Shelf, mechanical engineering,2010.
    [19] P. N. Haubenreich and J. Engel, Experience with the molten salt reactorexperiment, Nuclear Applications and technology,1970,8:118-137.
    [20] A. M. Perry, Molten-salt converter reactors, Annals of Nuclear Energy,1975,2:809-818.
    [21] J. Engel, H. Bauman, J. Dearing, W. Grimes, H. McCoy, and W. Rhoades,Conceptual design characteristics of a denatured molten-salt reactor withonce-through fueling, Oak Ridge National Lab., TN (USA),1980.
    [22] A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, et al.,Potential of thorium molten salt reactorsdetailed calculations and conceptevolution with a view to large scale energy production, Progress in nuclearenergy,2005,46:77-99.
    [23]江绵恒,徐洪杰,戴志敏."未来先进核裂变能——TMSR核能系统".中国科学院院刊,2012,27:366-374.
    [24] M. W. Rosenthal, P. N. Haubenreich, and R. B. Briggs,―The developmentstatus of molten-salt breeder reactors‖, ORNL-4812(1972).
    [25] McCoy H E. Status of materials development for molten salt reactors.ORNL-TM-5920,1978:130
    [26] J. Vacik, H. Naramoto, J. Cervena, et al. Absorption of molten fluoride salts inglassy carbon, pyrographite and Hastelloy B [J]. J Nucl Mater,2001,289(3):308-314
    [27] Keiser J R. Compatibility studies of potential molten-salt breeder reactormaterials in molten fluoride salts. ORNL-TM-5783, May1977.
    [28] Volkov S, Omel‘chuk A, Azhazha V, et al. Corrosion Stability of IrradiatedHastelloy-type Alloys in Molten NaF-ZrF4Mixture[J]. J. New. Mat.Electrochem. Systems,2006,9:305-311
    [29]"HASTELLOY N alloy," Haynes International, Inc., H-2052B,2002.
    [30] H. E. McCoy, Materials for Salt-Containing Vessels and Piping, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1972:201.
    [31] W. R. Huntley, J. W. Koger, Compatibility of calcium-silicate insulatingboard(johns-manville product heat-treated marimet-45) with engineeringalloys at1100to1600℉, ORNL/TM-4312, Oak Ridge National Laboratory,Oak Ridge, Tenn.,1973.
    [32] J. W. Koger, Evalution of Hastelloy N alloys after nine years exposure to both amolten fluoride salt and air at temperatures from700to560°C,ORNL/TM-4189, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1972.
    [33] S. Delpech, T. Auger, e. al., MSFR: Material issues and the effect of chemistrycontrol, GIF Symposium,2009,9-10:201.
    [34] J. Roberto, Basic research needs for advanced nuclesr energy systems, Reportof the basic energy sciences workshop on basic research needs for advancednuclesr energy systems, July31-Aug.32006.
    [35] G. Hayner, R. Bratton, R. Wright, W. Windes, T. Totemeier, K. Moore, et al.,Next Generation Nuclear Plant Materials Research and Development ProgramPlan, Idaho National Engineering and Environmental Laboratory, Idaho Falls,Idaho,2004.
    [36] H. McCoy, R. Beatty, W. Cook, R. Gehlbach, C. Kennedy, J. Koger, et al., Newdevelopments in materials for molten-salt reactors, Oak Ridge National Lab.,Tenn.,1970.
    [37] W. Martin and J. Weir, Solutions to the Problems of High-TemperatureIrradiation Embrittlement, Effects of Radiation on Structural Materials,ASTM-STP,1967,426:440-457.
    [38] H. E. McCoy, an evaluation of the molten-salt reactor experiment hastelloy Nsurveillance specimens-Fourth Group, ORNL/TM-3063, Oak Ridge NationalLaboratory, Oak Ridge, Tenn.,1971
    [39] H. McCoy Jr, Evaluation of the molten-salt reactor experiment Hastelloy Nsurveillance specimens: Second Group, Oak Ridge National Lab., Tenn.,1969.
    [40] H. E. McCoy, an evaluation of the molten-salt reactor experiment hastelloy Nsurveillance specimens: Sencond Group, ORNL/TM-1997, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1967.
    [41] H. E. McCoy, an evaluation of the molten-salt reactor experiment hastelloy Nsurveillance specimens: Third Group, ORNL/TM-2647, Oak Ridge NationalLaboratory, Oak Ridge, Tenn.,1970.
    [42] W. R. Martin and J. R. Weir, The Effect of Irradiation Temperature on thePost-Irradiation Stress-Strain Behavior of Stainless Steel, ASTM STP380,Amarican Society for Testing and Materials,1965:251.
    [43] W. R. Martin and J. R. Weir, Effect of Elevated Temperature Irradiation on theStrength and Ductility of the Nickel-Base Alloy, Hastelloy N, Nucl. Appl.,1965,1(2):160-167.
    [44] J. R. Weir and H. E. McCoy, Stress-rupture Properties of Irradiated andUnirradiated Hastelloy N Tubes, Nucl. Appl.,1968,4:96.
    [45] Lucas G E. The evolution of mechanical property change in irradiatedaustenitic stainless steels [J]. J Nucl Mater,1993,206(2-3):287305
    [46] Angeliu T M, Ward J T, Witter J K. Assessing the effects of radiation damageon Ni-base alloys for the prometheus space reactor system [J]. J Nucl Mater,2007,366(1-2):223237
    [47]胡博炜,李振瑞.定向凝固技术及定向凝固高温合金的现状和发展[J].金属材料研究,2010,36(004):16-20
    [48] P. Wangyao, Zrník, J., Kvackaj, T., Vrchovinsky, V. and Novy, Z., Effect offorming parameters on hot working process in nickel base alloy, J. Met. Mater.Miner.,2004,13:33-43.
    [49] Luke C. Olson, James W. Ambrosek, Kumar Sridharan, Mark H. Anderson,Todd R. Allen,Materials corrosion in molten LiF-NaF-KF salt,Journal ofFluorine Chemistry130(2009)67-73
    [50]王成,巨少华,荀淑玲等.镍基耐蚀合金研究进展.材料导报2009年2月(上)第23卷第2期
    [51] Williams D F. Assessment of candidate molten salt coolants for the NGNP/NHIHeat-Transfer Loop[J]. ORNL/TM-2006/69, Oak Ridge National Laboratory,Oak Ridge, Tennessee,2006.
    [52] Sabharwall P, Ebner M, Sohal M, et al. Molten Salts for High TemperatureReactors: University of Wisconsin Molten Salt Corrosion and Flow LoopExperiments–Issues Identified and Path Forward[J]. Idaho NationalLaboratory Report INL/EXT-10-18090,2010.
    [53] Le Brun C. Molten salts and nuclear energy production[J]. Journal of NuclearMaterials,2007,360(1):1-5.
    [54] LeBlanc D. Molten salt reactors: A new beginning for an old idea[J]. Nuclearengineering and design,2010,240(6):1644-1656.
    [55] Ignatiev V, Feynberg O, Gnidoi I, et al. Progress in development of Li, Be,Na/F molten salt actinide recycler&transmuter concept[C]//Proceedings ofthe ICAPP.2007.
    [56] Azhazha V M, Bakai A S, Lavrinenko S D, et al. Alloys for molten-saltreactors[J]. Problems of Atomic Science and Technology. Ser.: Radiat.Damage Phys. and Radiat. Mater. Sci,2005,4(87):40-47.
    [57] Volkov S, Omel‘chuk A, Azhazha V, et al. Corrosion Stability of IrradiatedHastelloy-type Alloys in Molten NaF-ZrF4Mixture[J]. J. New. Mat.Electrochem. Systems,2006,9:305-311.
    [58] Volkov S, Omel‘chuk A, Azhazha V, et al. Corrosion Stability of IrradiatedHastelloy-type Alloys in Molten NaF-ZrF4Mixture[J]. J. New. Mat.Electrochem. Systems,2006,9:305-311.
    [59] Dubinko V I, Guglya A G, Melnichenko E, et al. Radiation-induced reductionin the void swelling[J]. Journal of nuclear materials,2009,385(2):228-230.
    [60] Min Liu, Yanling Lu, Xingtai Zhou, et al. Investigation on corrosion behaviorof Ni-based alloys in molten fluoride salt using synchrotron radiationtechniques [J]. J Nucl Mater,2013,440,124-128.
    [61] S. Reguer, P.Dillmann, F.Mirambet, J.Susini, P.Lagarde,Investigation of Clcorrosion products of iron archaeological artefacts using microfocusedsynchrotron XAS, Appl. Phys. A83,189-193(2006)
    [62] Claude Degueldre, Goutam Kuri, Camelia N.Borca, Daniel Grolimund, X-raymicro-fluorescence, diffraction and absorption spectroscopy for localstructure investigation of a radioactive zinc ferrite deposit, Corrosion Science51(2009)1690-1695
    [63]郁金南.材料辐照效应[M].北京化学工业出版社,2007. P1
    [64]万发荣.金属材料的辐射损伤[J].1993.
