基于金纳米粒子修饰电极的DNA电化学传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症是多年来人类难以治愈的一种顽症,寻找能有效治疗癌症的新药是解决该问题的有效手段之一。进行癌症新药的临床筛选要花费大量的人力和物力,且耗时长久,因此需要寻找一种简单有效的体外筛选方法。科学家们已发现,所有的抗癌药物都能与DNA产生相互作用,因而在体外进行药物与DNA相互作用的研究是一项非常有意义的工作,可作为大量抗癌新药的初步筛选方法。
     DNA生物传感器是一种能将目的DNA的存在转变为可检测的电、光、声等信号的传感装置。利用电化学原理检测基因的DNA电化学生物传感器是一种新的基因检测技术。它与传统的标记基因技术相比,具有快速、灵敏、操作简便、无污染等优点,并具有分子识别、基因分离纯化等功能。因此,在分子生物学和生物医学领域有着较大的实际意义。
     纳米材料被认为是跨世纪材料研究领域的热点,有“21世纪最有前途的材料”之美誉。纳米颗粒的比表面积大、表面反应活性高、催化效率高、吸附能力强等优异性质,为生物医学研究提供了新的研究途径,同时也推动了化学和生物传感器的迅速发展。纳米粒子的独特性质与生物分子杂交反应的特异性和电化学检测方法的高灵敏性相结合,使其应用范围更加广阔。
     本课题首先对一种基于Aunano-DNA修饰玻碳电极的新型DNA杂交体系进行了初步研究;其次合成了一种双核铜Schiff碱配合物,并对其结构进行了表征,同时研究了双核铜Schiff碱配合物与DNA的相互作用,以及其作为电化学杂交指示剂在DNA杂交体系中的应用研究。本论文的具体内容包括以下几方面:
     第一章:综述
     对DNA的研究是生命科学研究中一个极其重要的方面。本章综述了小分子化合物与DNA的相互作用、DNA电化学生物传感器原理(包括DNA探针及其分子识别原理和DNA在固体基质表面的固定化)及其应用等方面的内容。随后介绍了纳米粒子及纳米材料在分析化学中的一系列应用以及电化学生物传感器的发展方向。
     第二章:基于Aunano-DNA修饰玻碳电极的新型DNA杂交方法
     在Aunano-DNA修饰玻碳电极(GCE)上研究了DNA杂交。5’端巯基修饰探针被固定在GCE表面,探针修饰电极和杂交后的响应以亚甲基蓝(MB)作为杂交指示剂,通过DPV进行检测。在ctDNA存在下,金胶能有效的分散在GCE表面,从而使Aunano-DNA/GCE的活性位点大大增加,修饰和杂交后的响应信号增强,靶DNA的检测量也大大增加。靶DNA的检测线性范围在1.52×10-10到4.05×10-8 moll-1之间,检测限达到10?10 mol/L。
     第三章:一种新型双核Cu(Ⅱ)配合物的合成及表征
     以水杨醛、半胱氨酸和醋酸铜为原料,合成了希夫碱配体([Na3 (sal) (cys)]·2 H2O,Na3L)和双核铜配合物([Cu2(cys)(salic)]·2 H2O,Cu2 (Ⅱ) L),并通过元素分析、红外光谱、紫外光谱、热重分析、核磁共振方法对配合物的组成和结构进行了表征。实验结果显示,Cu(Ⅱ)与Schiff碱配体形成含三配位和四配位的双核铜配合物。
     第四章:双核Cu(Ⅱ)配合物与DNA相互作用的研究
     采用紫外可见光谱法和电化学方法初步研究了铜配合物与小牛胸腺DNA(ctDNA)的相互作用,并用差示脉冲伏安法对Cu2(Ⅱ)L作为杂交指示剂在DNA杂交体系中的应用做了初步研究。实验结果显示,双核Cu(Ⅱ)配合物与DNA的作用模式可能是插入与静电结合的混合作用模式;在DNA杂交体系中,Cu2(Ⅱ)L可用于识别不同序列的DNA。
Cancer is one of the most difficult problem to tackle with these years.One approach is to find new effective anticancer drugs. However, it takes a lot of expenditure on menpower and material resources to carry out the clinic choosing on the new drugs, and is also time-consuming. So there is a necessicity to find out a simple and effective way to make a choosing out of the body. It is discoveried that all anticancer drugs can interact with DNA,moreover, the study on the interaction between drugs and DNA out-of-body is quite a meaningful job. So the method based on the interaction can be used as the initial way to choose an effective drug from millions of new ones.
