强流脉冲离子束辐照材料应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强流脉冲离子束(HIPIB)与材料交互作用的基础研究具有重要的科学意义,同时强流脉冲离子束在表面工程领域有着广阔的应用前景。本论文对HIPIB辐照材料的热学效应进行了模拟,对HIPIB辐照工业纯铁和45~#钢的热力学效应进行了实验研究,获得了HIPIB表面改性的机理及控制规律,为HIPIB的工程应用提供了依据。
     系统论述了HIPIB热力学效应模拟和辐照机理等研究方向的进展。采用SRIM程序模拟了C~+、H~+离子对铁靶的注入作用。运用有限元工程模拟软件ABAQUS,采用体加载、单元死活算法和能量沉积耦合等方式,模拟了HIPIB辐照GH3030、45~#钢和TC4钛合金的热效应。模拟结果表明:辐照离子能量相同时,H~+离子的射程大于C~+离子;离子的注入在靶材亚表层产生了大量缺陷(vacancies);50ns脉冲时间内,45~#钢靶材表面的升温速率可达8.8×10~(10)℃/s;辐照结束后,45~#钢靶材表面液相冷却速率达可1.4×10~(10)℃/s。
     利用TIA-450型HIPIB设备对工业纯铁和45~#钢进行了表面辐照实验,典型实验参数为:束流组成70%C~++30%H~+,脉冲宽度50ns,二极管加速电压400kV,束流密度170-200A/cm2。通过对辐照次数分别为1、5、10、20的系列实验,系统地研究了随脉冲次数增加,靶材表面形貌及组织结构的演变过程及规律。
     采用扫描电镜(SEM)、显微硬度仪、X射线衍射仪(XRD)和透射电镜(TEM)等方法对靶材表面形貌、相结构、显微硬度及微观组织进行了检测,研究结果表明: HIPIB辐照使靶材表面发生了快速熔化及凝固,辐照表面形成了熔坑;后续辐照对先前产生的熔坑有模糊化甚至消除的趋势;亚表层局部区域的爆破式喷发是形成熔坑的主要原因。
     HIPIB辐照使工业纯铁靶材表面硬度呈提高趋势;随着辐照次数的增加,硬度提高的趋势逐渐减缓;HIPIB辐照对工业纯铁靶材的作用以塑变硬化为主;1次辐照后,淬火45~#钢靶材表面显微硬度提高;随着辐照次数的增加,硬度呈先下降后稳定的趋势;淬火45~#钢靶材表层在多次辐照情况下发生了回复及再结晶;在爆破式喷发引起的强应力波作用下,工业纯铁和45~#钢靶材表面熔坑区的显微硬度水平高于无熔坑区。
     HIPIB辐照使工业纯铁靶材中的位错密度增大;随着辐照次数的增加,位错线发展成位错网、位错墙、位错胞以及亚晶界;多次辐照后,工业纯铁靶材局部区域的位错密度下降;多次辐照后,淬火45~#钢靶材中的位错密度比辐照前有所下降; HIPIB辐照使工业纯铁和45~#钢靶材表层出现了择优取向趋势,HIPIB辐照产生的应力波效应和表层液相的定向凝固可能是其成因;反复的应力波作用使组织呈细化趋势。
     HIPIB辐照的瞬间熔化再凝固效应使工业纯铁和45~#钢表面部分区域形成了纳米晶和非晶。
     本实验条件下,10-20次辐照可使工业纯铁和45~#钢的表面形貌均匀化,组织细化及非晶化;在不显著降低强度的前提下,HIPIB辐照可对淬火45~#钢实现表面组织的细化及非晶化。
It is of scientific importance to study the fundamental mechanisms of interaction between materials and the high-intensity pulsed ion beam (HIPIB), which is also an efficient tool for surface engineering. In the present work, the thermo-effects of HIPIB irradiation were simulated, the mechanisms of HIPIB irradiation were researched experimentally, some mechanisms are concluded and a few process plans are given. The results are as follow:
     The research results of numerical and experimental studies on the thermodynamical effects of HIPIB were reviewed. The effects of C~+ and H~+ implantation into iron target were simulated by SRIM code. The thermo-effects of HIPIB irradiation on GH3030, 45~# steel and TC4 were simulated. The results indicate that: The range of H~+ ion is longer than that of C~+ ion with the same energy; lots of vacancies would be formed in the subsurface areas of the targets as a result of the ion implantation; the heating rate of the 45~# target surface may reach 8.8×10~(10)℃/s during irradiation; the cooling rate of the liquid phase of the 45~# target surface may reach 1.4×10~(10)℃/s after irradiation.
     Ingot iron and 45~# steel sample targets were irradiated by HIPIB generated from TIA-450 accelerator, the beam parameters were: 70%C~++30% H~+, pulse width of 50-80ns, accelerating voltage of 200-400kV, current density of 170-200A/cm~2; SEM, XRD, TEM, etc. were applied to investigate the sample targets, the experimental results are as follow:
     Fast melting and resolidification occurred on the surfaces of the targets and craters were formed; craters could be blurred or diminished by successive HIPIB shots; the explosive eruption in local subsurface areas is the main cause of craters.
     The surface microhardness of ingot iron targets was improved by HIPIB irradiation; the hardening rate would be slowed; the ingot iron targets were strengthened by HIPIB; the surface microhardness of 45~# steel targets was improved after 1 shot and then decreased and stabilized as the shot number increases; the prequenched 45~# steel targets were annealed after multi-shots of HIPIB; the surface microhardness of the zones with craters is higher than those without crater due to the stress wave field generated by explosive eruptions.
     The density of dislocations in ingot iron targets were increased; dislocation nets, dislocation walls, dislocation cells and subgrains were formed as the shot number increased; density of dislocations in local areas of ingot iron targets were decreased after multi-shots of HIPIB; the density of dislocations in prequenched 45~# steel targets were relatively lower than the original state; preferred orientations were formed in ingot iron and 45~# steel targets irradiated by HIPIB, which might be caused by stress waves and directional solidification; the structures of the targets were refined by repeated stress waves.
     Nano-crystalline and amorphous structure were formed in local areas on surfaces of both ingot iron and 45~# steel targets by fast melting and resolidification.
     Under present experimental condition, the surface morphology of the samples could be homogenized and the structure could be refined or changed into amorphous state after 10-20 shots; it is possible to refine the surface structure of 45~# steel samples without decreasing the strength significantly.
引文
[1] D. J. Johnson, G. W. Kusawa, A. V. Farnsworth, et al. Production of 0.5-TW proton pulses with a spherical focusing magnetically insulated diode. Physical Review Letters, 1979, 42(9): 610-613
    [2] J. P. Van Devender, D. L. Cook. Inertial confinement fusion with light ion beams. Science, 1986, 232: 831-836
    [3]王淦昌,袁之尚.惯性约束核聚变.合肥:安徽教育出版社. 1996年. 12
    [4] H. A. Davis, G. E. Remnev, R. W. Stinnett, et al. Intense ion beam Treatment of Materials. Materials Research Society Bulletin, 1996, 21: 58-62
    [5] R. T. Hodgson, J. E. E. Baglin, R. Pal, et al. Ion beam annealing of semiconductors. Applied Physics Letters, 1980, 37(2): 187-189
    [6] A. D. Pogrebnjak, G. E. Remnev, I. B. Kurakin, et al. Structural physical and chemical changes induced in metals and alloys exposed to high power ion beams. Nuclear Instrument and Methods B, 1989, 36: 286-305
    [7]张罡,毕鉴智,李玉海等.强流脉冲离子束金属材料表面强化技术在中国的研究进展.沈阳理工大学学报, 2005, 24 (1): 1-5
    [8] G. E. Remnev, V. A. Shulov. Application of high-power ion beams for technology. Laser and Particle beams, 1993, 11: 707-731
    [9] K. Yatsui, X. D. Kang, T. Sonegawa, et al. Application of intense pulsed ion beam to materials science. Physics Plasmas, 1994, 1: 1730-1737
    [10] D. J. Rej, H. A. Davis, J. C. Olson, et al. Materials processing with intense pulsed ion beams. Journal of Vacuum Science and Technology, 1997, A15: 1089-1097
    [11] A. J. Perry, J. N. Matossian. An overview of some advanced surface technology in Russia. Metallurgical and Material Transaction, 1998, A29: 593-610
    [12] R. M. Gilgenbach. Science and applications of energy beam ablation. IEEE Transaction on Plasma Science, 1999, 27: 150-158
    [13] D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, et al. Physical foundations for surface treatment of materials with low energy, high current electron beams. Surface and Coatings Technology, 2000, 125: 49-56
    [14] Kiyoshi Yatsui, Weihua Jiang, Hisayuki Suematsu, et al. Pulsed power technology and its applications at extreme energy-density research institute, Nagaoka. Japanese Journal of Applied Physics, 2001, 40: 921-929
    [15] R. Fastow, Y. Maron, J. Mayer. Pulsed ion-beam melting of silicon. Physical Review, 1985, B31: 921-929
    [16] A. D. Korotaev, S. V. Ovchinnikov, Yu. I. Pochivalov, et al. Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams. Surface and Coatings Technology, 1998, 105: 84-90
    [17]张健,张罡,毕鉴智等.强流脉冲碳离子束强化T5K10刀具机理研究.腐蚀科学与防护技术, 2005, 17(3): 165-168
    [18] B. X. Han, S. Yan, X. Y. Le, et al. The phase and microstructure changes in 45~# steel irradiated by intense pulsed ion beams. Surface and Coatings Technology, 2000, 128-129: 387-393
    [19] X. P. Zhu, M. K. Lei, Z. H. Dong, et al. Crater formation on the surface of titanium irradiated by a high-intensity pulsed ion beam. Surface and Coatings Technology, 2003, 173: 105-110
    [20]林义民,徐洮,张洪涛.强脉冲离子束辐照对Ni3Al合金表面的改性.中国有色金属学报, 2003, 13(1): 205-210
    [21] A. D. Korotaev, A. N. Tyumentsev, Yu. P. Pinzhin, et al. Features of the morphology, defect substructure, and phase composition of metal and alloy surfaces upon high-power ion beam irradiation. Surface & Coatings Technology, 2004, 185: 38-49
    [22] S. Yan, X. Y. Le, W. J. Zhao, et al. A possible thermodynamic mechanism of craters formation on metal surfaces caused by intense pulsed ion beams. Surface & Coatings Technology, 2005, 193: 69-74
    [23] Z. H. Dong, Z. Zhang, C. Liu, et al. Droplets from the metal surfaces irradiated bya high-intensity pulsed ion beam. Applied Surface Science, 2006, 253: 2557-2564
    [24] V. A. Shulov, A. S. Novikov, A. G. Paikin, et al. Crater formation on the surface of refractory alloys during high-power ion-beam processing. Surface & Coatings Technology, 2007, 201: 8654-8658
    [25] A. D. Pogrebnjak, V. T. Shablya, N. V. Sviridenko, et al. Study of deformation states in metals exposed to intense-pulsed-ion beams (IPIB). Surface and Coatings Technology, 1999, 111: 46-50
    [26]颜莎,乐小云,赵渭江等.强脉冲离子束在金属中引起的应力波效应.核技术, 2003, 26(3): 217-220
    [27] A. N. Valyaev, V. S. Ladysev, D. R. Mendygaliev, et al. Defects inα-Fe induced by intense-pulsed ion beam (IPIB). Nuclear Instruments and Methods in Physics Research B, 2000, 171: 481-486
    [28] B. X. Han, H. T. Zhang, W. J. Zhao, et al. A Study on microstructure and service property of Ni3Al base alloy irradiated by intense pulsed ion beams. Surface and Coatings Technology, 2002, 158-159: 482-487
    [29] Xiaoyun Le, Sha Yan, Zhijian Liu, et al. Detection of shocks generated by intense pulsed ion beam irradiation. Surface & Coatings Technology, 2007, 201: 4991-4994
    [30] Z. H. Dong, C. Liu, X. G. Han, et al. Induced stress wave on the materials surface irradiated by high-intensity pulsed ion beam. Surface & Coatings Technology, 2007, 201: 5054-5058
    [31]梅显秀,马腾才,王秀敏等.强流脉冲离子束辐照W6Mo5Cr4V2高速钢表面改性研究.金属学报, 2003, 39(9): 926-931
    [32] Hongtao Zhang, Tianmin Wang, Baoxi Han, et al. Surface modification of Ni3Al-based alloy IC6 with intense pulsed ion beams. Vacuum, 2003, 68: 329-333
    [33] I. B. Kurakin, A. E. Ligachov, J. E. Remnev, et al. Wear resistance of ion-implanted metallic materials. Surface and Coatings Technology, 1992, 51: 180-185
    [34] X. D. Peng, A. Kharlov, V. Bystritski, et al. Characteristics of material surfacesmodified using plasma-enhanced ion beams. Material Science and Engineering, 1998, A251: 142-149
    [35]王玉辉,肖福仁,廖波等. W6Mo5Cr4V2钢表面强流脉冲离子束辐照研究.材料热处理学报, 2007, 28(6): 143-147
    [36]孙文飞,梅显秀,李晓娜等.强流脉冲离子束辐照对DZ4合金性能的影响.强激光与粒子束, 2006, 18(12): 2082-2086
    [37] A. D. Pogrebnjak, A. G. Lebed, Yu. F. Ivanov. Modification of single crystal stainless steel structure(Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum, 2001, 63: 483-486
    [38] Hongtao Zhang, Tianmin Wang, Cong Wang, et al. Effect of intense pulsed ion beams irradiation on the oxidation behavior ofγ’-based superalloy. Nuclear Instruments and Methods in Physics Research B, 2002, 197:83-93
    [39]李玉海,肖福仁,王玉辉等.强流脉冲离子束辐照对M2高速钢的表面改性.材料研究学报, 2005, 19(6): 613-618
    [40] X. P. Zhu, M. K. Lei, T. C. Ma. Surface morphology of titanium irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2003, 211: 69-79
    [41]陈卓君,张祖立,陈彬等.强流脉冲离子束对45钢表面改性的研究.沈阳建筑大学学报, 2007, 23(2): 324-327
    [42] Mei Xian-xiu, Hao Sheng-zhi, Ma Teng-cai, et al. Microstructure and wear resistance of high-speed steel treated with intense pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2005, 239: 152-158
    [43] X. X. Mei, W. F. Sun, S. Z. Hao, et al. Surface modification of high-speed steel by intense pulsed ion beam irradiation. Surface & Coatings Technology, 2007, 201: 5072-5076
    [44] M. K. Lei, Z. H. Dong, Z. Zhang, et al. Wear and corrosion resistance of Ti6Al4V alloy irradiated by high-intensity pulsed ion beam. Surface & Coatings Technology, 2007, 201: 5613-5616
    [45] P. Li, X. G. Han, J. P. Xin, et al. Wear and corrosion resistance of AZ31magnesium alloy irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2008, 266: 3945-3952
    [46] R. Fastow, J. W. Mayer. High-energy-density pulsed ion-beam irradiation of Co/Si, Pt/Si, and Au/Si. Journal of Applied Physics, 1987, 61: 175-181
    [47] Y. Nakagawa, T. Ariyoshi, H. Hanjo, et al. Modification of solid surface by intense pulsed light-ion and metal-ion beams. Nuclear Instruments and Methods in Physics Research B, 1989, B39: 603-606
    [48] A. D. Pogrebnjak, G. E. Remnev, S. V. Plotnikov, et al. High-power ion-beam-induced melting and mixing in deposited structures. Material Science and Engineering, 1989, A115: 175-179
    [49]雷明凯,刘臣,董志宏等.强流脉冲离子束辐照涡轮叶片表面的清洗加工.中国机械工程, 2007, 18(5): 604-606
    [50]刘永兴,王承遇,马腾才等.用强流脉冲离子束(HIPIB)方法在玻璃表面制备ITO膜.硅酸盐通报, 2001, 2: 11-16
    [51]梅显秀,徐军,马腾才.利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究.物理学报, 2002, 51(8): 1875-1880
    [52]梅显秀,刘振民,马腾才.基片温度对强流脉冲离子束烧蚀等离子体沉积类金刚石薄膜结构和性能的影响.真空科学与技术, 2003, 23(4): 226-234
    [53]梅显秀,徐卫平,马腾才等. HIPIB烧蚀等离子体沉积DLC薄膜结构及性能.大连理工大学学报, 2004, 44(4): 469-473
    [54] K. Yatsui, C. Grigoriu, K. Masugata, et al. Synthesis of nanosize powders of alumina by ablation plasma produced by intense pulsed light-ion beam. Applied Physics Letters, 1995, 67(9): 1214-1216
    [55] K. Yatsui, C. Grigoriu, K. Masugata, et al. Preparation of thin films and nanosize powders by intense pulsed ion beam evaporation. Japanese Journal of Applied Physics, 1997, 36: 4928-4934
    [56] Y. Nakagawa, C. Grigoriu, K. Masugata, et al. Synthesis of TiO2 and TiN nanosize powders by intense light ion-beam evaporation. Journal of Material Science, 1998, 33: 529-533
    [57]石磊,何小平,张嘉生等.一台小型强流脉冲离子束加速器.强激光与粒子束, 2000, 12(3): 382-384
    [58] B. P. Wood, A. J. Perry, L. J. Bitteker, et al. Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam. Surface and Coatings Technology, 1998, 108-109: 171-176
    [59] Y. Hashimoto, M. Yatsuzuka. Study on smoothing of titanium surface by intense pulsed ion beam irradiation. Vacuum, 2000, 59: 313-320
    [60] A. D. Pogrebnjak, R. I. Shantyr, O. P. Kulmenteva. Modification and mixing multi-layer systems by means of a high-power ion beam. Vacuum, 2002, 67: 243-248
    [61]由泳,张罡,高明.强流脉冲离子束与钛靶相互作用数值研究.沈阳师范大学学报, 2007, 25(4): 448-451
    [62] Di Wu, Ye Gong, Jin Yuan Liu, et al. Model of intense pulsed ion beam and simulation study of energy deposited on target. Surface and Coatings Technology, 2007, 201: 6573-6575
    [63]吴迪,宫野,刘金远等.强流脉冲离子束辐照靶材烧蚀效应二维数值研究.物理学报, 2006, 55(1): 398-402
    [64] X. Y. Le, W. J. Zhao, S. Yan, et al. Numerical analysis of thermodynamical process in the thin metal samples irradiated by IPIB. Current Applied Physics, 2001, 1: 219-223
    [65] Di Wu, Ye Gong, Jin Yuan Liu, et al. Numerical study on effects of secondary electrons generated by TEMP II accelerator. Vacuum, 2006, 80: 1362-1366
    [66] S. M. Miao, X. P. Zhu, M. K. Lei. Numerical analysis of ablated behaviors on titanium irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2005, 229: 381-391
    [67] Singh R K,Narayan J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Physical Review. B, 1990, 41: 8843
    [68]吴迪,宫野,刘金远等.强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究.物理学报, 2007, 56(1): 333-337
    [69]莫春立,王琛元,张罡等.强流脉冲离子束辐照45钢表面热效应的模拟.金属学报, 2008, 44(7): 831-836
    [70] Yu. P. Sharkeev, E. V. Kozlov, A. N. Didenko. Defect structures in metals exposed to irradiation of different nature. Surface and Coatings Technology, 1997, 96: 95-102
    [71] A. D. Pogrebnjak, V. S. ladysev, N. A. Pogrebnjak, et al. A comparison of radiation damage and mechanical and tribological properties ofα-Fe exposed to intense pulsed electron and ion beams. Vacuum, 2000, 58: 45-52
    [72]赵渭江,颜莎,乐小云等.强脉冲离子注入中的脉冲能量效应研究.核技术, 2000, 23(10): 689-696
    [73] A. N. Valyaev, M. K. Kylyshkanov, A. D. Pogrebnjak, et al. Modification of mechanical and tribological properties of R6M5 steel and Be by intense pulsed-ion and pulsed-electron beams. Vacuum, 2000, 58: 53-59
    [74]胡永峰,朱雪梅,朱小鹏等.强流脉冲离子束辐照合金Ti6Al4V的耐蚀性.大连铁道学院学报, 2002, 23(3): 84-87
    [75] S. Z. Hao, Y. Qin, X. X. Mei, et al. Fundamentals and applications of material modification by intense pulsed beams. Surface and Coatings Technology, 2007, 201: 8588-8595
    [76]王旭,张俊善,雷明凯.强流脉冲离子束辐照对316L不锈钢表面改性的实验研究.金属学报, 2007, 43(4): 393-398
    [77] G. E. Remnev, I. F. Isakov, M. S. Opekounov, et al. High intensity pulsed ion beam sources and their industrial applications. Surface and Coatings Technology, 1999, 114: 206-212
    [78] Zhang Jialiang, Tan Chang, Wang Wenchun, et al. A spectroscopic scheme to measure the expansion velocity of ablation plasmas formed by high intensive pulsed ion beam.Vacuum, 2004, 73: 673-679
    [79] W. J. Zhao, G. E. Remnev, S. Yan, et al. Intense pulsed ion beam sources for industrial applications. Review of Scientific Instruments, 2000, 71(2): 1045-1048
    [80]张通和,吴瑜光.离子束表面工程技术与应用.北京:机械工业出版社, 2005.282 279-280
    [81] J. F. Ziegler. Handbook of Ion Implantation Technology. New York: North-Holland, 1992. 42
    [82] X. Y. Le, W. J. Zhao, S. Yan, et al. The thermodynamical process in metal surface due to the irradiation ofintense pulsed ion beam. Surface and Coatings Technology, 2002, 158-159: 14-20
    [83] Hibbitt等著. ABAQUS/STANDARD有限元软件入门指南.庄茁等译.北京:清化大学出版社. 1998. 1-241
    [84]安继儒,田龙刚.金属材料手册.北京:化学工业出版社. 2008. 143 296 603
    [85]谭真,郭广文.工程合金热物性.北京:冶金工业出版社, 1994. 56 68 79
    [86]张家荣,赵廷元.工程常用物质的热物理性质手册.北京:新时代出版社, 1987. 141-151
    [87]崔忠圻,刘北兴.金属学与热处理原理.修订版.哈尔滨:哈尔滨工业大学出版社, 2004. 38-39 161-164 155-156 193-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700