    [65] Brinkman J A. J.Appl. Phys.1951,25,961
    [66] M. J. Norgett, M. T. Robinson, and I. M. Torrens, A proposed method ofcalculating displacement dose rates, Nucl. Engr. and Design33,50(1975)
    [67] Kinehin GH and Pease RS.The DisPlacement of Aioms in Solids by Radiation.ReP. Prog. Phys.1995,18:1-51.
    [68] Lindhard J, Scharff M and Sehiftt HE. Mat. Fys. Medd. Danske VideriskabSelskab.1963,33(10):1.
    [69] Sigmund P. Radiation Effects,1969,1:15.
    [70] Biersack JP and Ziegler JF.“Ion Implantation Techniques“Sping-Verlag,1982:122.
    [71] Ziegler JF,Biersaek J P, Littmark U. The Stopping and Range of Ion in Solid,Pergamon Press, New York(1985)
    [72]硬X射线微聚焦及应用光束线站.上海光源工程光束线站设计报告,2006
    [73]吉昂等. X射线荧光光谱分析.第一版.北京科学出版社,2003
    [74]马礼敦,杨福家等.同步辐射应用概论.第二版.上海:复旦大学出版社.2005
    [75] Kansy J, Microcomputer program for analysis of positron annihilation lifetimespectra, Nucl. Instrum. Meth,1996,374(2):235-244
    [76] J. F. Ziegler, SRIM-2008, v.2008.40, http://www.stim.org.
    [77] J. Kansy, Nucl. Instr um. M ethods P hys. R e s. A1996,374,235
    [78] J. Kansy, LT for Windows, Version9.0‘‘, Institute of Physics and Chemistryof Metals, Silesian University, Bankowa12, PL-40-007Katowice, Poland,March2002, private commu-nication.
    [79] G.S. Was. Fundamentals of Radiation Materials Science [M]. Springer,2007.
    [80] Olander DR. Fundamental Aspects of Nuclear Reactor Fuel Elements, TLD-26711-Pl. Technical Information Center, ERDA, Washington, DC,1976.
    [81] V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini, A multiplatform code forthe analysis of energy-dispersive X-ray f luorescence spectra, SpectrochimicaActa Part B62(2007)63-68
    [82] RE Van Grieken, AA Markowicz, Handbook of X-ray Spectrometry, New York:Marcel Dekker,1993:181-293
    [83] E Strub, R Plarre, M Radtke, U Reinholz, H Riesemeier,U Schoknecht, KUrban,P Ju ngel, Determination of Cr(VI) in wood specimen: A XANES studyat the Cr K edge, Nuclear Instruments and Methods in Physics Research B266(2008)2405-2407
    [84] Olivier Villain, Georges Calas,Laurence Galoisy, and Laurent Cormier,XANES Determination of Chromium Oxidation States in Glasses:Comparison With Optical Absorption Spectroscopy, Journal of the AmericanCeramic Society Vol.90, No.11
    [85] Ingersoll D T, Forsberg C W, Ott L J, et al. Status of preconceptual design ofthe advanced high-temperature reactor (AHTR)[M]. United States.Department of Energy,2004.
    [86] Afonichkin V K, Bovet A L, Ignatiev V V, et al. Dynamic reference electrodefor investigation of fluoride melts containing beryllium difluoride[J]. Journalof Fluorine Chemistry,2009,130(1):83-88.
    [87] Ignat‘ev V V, Surenkov A I, Gnidoi I P, et al. Investigation of the corrosionresistance of nickel-based alloys in fluoride melts[J]. Atomic Energy,2006,101(4):730-738.
    [88] Bene O, Konings R J M. Thermodynamic assessment of the LiF–CeF3–ThF4system: Prediction of PuF3concentration in a molten salt reactor fuel[J].Journal of Nuclear Materials,2013,435(1):164-171.
    [89] Sona C S, Gajbhiye B D, Hule P V, et al. High temperature corrosion studies inmolten salt-FLiNaK[J]. Corrosion Engineering, Science and Technology,2013.
    [90] Danielik V, Fellner P, Matal O. Corrosion of Nickel in the Molten Mixture ofLiF-NaF-ZrF4[J]. Acta Chimica Slovaka,2009,2(1):3-11.
    [91] Kondo M, Nagasaka T, Tsisar V, et al. Corrosion of reduced activation ferriticmartensitic steel JLF-1in purified Flinak at static and flowing conditions[J].Fusion Engineering and Design,2010,85(7):1430-1436.
    [92] Kondo M, Nagasaka T, Xu Q, et al. Corrosion characteristics of reducedactivation ferritic steel, JLF-1(8.92Cr–2W) in molten salts Flibe andFlinak[J]. Fusion Engineering and Design,2009,84(7):1081-1085.
    [93] Ouyang F Y, Chang C H, You B C, et al. Effect of moisture on corrosion ofNi-based alloys in molten alkali fluoride FLiNaK salt environments[J]. Journalof Nuclear Materials,2013,437(1):201-207.
    [94] Sellers R S, Cheng W J, Anderson M H, et al. Materials corrosion in moltenLiF-NaF-KF eutectic salt under different reduction-oxidation conditions[C].Proc. Int. Conf.Advances in Nuclear Power Plants (ICAPP‘12).2012:24-28.
    [95] Olson L, Sridharan K, Anderson M, et al. Nickel-plating for active metaldissolution resistance in molten fluoride salts[J]. Journal of Nuclear Materials,2011,411(1):51-59.
    [96] Kirkendall E O, Smigelskas A D. Zinc diffusion in alpha brass [J]. Aime Trans,1947,171:130-142.
    [97] Anand M S, Murarka S P, Agarwala R P. Diffusion of copper in nickel andaluminum[J]. Journal of applied physics,2004,36(12):3860-3862.
    [98] Manley W D. Construction Materials for Molten-Salt Reactors[J]. Fluid-FueledReactors,1958.
    [99] Engel J R, Grimes W R, Bauman H F, et al. Conceptual Design Charac. ofDenatured Molten-Salt Breeder Reactor with Once-through Fueling[J].ORNL/TM-7207,1980.
    [100] Williams D F, Wilson D F, Toth L M, et al. Research on molten fluorides ashigh temperature heat transfer agents[C].Proceedings of GLOBAL2003.2003:16-20.
    [101] DeVan J H, DiStefano J R, Eatherly W P, et al. Materials considerations formolten salt accelerator‐based plutonium conversion systems.Theinternational conference on accelerator‐driven transmutation technologiesand applications. American Institute of Physics,1995:476-487.
    [102] Huntley W R, Silverman M D. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3and MSR-FCL-4[R].Oak Ridge National Lab., Tenn.(USA),1976.
    [103] Huntley W R, Gnadt P A. Design and Operation of a Forced-CirculationCorrosion Test Facility (MSR-FCL-1) Employing Hastelloy N Alloy andSodium Fluoroborate Salt [J].ORNL/TM-3863,Oak Ridge NationalLaboratory, Oak Ridge, TN,1973.
    [104] Koger J W. ORNL-4832[J]. Molten-Salt Reactor Program-12.3. SaltCorrosion Studies,1972.p130
    [105] S. Cantor and R. M. Waller, Molten-Salt Reactor Program SemiannualProgress Report for Period Ending February29,1972, ORNL-4782, p.63.
    [107] Koger J W. Effetc of FeF2addition on mass transfer in a hastelloy NLiF-BeF2-UF4thermal convection loop system [J]. ORNL-TM-4188,1972.
    [108] Cooke J W. Thermophysical properties [J]. ORNL-4728,1971:41.
    [109] Thoma R E. CHEMICAL ASPECTS OF MSRE OPERATIONS[R]. OakRidge National Lab., Tenn.,1971.
    [110] Thoma, Roy E. CHEMICAL ASPECTS OF MSRE OPERATIONS. No.ORNL-4658. Oak Ridge National Lab., Tenn.,1971.
    [111] Koger J W. Chromium Depletion and Void Formation in Fe-Ni-Cr AlloysDuring Molten Salt Corrosion and Related Processes [M].Advances inCorrosion Science and Technology. Springer US,1974:245-318.
    [112]崔忠圻,覃耀春.金属学与热处理.机械工业出版社,2007:161-192.
    [113] J. Rellick, C. McMahon, H. Marcus, and P. Palmberg, The effect of telluriumon intergranular cohesion in iron, Metallurgical and Materials Transactions B,1971,2:1492-1494.
    [114]余永宁.金属学原理.冶金工业出版社,2000:169-214.
    [115]胡赓祥,蔡珣.上海交通大学出版社.2000:131~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700