     DNA biosensor is a transducer which can make the presence of target DNA change into the electronic, optic, sound signals and others can be detected. The biosensor which adopts the electrochemical theory to measure the gene is a novel genic measuring technique. Compared with traditional methods, electrochemistry biosensor provides rapid, sensitive, simple and pollution-free as well as inexpensive point-of-care detection for specific drugs. It also can recognize small molecule compounds, separate and purify gene and so forth. Therefore, it is of practical significance in molecule-biology and life science.
     Recently, nano-material is a hot topic in the research areas. It is famous for the most promising material at the 21st century. It provides a new way for life science and contributes to the development of chemical sensor and biosensor owing to its features such as large relative surface area, high reaction activity, catalysis and strong absorption. The combination, among the special ability of nano-material, the speciality of biomolecule hybrid reaction and high sensitivity of electrochemical detection method, broadens the application fields.
     In this article, a novel scheme of DNA hybridization based on Aunano-DNA modified glassy electrode has been studied first. Then, a new bi-nuclear copper Schiff base complex has been synthesized and characterized; its interaction with DNA and the usage as electrochemical indicator in DNA hybridization have been investigated. The details list as follows:
     Chapter 1:General Introduction
     Investigation of DNA is most important in the field of life sciences. This part mainly introduces the structure of DNA and its interaction with the small molecule, as well as the basic theory of DNA electrochemistry biosensor (including DNA probe and its recognition to small molecule as well as its modification onto solid subject surfaces) and its application, followed by the review about nano-material. At last, the paper describes the trends of development on DNA electrochemistry biosensor.
     Chapter 2:A new scheme of hybridization based on the Aunano-DNA modified glassy carbon electrode
     DNA hybridization is investigated on the Aunano-DNA modified Glassy carbon electrode (GCE) in this article. The thiol modified probe oligonucleotides (SH-ssDNA) at 5’-phosphate end, is assembled on the Aunano-DNA modified GCE surface. The Electrochemical responses of the probe immobilization and hybridization with target DNA are measured by differential pulse voltammetry (DPV) using methylene blue (MB) as an electroactive indicator. Gold nanoparticles can be dispersed effectively on the GCE surface in the presence of calf thymus DNA (ctDNA). Aunano-DNA modified GCE can greatly increase the active sites, enhances the response signal during immobilization and hybridization. The hybridization amount of target DNA can be greatly increased. The linear detection range of Aunano-DNA/GCE for the complementary 21-mer oligonucleotide (cDNA) is achieved from 1.52×10-10 to 4.05×10-8 moll-1. The detection limit can reach to the concentration of 10?10 mol/L.
     Chapter 3:Synthesis and characterization of a novel bi-nuclear copper(II) complex
     A novel bi-nuclear copper (Ⅱ) complex([Cu2(cys)(salic)]·2 H2O,Cu2 (Ⅱ) L), was synthesized with a Schiff base ligand derived from salicyladehyde and cysteine acid, and the characterization was determined by elemental analyses, infrared spectrum, ultraviolet-visible spectrum, thermal analyses and 1HNMR. The results show that three and four-coordinate numbers are contained in the bi-nuclear copper (Ⅱ) complex at the same time.
     Chapter 4: Study on the interaction between bi-nuclear copper(II) complex and DNA
     The interaction of bi-nuclear copper(II) complex (signified as Cu2(Ⅱ) L) with calf thymus DNA (ctDNA) is studied by UV and electrochemical techniques; the application of Cu2(Ⅱ) L as electrochemical indicator in DNA hybridization is carried out using different pulse voltammetry (DPV). The results have shown that copper complex has two nearly reversible redox peaks in the potential range of -0.3~0.3V in cyclic voltammetry (CV). The interaction model between DNA and Cu2(Ⅱ) L is partial intercalation coupled with electrostatic binding. The species of DNA can be distinguished when Cu2 (Ⅱ) L is used as the indicator in DNA hybridization system.
引文
[1]庞代文,齐义鹏,王宗礼等。DNA的电化学研究。化学通报,1994,2:1-4
    [2] P. Fanen, N. Ghanem, M. Vidaud, et al., Molecular characterization of cystic fibrosis: 16 Novel mutations identified by analysis of the whole cystic fibrosis conductance transmembrane regulator (CFTR) coding regions and splice site junctions. Genomics, 1992, 13: 770-776
    [3]陈勇,李元宗,常文保等,核酸探针技术,分析化学,1995,23: 474-479
    [4] M. L. Landry, Nucleic acid hybridization in viral diagnosis. Clin. Biochem., 1990, 23: 267-277
    [5] S. E. Antonarakis, Recombinant DNA technology in the diagnosis. of human genetic disorders. Clin. Chem., 1989, 35: B4-86
    [6] G. L. Trainor, DNA sequencing, automation, and the human genome. Anal. Chem., 1990, 62: 418.
    [7] S. F. Wolf, L. Haines, J. Fisch, et al. Rapid hybridization kinetics of DNA attached to submicron latex particles. Nucleic Acids Res., 1987, 15:2911-2926
    [8] G. H. Keller, D. P. Hung, M. M. Manak, Labeling of DNA probes with a photoactivatable hapten. Anal. Biochem., 1989, 177: 392.
    [9] P. O. Pat, E. Lopez, G. Mathis, Europium(III) cryptate: A fluorescent label for the detection of DNA hybrids on solid support, Anal. Biochem., 1991, 195: 283.
    [10] P. Hurskainen, P. Dahlen, L. Ylidoski, et al., Detection of B19 parvovirus infections by a dot-blot hybridization assay using a digoxigenin-labelled probe. J. Virol. Methods, 1990, 27: 125-133
    [11] Yingying Su, Jian Wang, Guonan Chen. Study on the enhancement of electrochemiluminescence of luminol–H2O2 system by sulphonated cobalt(II) phthalocyanine. Anal. Chim. Acta, 2005, 551: 79-84
    [12] JS Sevall, H Prince, G Garratty, et al. Rapid enzymatic analysis for human immunodeficiency virus type 1 DNA in clinical specimens. Clinical Chemistry, 1993, 39: 433-439
    [13]计量年,莫庭焕,生物无机化学,中山大学出版社,(1992).
    [14] J. K. Barton, Recognizing DNA structures. Chem. Eng. News., 1988,66: 30-42
    [15] H. El anowska, J H van de Sande. Application of polarography to the study of complexation and stacking interactions of bases in the B-Z helical transition of poly[d(G-C)] and polyld(G-m5 C)] induced by Ni(II) and Mn(II). Bioelectrochem. Bioenerg., 1988, 19(3):441-460
    [16] H. Elzanowska, J. H. van de Sande. Complexation of bases and phosphates of nucleic acid components by transition metal ions. Bioelectrochem. Bioenerg., 1988, 19(3): 425-439
    [17] M. J. Nelson, P. A. Lindahl, W. H. Orme-Johnson. Advances in inorganic chemistry, 1982, 4:10-40, Elsevier, New York
    [18] E. Tselepi-Kalouli, N. Katasaros, The interaction of Rh(II) and Rh(III) with DNA. J. Inorg. Biochem., 1990, 40: 95-102
    [19] B. Rosenberg, L. Camp, J. E. Trosko, et al. Platinum compound: a new class of potent antitumour agents. Nature, 1969, 222:385-386
    [20] P.M. Takahara, A.C. Rosenzweig, C.A. Frederick, Crystal structure of double- stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature, 1995, 377:649-652
    [21]王飞利,常艳玲,安丽荣等。非铂类金属抗癌化合物的研究进展。化学研究与应用,2003, 15(5):612-616
    [22] P. Lincoln, E. Tuite, B. Norden, Short-circuiting the molecular wire: cooperative binding of -[Ru(phen)2dppz]2+ and -[Rh(phi)2bipy]3+ to DNA, J. Am. Chem. Soc., 1997, 119:1454-1455
    [23] C. Yoon, M. D. Kuwabara, A. Spassky, et al. Sequence Specificity of the deoxy- ribonuclease activity of 1,l0-phenanthroline-copper ion. Biochemistry, 1990, 29:2116.
    [24] M. Wall, R. C. Hynes, J. Chin. Double lewis acid activation in phosphate diester cleavage. Angew. Chem. Int. Ed. Engl, 1993, 32: 1633-1635
    [25] H. P. Berends, D. W. Stephan, Toward copper(II) hemocyanin models. 2. Synthesis and characterization of binuclear copper(II) complexes of a heptadentate ligand. Inorg.Chem, 1987, 26: 749-754.
    [26] M. Yashiro, A. Ishikubo, M. Komiyama, Efficient and unique cooperation of three zinc(II) ions in the hydrolysis of diribonucleotides by a trinuclear zinc(II)complex. Chem. Commun, 1997, 83-84
    [27] M. Komiyama, N. Takasaki, H. Shigekawa, The ligand l,10-phenanthroline -2,9-dicarbaldehyde dioxime can act both as a tridentate and as a tetradentate ligand-synthesis, characterization and crystal structures of its transition metal complexes. Chem. Commun, 1999, 1443-1451
    [28]王宏飞,杨频,李青山等,阿霉素-铁(Ⅲ)配合物的电化学特征及其与DNA结合作用研究,高等化学学报,1997, 18: 671-675
    [29]孙星炎,徐春,刘盛辉等, DNA电化学传感器在DNA损伤研究中的应用,高等化学学报,1998, 19: 1393-1396
    [30] S. O. Kelley, J. K. Barton, N. M. Jackon, Electrochemistry of methylene blue bound to a DNA-modified electrode, Bioconj. Chem., 1997, 8: 31-37
    [31] K. Hashimoto, K. Ito, Y. Ishimori, Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye, Anal. Chem., 1994, 66: 3830-3833
    [32]李静,李景印,郭玉凤,生物小分子与DNA相互作用的光谱及电化学研究进展。化学研究,2005,16(4): 101-104
    [33] M. J. Carvlin, R. J. Fiel, Intercalative and nonintercalative binding of large cationic porphyrin ligands to calf thymus DNA. Nucleic. Acids. Res., 1983, 11: 6121-6139
    [34]黄承志,李原芳,李念兵等,耐尔蓝硫酸盐在核酸分子表面的长距组装及核酸的三波长共振光散射测定.分析化学, 1999, 27: 1241-1247
    [35] S. O. Kelley, J. K. Barton, N. M. Jackson, et al., Orienting DNA helices on gold using applied electric fields, Langmuir, 1998, 14: 6781-6784
    [36] W. D. Wilson, Y. H. Wang, S. Kusuma, et al., Binding strength and specificity in DNA interactions: the design of A.cntdot.T specific intercalators, J. Am. Chem. Soc., 1985, 107: 4989-4995
    [37] V. Ibanez, N. E. Geacintor, A. G. Gag, et al., Physical binding of tetraols derived from 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene to DNA, J. Am. Chem. Soc., 1980, 102: 5661-5666
    [38] P. E. Pawstemack, E. J. Gibbs, J. J. Villafma, Biochemistry, 1983, 22: 2406.
    [39] C. V. Kumur, E. H. Asucion, J. Am. Chem. Soc. Commun., 1992, 470-472.
    [40] L. H. Hurley, V. L. Reynolds, D. H. Swenson, et al. Reaction of the antitumor antibiotic CC-1065 with DNA: structure of a DNA adduct with DNA sequence specificity. Science, 1984, 226:843-844
    [41] Jingwan Kang, Haixia Wu, Xiaoquan Lu, et al.Study on the interaction of new water-soluble porphyrin with DNA. Spectrochimica Acta Part A. 2005, 61:2041–2047
    [42] R. Solimani, Quercetin and DNA in solution: analysis of the dynamics of their interaction with a linear dichroism study. Int. J. Biol. Macromol., 1996, 18(4): 287-295
    [43] N. R. Isola, D. L. Stokes, Surface-enhanced raman gene probe for HIV detection, Anal. Chem., 1998, 70: 1352-1356
    [44] Yinglin Zhou, Yuanzong Li, Studies of the interaction between poly(diallyl- dimethyl ammonium chloride) and DNA by spectroscopic methods. Colloid Surface A., 2004, 233: 129-135
    [45]殷玉和,王颖,傅学奇,靶向RNA药物检测和筛选的生物物理学方法,生命的化学,2001,21: 234-237
    [46] F. Rosu, F. De-Pauw, L. Guittat, et al. Biochemistry, 2003, 42: 10361.
    [47]黄承志,李克安,童沈阳,高等学校化学学报,水溶性游离碱阳离子卟啉与核酸作用的光谱研究,1997,18: 525-529
    [48]易贵平,商志才,俞庆森,微量热法研究[Cu(phen)2] 2+、[Cu(bpy)2] 2+与DNA的作用,无机化学学报,2001,17: 77-82
    [49] R. J. Fiel, B. R. Munson, Binding of meso-tetra (4-N-methylpyridyl) porphine to DNA. Nucleic. Acids. Res., 1980, 8: 2835-2842
    [50] L. S. Lerman, Structural considerations in the interaction of DNA and acridines. J. Mol. Biol., 1961, 3: 18-30
    [51] J. K.Ghosh, A. K.Mandal, M. K. Pal, Energy transfer from thiacyanine to acridine orange facilitated by DNA, Spectrochim. Acta. Part A, 1999, 55: 1877-1886.
    [52] T. Uno, K. Hamasaki, M. Tanigawa, et al. Binding of meso-Tetrakis (N-methyl- pyridinium-1-yl ) purphyrin to double helical RNA and DNA RNA hybrid. Inog. Chem., 1997, 36: 1676-1683.
    [53]曹瑛,何锡文,吩嗪染料与DNA分子相互作用的紫外-可见光谱研究.高等学校化学学报,1998,19(5): 714-716.
    [54] A. M. Pyle, J. P. Rehmann, R. Meshoyrer, et al., Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA, J. Am. Chem. Soc., 1989, 111: 3051-3058
    [55] A. Wolfe, G. H. Shimer, T. Meehan, Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA, Biochem. 1987, 26: 6392-6396
    [56]徐春,何品刚,方禹之,溴化乙锭标记DNA电化学探针的研究,高等学校化学学报,2000, 21: 1187-1190
    [57] Y. L. Zhou, Y. Z. Li, Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods, Biophys. Chem., 2004, 107: 273-281
    [58] C. V. Kumar, E. H. Asuncion, DNA binding studies and site selective fluorescence sensitization of an anthryl probe, J. Chem. Soc. Chem. Commun., 1993, 115: 8547-8553
    [59] C. V. Kumar, R. S. Turner, E. H. Asuncion, Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect, J. Photochem. Photobiol. A: Chem., 1993, 74: 231-238
    [60]韩大雄,杨频,分子模拟手性金属配合物△,Λ-[Co(phen)2dppz]3+与B-DNA的作用模型,中国科学(B辑), 2000, 30: 392-398
    [61] C. V. Kumar, E. H. Asuncion, DNA binding studies and site selective fluorescence sensitization of an anthryl probe, J. Am. Chem.Soc., 1993, 115: 8547-8553
    [62] M. T. Carter, A. J. Bard, Voltammetric studies of the interaction of tris (1,10-phenanthroline) Cobalt (III) with DNA. J. Am. Chem. Soc., 1987, 109(24): 7528-7531
    [63] Y. D. Zhao, D.W. Pang, Z. L.Wang, DNA-modified electrodes. Part 2. Electrochemical characterization of gold electrodes modified with DNA, J. Electroanal. Chem.,1997, 431:203-209
    [64] M. T. Carter, M. Rodriguez, A. J. Bard, Voltammetric studies of the interaction of metal chelates with DNA.2.tris-Chelated complexes of cobalt(III) and Iron(II) with 1,10-phenanthroline and 2,2’-Bipyridine, J. Am.Chem.Soc., 1989, 111(24):8901-8911
    [65] D. W. Pang, M. Zhang, Z. L. Wang, et al., Modification of glassy carbon and gold electrodes with DNA, J. Electroanal. Chem., 1996, 403: 183-188
    [66] D.W. Pang, H. D. Abruna, Anal. Chem., Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules, 1998, 70: 3162-3169
    [67] C. M. A. Brett, M. O. B. Ana, H. P. S. Silvia, On the adsorption and electrochemical oxidation of DNA at glassy carbon electrodes, J. Electroanal. Chem., 1994, 366: 225-231
    [68] Daiwen Pang, Yipeng Qi, Zongli Wang, et al., Electrochemical oxidation of DNA at a gold microelectrode. Electroanalysis, 1995, 7: 774-777
    [69] L. Li, M. Wang, S. Dong and E. Wang, Immobilization target ssDNA on GCE with the cationic polymer chitosan, Anal. Sci. 1997, 13:305–310
    [70] C Xu, H Cai, P G He, et al. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. analyst, 2001,126:62-65
    [71] K.M. Millan, A.J. Spurmanis, S.R. Mikkelsen. Covalent immobilization of DNA onto glassy carbon electrodes. Electroanalysis, 1992, 4: 929-932
    [72]刘盛辉,孙长林,何品刚等,单链脱氧核糖核酸在石墨电极表面固定化的研究,分析化学,1999,27: 130-134
    [73] K. Hashimoto, K. Ito, Y. Ishimori, Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye, Anal. Chem., 1994, 66: 3830-3833
    [74] K. M. Millan, A. Saraullo, S. R. Mikkelsen, Voltammetric DNA biosensor for cysticfibrosis based on a modified carbon paste electrode,Anal. Chem., 1994, 66: 2943-2948.
    [75] F. Gamier, Y.H. Korri, D. Srivastava, Toward bioelectroic: specific DNA recognition based on an oligonucleotide functionalized polypyrrol, J. Am. Chem. Soc., 1997, 119: 7388-7389.
    [76] C. P. Michael, D. D. Janice, L. O. Amy, Novel Reagents and Procedures for Immobilization of DNA on Glass Microchips for Primer Extension, Langmuir, 2000, 16: 2185-2191
    [77] Z. Nathalie, J. Laurent, H. Sandrine, et al., Comparison between DifferentStrategies of Covalent Attachment of DNA to Glass Surfaces to Build DNA Microarrays. Anal. Biochem., 2000, 280: 143-150
    [78] K.A. Peterlinze, R.M. Georgiadis, Observation of hybridization and dehybridiz- ation of thiol-tetheral DNA using two-color surface plasmon resonanc spectroscopy, J. Am. Chem. Soc., 1997, 119: 3401-3402
    [79]赵元弟,庞代文,张敏等,DNA修饰电极的研究(IX)-DNA探针在金基底上的固定、表征及其表面分子杂交,高等学校化学学报,2001, 22 (5) : 744-748
    [80]刘盛辉,陈帆,莫卫民等,单链DNA在氨基乙硫醇单分子膜金电极上固定化的研究.浙江工业大学学报,1999, 27(1): 38-42
    [81] A. B. Steel, T. M. Heme, M. J. Tarlov, Electrochemical quantitation of DNA Immobilized on gold, Anal. Chem., 1998, 70: 4670-4677
    [82]高志贤,张清敏,姜永强等,巯基自组装的压电DNA传感器技术研究.南开大学学报(自然科学),2002, 35 (3): 111-117
    [83]董飒英,王洪仁,罗国安,自组装金电极的电化学测试及其FTIR和AFM分析.分析科学学报,2002, 18 (5): 357-360
    [84]杨周生,于俊生,陈洪渊,邻二氮菲-Cd2+与DNA相互作用的研究.无机化学学报,2002,18(4): 373-377
    [85] M. Rodriguez, A. J. Bard, Electrochemical studies of the interaction of metal chelates with DNA. 4 Voltammetric and electrogenerated chemiluminesentstudies of the interaction of tris(2,2'-biopyridine) osmium(II) with DNA. Anal. Chem., 1990, 62: 2658-2662
    [86]王素芬,彭图治,李建平,电化学方法研究DNA与不可逆靶向分子的相互作用.化学学报,2002, 60(2): 310-316
    [87]程琼,彭图治,红四氮哩作为电化学嵌合剂的核酸杂交生物传感器.高等化学学报,2002, 23(9): 1680-1683
    [88] A. Erdem, K. Kerman, B. Meric, et al. Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis, 2001,13(3): 219-223
    [89] D. W. Pang, H. D. Abruha, Interactions of benzyl viologen with surface-bound single-and double-stranded DNA. Anal. Chem., 2002, 72: 4700-4706
    [90]徐春,蔡宏,何品刚等,二茂铁标记DNA电化学探针的研制及性质研究.高等学校化学学报,2001, 22(9): 1492-1495
    [91] K. Y. Hafsa, M. Bouchra, Electrochemical biosensor of DNA hybridization by ferrocenyl groups functionalized polypyrrole, Anal. Chim. Acta, 2002, 469: 85-92
    [92]徐春,何品刚,方禹之,溴化乙锭标记DNA电化学探针的研究.高等学校化学学报,2000, 21(8): 1187-1190
    [93] E. Pale ek, From polarography of DNA to microanalysis with nucleic acid- modified electrodes. Electroanalysis, 1996, 8(1): 7-14
    [94] E. Palecek, M. Fojta, M. Tomschik, et al., Electrochemical biosensors for DNA hybridization and DNA damage, Biosen. Bioelectron., 1998, 13(6): 621-628
    [95] M. Fojta, T. Kubicarova, E. Palecek, Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor, Biosen. Bioelectron., 2000, 15: 107-115
    [96] C. G Siontorou, D. P. Nikolelis, A. Miernik, et al., Rapid methods for detection of Aflatoxin M1 based on electrochemical transduction by self-assembled metal-supported bilayer lipid membranes (s-BLMs) and on interferences with transduction of DNA hybridization, Electrochim. Acta., 1998, 43: 3611-3617
    [97] C. G. Siontorou, D. P. Nikolelis, B. Tarus, et al. DNA biosensor based on self- assembled bilayer lipid membranes for the detection of hydrazines. Electroanalysis, 1998, 10(10): 691-694
    [98] J. Wang, G. Rivas, C. Parrado, et al., Electrochemical biosensor for detecting DNA sequences from the pathogenic protozoan Cryptosporidium parvum,Talanta, 1997, 44: 2003-2010
    [99] J. Wang, G. Rivas, X. H. Cai. Screen-printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen. Electroanal., 1997, 9(5): 395-398
    [100] J. Wang, X. Cai, G. Rivas, et al., DNA Electrochemical Biosensor for the Detection of Short DNA Sequences Related to the Human Immunodeficiency Virus, Anal. Chem.,1996, 68(15): 2629-2634
    [101] J. Wang, G. Rivas, X. H. Cai, et al., Sequence-specific electrochemical biosensing of M. tuberculosis DNA, Anal. Chim. Acta, 1997, 337: 41-48
    [102] A. Bardea, F. Patolsky, A. Dagan, et al. Sensing and amplification of oligo- nucleotide-DNA interactions by means of impedance spectroscopy: a route to aTay-Sachs sensor. Chem. Commun. 1999, 21-22
    [103] K. M. Millan, S. K. Mikkelsen, Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem., 1993, 65: 2317-2323
    [104] M. Maeda, Y. Mitsuhashi, K. Nkaano, et al. DNA-immobilized gold electrode for DNA-binding drug sensor. Anal. Sci., 1992, 8:83-84
    [105] A.M.O. Brett, S.H.P. Serrano, I. Gutz, et al. Voltammetric behavior of nitro- imidazoles at a DNA-biosensor. Electroanalysis, 1997, 9: 1132-1137
    [106]赵湛,崔大付。基因传感器。电子产品世界,2000, 8, 63.
    [107] R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nano- particles. Science, 1997, 277: 1078-1081
    [108] H.A. Clark, R. Kopelman, R. Tjalkens, et al. Optical nanosensors for chemical analysis inside single living cells: 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal. Chem., 1999, 71: 4837-4843
    [109] B. Neiman, E. Grushka, O. Lev. Use of gold nanoparticles to enhance capillary electrophoresis. Anal. Chem., 2001, 73: 5220-5227
    [110] Yi Cui, Qingqiao Wei, Hongkun Park, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289-1292
    [111] L. Han, D.R. Daniel, M.M. Maye, et al. Core-shell nanostructured nano- particle films as chemically sensitive interfaces. Anal. Chem., 2001, 73: 4441-4449
    [112] V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem., 1995, 67: 1920-1928
    [113] F.R.F. