GaAs太阳电池空间粒子辐照效应及在轨性能退化预测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过空间带电粒子辐照地面等效模拟试验,研究了国产GaAs/Ge单结太阳电池和GaInP/GaAs/Ge三结太阳电池的电学性能演化规律和辐照损伤机理。在此基础上,对GaAs/Ge单结太阳电池的在轨性能退化预测方法进行了简化和改进,并将其推广应用于GaInP/GaAs/Ge三结太阳电池。针对地球同步轨道环境条件,预测了国产GaAs/Ge单结太阳电池和GaInP/GaAs/Ge三结太阳电池的在轨服役行为。
     研究结果表明,不同能量质子辐照下,GaAs/Ge单结太阳电池的电学性能退化与电池发射区、基区和空间电荷区不同程度的损伤密切相关。70keV质子主要造成电池空间电荷区损伤,导致电池开路电压明显退化,40keV质子主要造成电池发射区损伤,导致电池短路电流显著降低。大于100keV质子辐照下,电池短路电流、开路电压和最大功率的退化幅度均随质子能量提高逐渐降低。电子辐照注量一定时,GaAs/Ge电池电学性能的退化幅度随电子能量增加而增大。1MeV电子和170keV质子的辐照次序对电池的辐照损伤效应没有影响。DLTS分析表明,<200keV质子辐照在GaAs/Ge电池中引入的辐照缺陷主要有Ec-0.31eV和Ec-0.47eV,且随质子能量的增加,缺陷浓度逐渐降低。在辐照损伤效应研究的基础上,针对GaAs/Ge太阳电池,建立了短路电流和开路电压退化的数学/物理模型。
     <200keV质子辐照下,GaInP/GaAs/Ge三结电池的电学性能退化与质子能量密切相关。在一定的辐照注量下,170keV质子辐照造成电池开路电压、短路电流和最大功率的退化幅度最大;与之相比,40、100和130keV质子辐照引起电池电学性能退化幅度相对较小。4MeV和10MeV质子辐照下,电池的电学性能退化幅度随质子能量的增加逐渐减小。在一定的电子注量下,电池电学性能的退化幅度随电子能量提高而增大。采用光学深能级瞬态谱法分析了三结GaInP/GaAs/Ge太阳电池的深能级缺陷。研究结果表明,<200keV质子辐照在GaInP子电池中引入的深能级缺陷主要有Ec-0.26eV、Ev+0.18eV和Ev+0.42eV;在GaAs子电池中产生的深能级缺陷主要有Ec-0.015eV、Ec-0.15eV和Ev+0.33eV。
     从试验和理论分析两方面,研究了<200keV质子通量对GaAs/Ge太阳电池辐照损伤效应的影响。结果表明,质子通量在6×109~1.2×1011cm-2s-1范围内,对GaAs/Ge太阳电池的辐照损伤效应没有影响,为进行空间带电粒子辐照地面等效模拟加速试验提供了依据。
     针对国产GaAs/Ge和GaInP/GaAs/Ge太阳电池,建立了不同能量电子和质子辐照下太阳电池电学性能退化曲线与动力学方程。在此基础上,确定了国产太阳电池不同能量粒子注量转换的相对损伤系数。通过Monte-Carlo方法计算了透过太阳电池防护盖片的空间带电粒子能谱及轨道等效注量,简化了等效注量法的计算过程。
     在低能质子辐照损伤效应研究的基础上,针对国产GaAs/Ge单结太阳电池,确定了<70keV质子和>70keV质子辐照位移损伤剂量转化的相对等效系数,对NRL的位移损伤剂量法进行了改进。将改进的位移损伤剂量法推广应用于GaInP/GaAs/Ge三结太阳电池。采用改进的等效注量法和位移损伤剂量法,预测了表面加装120μm防护盖片的国产GaAs/Ge太阳电池和GaInP/GaAs/Ge太阳电池在地球同步轨道的电学性能退化。两种评价方法的预测结果一致,说明改进后的评价方法具有实际应用的可行性。
The degradation and damage mechanisms caused by irradiation of space charged particles are investigated for the domestic GaAs/Ge and GaInP/GaAs/Ge solar cells, based on equivalent ground simulation experiments. The methods of evaluating performance in orbit for the GaAs/Ge single-junction solar cells are simplified and improved, and are further applied to the GaInP/GaAs/Ge triple-junction solar cells. The performance of the GaAs/Ge and GaInP/GaAs/Ge solar cells in the geostationary orbit is evaluated.
     Experimental results show that under exposure of protons with various energies, the degradation in electric characteristics of the GaAs/Ge single-junction solar cells can be related to the damage in the emitter, the base and the space charge regions, respectively. The 70keV protons primarily lead to the damage in the space charge region and an obvious degradation in the open voltage. The 40keV protons mainly result in the damage in the emitter and a considerable degradation in short circuit current. Under the >100keV protons exposure, the degradation of electric properties gradually decrease with increasing proton energy. Compared at a given fluence of electrons, the electric characteristics of the GaAs/Ge solar cells increase with increasing electron energy. The exposure sequence of 1MeV electrons and 170keV protons does not influence irradiation damage to the GaAs/Ge cells. DLTS analysis shows that the irradiation-induced defects caused by <200keV protons in the GaAs/Ge solar cells are mainly the Ec-0.31eV and Ec-0.47eV, and their concentration decreases with increasing proton energy. On the basis of the irradiation-induced damage effects, two physical-mathematic models on the degradation in electric characteristics of the GaAs/Ge single-junction cells are set up, which are separately responsible for the short circuit current and the open circuit voltage.
     Under <200keV proton exposure, the degradation in electric characteristics of the GaInP/GaAs/Ge triple-junction cells has a close relationship with proton energy. Compared at a given fluence, the 170keV proton exposure leads to the largest degradation magnitude of the open circuit voltage, short circuit current and maximum power. In contrast, the degradation magnitude in the electric characteristics caused by the 40, 100 and 130keV protons is lower. Under the irradiation of protons with 4MeV and 10MeV, the degradation magnitude in electric characteristics decreases with increasing proton energy. At a given fluence, the degradation magnitude in electric characteristics increases with increasing electron energy. ODLTS analysis shows that the <200keV protons can introduce the deep-energy levels of Ec-0.26, Ev+0.18eV and Ev+0.42eV in the GaInP sub-cell, and those of Ec-0.015eV, Ec-0.15eV and Ev+0.33eV in the GaAs sub-cell.
     The effect of <200keV proton flux on the radiation damage of the GaAs/Ge single-junction cells is studied, on both the experimental and theoretical analyses. It is shown that the proton flux ranged from 6×109 to 1.2×1011cm-2s-1 does not have effects on the radiation damage of the GaAs/Ge cells. This can provide a basis of accelerating ground simulation for space charged particle irradiation. Both degradation curves and the dynamic equation for the electric characteristics of the domestic GaInP/GaAs/Ge cells are established through experiments. Also, the relative damage coefficients to convert fluences for particles with different energies are given for the domestic GaAs/Ge and GaInP/GaAs/Ge cells. The equivalent fluences for orbits are calculated in terms of the energy spectra of space charged particles that penetrate through the coverglass. As a result, the calculation for the equivalent fluence method can be simplified.
     On the basis of radiation-induced damage effects caused by protons with lower energies, the relative equivalent coefficients to convert the displacement damage doses for the <70keV protons and >70keV protons are given for the domestic GaAs/Ge cells. Furthermore, the improved displacement damage dose method is applied to evaluating the GaInP/GaAs/Ge triple-junction cells. The degradation behaviors in the geostationary orbit of the domestic GaAs/Ge and GaInP/GaAs/Ge cells with a coverglass plate of 120μm in thickness are predicted, using both the improved equivalent fluence method and displacement damage dose method. The predicting results are in good agreement for the two evaluating methods, illustrating that the improved predicting methods are applicable in practice.
引文
1都亨,叶宗海.中国空间环境研究发展-空间物理前沿进展.气象出版社, 1998:1-15
    2朱光武,李保权.空间环境对航天器的影响及其对策研究.上海航天. 2002,(4):1-16
    3 G. Ambrosi. AMS, a Particle Detector in Space: Results from the Precursor Flight and Status of AMS-02. Nuclear Physics B. 2003, 125: 236-244
    4 R. Walker, C. E. Martin. Cost-effective and Robust Mitigation of Space Debris in Low Earth Orbit. Advances in Space Research. 2004, 34: 1233-1240
    5 Koji Fujimoto, Tadashi Shioya, Katsuhiko Satoh. Degradation of Carbon-Based Materials due to Impact of High-Energy Atomic Oxygen. International Journal of Impact Engineering. 2003, 28: 1-11
    6 J. I. Minow. Development and Implementation of an Empirical Ionosphere Variability Model. Advances in Space Research. 2004, 33: 887-892
    7 D. Bilitza. International Reference Ionosphere 2000. Radiation Science. 2001, 36: 261-275
    8 J. Borg. Extraterrestrial Samples from Low Earth Orbits: Techniques for Their Collection and Analysis. Planetary and Space Science. 2002, 50: 889-894
    9 D. R. Cooke, B. K. Joosten, M. W. Lo, K. M. Ford, R. J. Hansen. Innovations in Mission Architectures for Exploration Beyond Low Earth Orbit. Alta Astronautica. 2003, 53: 387-397
    10 L. H. James, L. C. Eric, H. K. Justin. Meteoroid and Orbital Debris Risk Mitigation in a Low Earth Orbit Satellite Constellation. International Journal of Impact Engineering. 2001, 26: 345-356
    11 A. T. Kearsley, G. A. Graham. Multi-layered Foil Capture of Micrometeoroids and Orbital Debris in Low Earth Orbit. Advances in Space Research. 2004, 34: 939–943
    12都亨,叶宗海.低轨道航天器空间环境手册.国防工业出版社,1996:397-520
    13黄本诚,马有礼.航天器空间环境实验技术.国防工业出版社,2002:35-36
    14陈国珍,林国成.低地球轨道带电粒子辐射环境对航天器的影响.中国空间科学技术.1994,(6):43-48
    15朱光武,李保权.空间环境对航天器的影响及其对策研究(续).上海航天.2002,(5):9-16
    16徐福祥,林华宝,郭亚泽.卫星工程.中国宇航出版社,2004:180-184
    17 H. Y. Tada, J. R. Carter, B. E. Anspaugh and R. G. Downing. Solar Cell Radiation Handbook. Jet Propulsion Laboratory, 1982: 21-24
    18艾尔肯,郭旗,任迪远,余学峰,陆妩,严荣良.一种国产GaAs/Ge太阳电池的总剂量辐照特性.核技术.2003, 26(9):697-699
    19孙旭芳,王荣,刘运宏,郭增良,张新辉.质子辐照与电子辐照对空间GaAs/Ge太阳电池性能影响比较.北京师范大学学报.2006,42(5):489-491
    20 H. J. Zhao, Y. Y. Wu, J. D. Xiao, H. S. He, D. Z. Yang, Y. Z. Sun, Q. Sun, W. Lv, Z. B. Xiao, C. Y. Huang. A Study on the Electric Properties of Single-Junction GaAs Solar Cells Under the Combined Radiation of Low-Energy Protons and Electrons, Nuclear Instruments and Methods in Physics Research B. 2008, 266: 4055-4057
    21 R. Wang, Z. L. Guo, G. P. Wang. Low-Energy Proton Irradiation Effects on GaAs/Ge Solar Cells. Solar Energy Materials and Solar Cells, 2006, 90: 1052-1057
    22安其霖,曹国琛,李国欣,刘宝元,张忠奎.太阳电池原理与工艺.上海科学技术出版社,1984:11-12
    23刘恩科.光电池及其应用.科学出版社,1989:36-37
    24易新建.太阳电池原理与设计.华中理工大学出版社,1989:11-13
    25刘恩科.光电池及其应用.科学出版社,1989:100-102
    26安其霖,曹国琛,李国欣,刘宝元,张忠奎.太阳电池原理与工艺.上海科学技术出版社, 1984:54-58
    27孟庆巨,刘海波,孟庆辉.半导体器件物理.科学出版社.2005:213-218
    28胡晨明,R. M.怀特.太阳电池.李采华译.北京大学出版社.1990:39-42
    29易新建.太阳电池原理与设计.华中理工大学出版社,1989:63-64
    30 B. E. Anspaugh. GaAs Solar Cell Radiation Handbook. Jet Propulsion Laboratory. 1996: 1.1-5.31
    31张忠卫,陆剑峰,池卫英,王亮兴,陈鸣波.砷化镓太阳电池技术的进展与前景.上海航天.2003,3:34-38
    32陈文浚.III-V族化合物半导体整体多结级连太阳电池-光伏技术的新突破.电源技术.2007,131(2):97-102
    33何杰,夏建白.半导体科学与技术.科学出版社,2007:275-278
    34 J. A. Van Allen, G. H. Ludwig, C. E. Mcllwain. Observation of High Intensity Radiation by Satellites. Jet Propulsion, 1958, 28: 588-592
    35 E. J. Daly. The Radiation Belts. Radiation Physic and Chemic. 1994, 43(12): 1-17
    36中国科学院空间科学与应用研究中心.宇航空间环境手册.中国科学技术出版社,2000:138-139
    37柯受全.卫星环境工程和模拟试验(下).宇航出版社, 1996:283-295
    38 Y. Tonomura. Development of Both-Side Junction Silicon Space Solar Cells. Solar Energy Materials and Solar Cells. 2001, 66: 551-558
    39 S. F. Navid. Solar Array Trades Between Very High-Efficiency Multi-Junction and Si Space Solar Cell. Proceedings of the 28th IEEE Photovoltaic Specialists Conference. USA: Alaska, 2000: 1083-1086
    40 B. E. Anspaugh. Proton and Electron Damage Coefficients for GaAs/Ge Solar Cell. Proceedings of the 22nd IEEE Photovoltaic Spacialist Conference. Las Vegas, 1991: 1593-1598
    41 S. R. Messenger, G. P. Summers, E. A. Burke, R. J. Waltersand M. A. Xapsos. Modelling Solar Cell Degradation in Space: A Comparison of the NRL Displacement Damage Dose and the JPL Equivalent Fluence Approaches. Progress in Photovoltaics: Research and Applications. 2001, 9: 105
    42 R. Wang, Z. L. Guo, X. H. Zang, Z. X. Zhai. 5-20MeV Proton Irradiation Effects on GaAs/Ge Solar Cell for Space Use. Solar Energy Materials and Solar Cells. 2003, 77: 351-355
    43 R. Wang, Y. H. Liu and X. F. Sun. Effects of 0.28-2.80MeV Proton Irradiation on GaInP/GaAs/Ge Triple-Junction Solar Cells for Space Use. Nuclear Instruments and Methods in Physics Research B. 2008, 266: 745-749
    44 C. Baur, M. Meusel, F. Dimroth, A.W. Bett, M. Nell, G. Strobl, S. Taylor and C. Signorini. Analysis of the Radiation Hardness of Triple- and Quintuple- Junction Space Solar Cells. Photovoltaic Specialists Conference, 2005. Conference Record of the 31th IEEE, 2005: 548-551
    45 Mitsuru Imaizumi, Taishi Sumita, Shirou Kawakita, Takeshi Ohshima, Hisayoshi Ito and Saburo Kuwajima. Analysis of Flight Demonstration Results of an InGaP/GaAs Dual-Junction Tandem Solar Cell. Photovoltaic Specialists Conference, 2005. Conference Record of the 31th IEEE, 2005: 563-566
    46 J. M.Hu, Y. Y. Wu, J. D. Xiao, D. Z Yang, S. Y. He. Degradation Behaviors of Electrical Properties of GaInP/GaAs/Ge Solar Cells Under <200keV Proton Irradiation. Solar Energy Materials and Solar Cells, 2008, 92: 1652-1656
    47 J. Haapamaa, M. Pessa, G. La Roche. Radiation Resistance of MBE-Grown GaInP/GaAs Cascade Solar Cells Flown Onboard Equator-S satellite. Solar Energy Materials and Solar Cells. 2001, 66: 573-578
    48 N. H. Karam, R. R. King, M .Haddad, et al. Recent Developments in High-efficiency Ga0.5In0.5 P/GaAs/Ge Dual- and Triple-Junction Solar Cells: Steps to Next-generation PV Cells. Solar Energy Materials and Solar Cells. 2001, 66: 453-466
    49 R. J. Walters and G. P. Summers. Analysis and Modeling of the Radiation Response of Multijunction Space Solar Cells. Proceedings of the 28th IEEE Photovoltaic Specialist Conference. 2000: 1092-1097
    50 S. R. Messenger, E. A. Burke, R. J. Walters, J. H. Warner and G. P. Summers. Using SRIM to Calculate the Relative Damage Coefficients for Solar Cells. Progress in Photovoltaics: Research and Applications. 2005, 13: 119-122
    51 P. R. Sharps, C. H. Thang, P. A. Martin and H. Q. Hou. Proton and Electron Radiation Analysis of GaInP2/GaAs/Ge Solar Cells. Photovoltaic Specialist Conference, 2000. Proceedings of the 28th IEEE. 2000: 1098-1101
    52 P. R. Sharps, D. J. Aiken, m. A. stan, C. H. Thang and N. Fatemi. Proton and Electron Radiation Data and Analysis of GaInP2/GaAs/Ge Solar Cells. Progress in Photovoltaics: Research and Applications. 2002, 10: 383-390
    53 L. X. Zhang, S. Y. He, D. Z. Yang and Q. Wei. Synergistic Effect of Protons and Electrons on Radiation Damage of Methyl Silicone Rubber. Space Technology Proceedings, Protection of Materials and Structures from the Space Environment. Netherlands, Springer. 2006: 35-41
    54 H. Liu, S. Y. He, H. B. Geng, D. Z. Yang and V. V. Abraimov. Investigation of Synergistic Effects of Proton and Electron Radiation on the Dyeing of Optical Quartz Glass. Technology Proceedings, Protection of Materials and Structures from the Space Environment. Netherlands, Springer. 2006: 107-113
    55 D. Pons, A. Mircea, A. Mitonneau. Electron Traps in Irradiated GaAs: Comparison with Native Defects. Defects and Radiation Effects in Semiconductors. Inst. Phys. Conf. Ser. No. 46: Chapter 5. 1978: 352-359
    56 G. Gulillot, S.Loualiche, A.Nouailhat. Study of Defect States by Transient Capacitance Methods in Proton Irradiated GaAs at Low Temperature. Defects and Radiation Effects in Semiconductors. Inst. Phys. Conf. Ser. No.59: Chapter 6. 1981: 323- 328
    57 J. C. Bougoin, N. de Angelis. Radiation-Induced Defects in Solar Cell Materials. Solar Energy Materials and Solar Cells. 2001, 66: 467-477
    58 J. C. Bougoin, K. Khirouni, M. Stellmacher. The Behavior of As Precipitatesin Low-Temperature-Grown GaAs. Applied Physics Letters. 1998, 72: 442-445
    59 J. C. Bougoin, H. J. von Bardeleben and D.Stievenard. Native Defects in Gallium Arsenide. Journal of Applied Physics. 1988, 64: 65-67
    60 S. S. Li, T. T. Chiu and D. W. Schoenfeld. Defect Characteristics and Thermal Annealing Study of 200keV Proton Irradiated n-GaAs LPE Layers. Solid-State Electron. 1983, 26(9): 835-840
    61 S. S. Li and R. Y. Loo. Deep-level Defects and Numerical Simulation of Radiation Damage in GaAs Solar Cells. Solar Cells. 1991, 31: 349-377
    62赵慧杰,何世禹,孙彦铮,孙强,肖志斌,吕伟,黄才勇,肖景东,吴宜勇.100keV质子辐照对空间GaAsGe太阳电池光电效应的影响.物理学报.2009,58(1):404-410
    63 Hiroki Sugimoto, Michio Tajima, Shinjl Hase and Mitsuru Imaizumi. Luminescence Analysis of Radiation Effects in Multijunction Solar Cells For Space. Photovoltaic Specialists Conference, 2005. Conference Record of the 31th IEEE. 2005: 830-833
    64 M. Adachi, A. Khan, K. Ando, N. J. Ekins-Daukes, H. S. Lee and M. Yamaguchi. Electrical and Optical Properties of Radiation-Induced Dominant Recombination Center in InxGa1-xP Space Solar Cells. Physical Review B. 2005, 72: 155320
    65 Aurangzeb Khan, A. Freundlich, J. Gou, Ravi Lam, M. Alam, A. Gapud, A. Alemu, L. Williams, M. Imazumi and M. Yamaguchi. Radiation Hardness Analysis of InAsxP1-x/InP Multijunction Well Solar Cells Structures for Space Applications. Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on 7-12 May 2006, 2: 1895-1898
    66刘恩科.光电池及其应用.科学出版社,1989:108-111
    67安其霖,曹国琛,李国欣,刘宝元,张忠奎.太阳电池原理与工艺.上海科学技术出版社,1984:91-94
    68 Sabine Kolodinski, Jürgen H. Werner, Thomas Wittchen and Hans J. Queisser. Quantum Efficiencies Exceeding Unity Due to Impact Ionization in Silicon Solar Cells. Applied Physics Letters. 1993, 63: 2405-2407
    69 N.de Angelis, J. C. Bougoin, T.Takamoto, A. Khan, M. Yamaguchi. Degradation by Electron Irradiation. Comparison between Si, GaAs and GaInP Cells. Solar Energy Materials and Solar Cells. 2001, 66: 495-500
    70 M.Imaizumi, M.Yamaguchi, S.J. Taylor, S.Matsuda, O. Kawasaki, T. Hisamatsu. Mechanism for the Anomalous Degradation of Si Solar Cells Induced by High-Energy Proton Irradiation. Solar Energy Materials and SolarCells. 1998, 50: 339-344
    71隋兆文.Ga(1-x)AlxAs/GaAs异质面太阳电池的电子和质子辐照以及退火研究.太阳能学报,1984,5(1):66-70
    72 D. C. Mavin, J.C. Nocerino. Evaluation of Multi-Junction Solar Cell Performance in Radiation Environments. Photovoltaic Specialists Conference, 2000. Conference Record of the 28th IEEE. Anchorage, AK, 2000: 1102-1105
    73 D. C. Mavin. Assessment of Multi-Junction Solar Cell Performance in Radiation Environments. Aerospace report TOR-2000(1210)-1, EI Segundo, CA 2000
    74 G. P. Summers, R. J. Walters. Damage Correlations in Semiconductors Exposed to Gamma Electron and Proton Radiations. IEEE Transactions on Nuclear Science. 1993, 40(6): 1372-1378
    75 S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, J. R. Lorentzen, T. L. Morton, S. J. Taylor. Quantifying Low Energy Proton Damage in Multijunction Solar Cells. European Space Agency, Special Publication ESA SP. 2005, 589: 465-470
    76 R. J. Walters, J. H. Wamer and G. P. Summers. Radiation Response Mechanisms in Multijunction III-V Space Solar Cells. Photovoltaic Specialists Conference 2005, Conference Record of the 13th IEEE. 2005: 542-547
    77 T. Sumita, M. Imaizumi, S. Matsuda, T. Ohshima, A. Ohi, T. Kamiya. Analysis of end-of-life Performance for Proton-Irradiated Triple-Junction Space Solar Cell. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion WCPEC. 2003, 1: 689-692
    78 M. Yamaguchi, N. J. Ekins-Daukes, H. S. Lee , T. Sumita, M. Imaizumi, T. Takamoto, T. Agui, M. Kaneiwa, K. Kamimura, T. Ohshima and H. Itoh. Analysis for Radiation-Resistance of InGaP and GaAs Sub-cells for InGaP/GaAs/Ge 3-Junction Solar Cells. Conference Record of the 4th IEEE World Conference on Photovoltaic Energy Conversion. 2006, 2: 1789-1792
    79М.М.Михайлов.Прогнозированиеоптическойдеградациитерморегули-рующихпокрытийкосмическихаппаратов.Наука.Сибирскаяиздательскаяфирма. 1999, 5: 5-72
    80Г.Раушенбах.Справодникпопроектированиюсолнечныхбатарей.М.:Энеркоатомиздат. 1983: 360
    81В.Ф.Присняков,Квопросуодеградациисолнечныхбатарейнакосмиче-скихаппаратах,Космичнанаукаитехнология, 1996, 2(1-2): 73-81
    82ХуЧженьюй,В.В.Абраимов,ХэШиЮй,ЯнДеЧжуан,Б.М.Рассамакин.Деградацияпараметровсолнечныхбатарейподвоздействиемфакторовкосмическогопространства.Космичнанаукаитехнология. 2003, 9(1): 81-91
    83易新建.太阳电池原理与设计.华中理工大学出版社,1989:208-216
    84杨德仁.太阳电池材料.化学工业出版社,2007:63-65
    85 ASTM Standard E 2236-05a, Standard Test Methods for Measurement of Electrical Performance and Spectral Response of Nonconcentrator Multijunction Photovoltaic Cells and Modules: http://www.astm.org
    86 J. M. Hu, Y. Y. Wu, D. Z. Yang, S. Y. He. A Study on the Effects of the Proton Flux on the Irradiated Degradation of Gaas/Ge Solar Cells. Nuclear Instruments and Methods in Physics Research B. 2008, 266: 3577-3582
    87曹建中.半导体材料的辐射效应.科学出版社,1993:300-305
    88王同权,沈永平,张若棋,王尚武,张树发.空间辐射效应的蒙特卡罗模拟.强激光与粒子束.2002,(6):339-342
    89 J. F. Ziegler. SRIM-2003. Nuclear Instruments and Methods in Physics Research B. 2004, 219-220: 1027-1036
    90 CASINO 2003 MonteCarlo Simulation Ver.2.42 http://www.gel.usherb.ca/casino
    91 Chen Chao, Wang Ziqi, Yang Qianzhi. International PVSEC-II, Aug. Beijing. 1986: 596-599
    92叶良修.半导体物理学(上册).第二版.高等教育出版社.2007:312-315
    93 D. V. Lang. Deep-Level-Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors. Journal of Applied Physics. 1974, 45(7): 3023-3032
    94 D. V. Lang. Fast Capacitance Transient Apparatus: Application to ZnO and O Centers in GaP p-n Junctions. Journal of Applied Physics. 1974, 45(7): 3014-3022
    95 D. S. Day, M. Y. Tsai, B. G. Streetman and D. V. Lang. Deep-Level-Transient Spectroscopy: System Effects and Data Analysis. Journal of Applied Physics. 1979, 58(8): 5093-5098
    96陈治明,王建农.半导体器件的材料物理学基础.科学出版社.1999:313-324
    97曹建中.半导体材料的辐射效应.科学出版社,1993:39-44
    98虞丽生.半导体异质结物理(第二版).科学出版社.2006:34-39
    99 L. C. Kilmer. Radiation Degradation Modeling of High Efficiency GaAsGe Solar Cells. Photovoltaic Energy Conversion, 1994, Conference Record of the 24th IEEE. 1994: 2157-2160
    100 R. Loo, L.Goldhammer, B. Anspaugh, R. C. Knechtli and G. S. Kamath. Electron and Proton Degradation in AlGaAs-GaAs Solar Cells. Photovoltaic Specialists Conference, 13th, June 5-8, 1978, Washington. IEEE 13th PVSC. 1978: 562-565
    101刘恩科.光电池及其应用.科学出版社,1989:42-46
    102刘恩科.光电池及其应用.科学出版社,1989:94-95
    103傅英,陆卫.半导体量子器件物理.科学出版社.2005:116-118
    104施敏.半导体器件物理与工艺.赵鹤鸣,钱敏,黄秋萍译.苏州大学出版社.2002:91-98
    105 H. Amekura, N. Kishimoto and T. Saito. Photoconductivity evolution due to carrier trapping by defects in 17 MeV proton irradiated silicon. Journal of Applied Physics. 1995, 77: 4984-4992
    106曹建中.半导体材料的辐射效应.科学出版社,1993:157-159
    107陈盘训.半导体器件和集成电路的辐射效应.国防工业出版社,2005:27-48
    108曹建中.半导体材料的辐射效应.科学出版社,1993:194-195
    109 R. J. Chaffin.微波半导体器件:原理和辐射效应.阎光彬,胡林浦译.原子能出版社,1980:105-131
    110 A. F.Behle and R. Zuleeg, Fast Neutron Tolerance of GaAs JFET’s Operating in the Hot Electron Range. Electron Devices, IEEE Transactions, Aug 1972 , 19(8): 993– 995
    111 C. Claeys and E. Simoen.先进半导体材料及器件的辐射效应.刘忠立译.国防工业出版社,2008:143-146
    112 Masafumi Yamaguchi and S. J. Taylor. Analysis of Damage to Silicon Solar Cells by High Fluence Electron Irradiation. Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE. 13-17 May 1996: 167-170
    113 H. J. Stein and R. Gereth. Introduction Rates of Electrically Active Defects in n-and p-type Silicon by Electron and Neutron Irradiation. Journal of Applied Physics. 1968, 39: 2890-2904
    114 N. Dharmarasu, M. Yamaguchi and A. Khan, et at. High-Radiation-Resistant InGaP/InGaAs/P and InGaAs Solar Cells for Multijuction Solar Cells, Applied Physics Letters. 2001, 79(15): 2399-2401
    115 A. Kaminski, J.J. Marchand, A. Laugier. I-V Methods to Extract Junction Parameters with Special Emphasis on Low Series Resistance. Solid-State Electronics. 1999 (43) : 741-745
    116 A. Kaminski, J.J Marchand, A. Fave and A. Laugier, New Methods of Parameters Extraction from Dark I-V Curve. Photovoltaic Specialists Conference 1997, Conference Record of the 26th IEEE, 1997: 203-206
    117刘恩科.光电池及其应用.中国科学出版社.1989,8:100-101
    118 J. C. Bourgoin, P. M. Mooney, and F. Poulin, in Defects and Radiation Effects in Semiconductors, 1980, Edited by R. R. Hasiguti (Institute of Physics, London). 1980: 33 -43
    119 F. Poulin and J. C. Bourgoin, Characteristics of the Electron Traps Produced by Electron Irradiation in n-type Germanium. Phys. Rev. B. 1982, 26: 6788 - 6794
    120 J. M. Hu, Y. Y. Wu, Z. Z. Zhang, D. Z. Yang and S. Y. He. A Study on the Degradation of GaAs/Ge Solar Cells Irradiated by < 200 keV Protons. Nuclear Instruments and Methods in Physics Research B. 2008, 266: 267-270
    121黄本诚.空间环境工程学.宇航出版社,1993:147-150
    122中国科学院空间科学与应用研究中心.宇航空间环境手册.中国科学技术出版社,2000:208-213
    123 J. I. Vette. The NASA/National Space Science Data Center Trapped Radiation Environment Model Program (1964~1991). National Space Science Data Center, NSSDC/WDC-A-R&S, 91-29, Greenbelt, MD, Nov. 1991.
    124 J. I. Vette. The AE-8 Trapped Electron Model Environment. National Space Science Data Center, NSSDC/WDC-A-R&S, 91-24, NASA Goddard Space Flight Center, Nov. 1991.
    125 D. M. Sawyer and J. I. Vette. AP-8 Trapped Proton Model Environment for Solar Maximum and Solar Minimum. National Space Science Data Center, NSSDC/ WDC-A-R&S, 76-06, Greenbelt, MD, Dec. 1976.
    126 http://www.spenvis.oma.be/spenvis/models.html
    127杨林华,范宁.太阳电池紫外加速寿命试验技术研究.光学技术.2007,33(1):89-92
    128魏强,刘海,何世禹,杨德庄.空间带电粒子辐照效应的地面加速试验研究.航天返回与遥感.2005,26(2):46-50
    129曹建中.半导体材料的辐射效应.科学出版社,1993:28-29
    130曹建中.半导体材料的辐射效应.科学出版社,1993:149-150
    131刘恩科,朱秉升,罗晋生等.半导体物理学.第四版.国防工业出版社,1997:367
    132 G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons Inc., New York, 1979
    133王旭东,何世禹,杨德庄.电子通量对Zn/KSiO3热控涂层光学性能的影响.强激光和粒子束.2002,14(3):476-480
    134王旭东,何世禹,杨德庄.电子辐照对Zn/KSiO3型热控涂层光学性能的影响.强激光和粒子束.2001,13(4):431-435
    135 S. R. Messenger, E. A.Burke, T. L. Morton, G. P. Summers, R. J. Walters and J. H. Warner. Modeling Low Energy Proton Radiation Effects on Solar Cells. 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003. Osaka, Japan. 2003: 716-719
    136 S. R. Messenger, E. A.Burke, G. P. Summers and R. J. Walters. Application of Displacement Damage Dose Analysis to Low Energy Protons on Silicon Devices. IEEE Transactions on Nuclear Science. 2002, 49(6): 2690-2694
    137 B. E. Anspaugh. Proton and Electron Damage Coefficients for GaAs/Ge Solar Cell. Photovoltaic Specialists Conference 1991, Conference Record of the 22nd IEEE. Las Vegas. 1991: 1593-1598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700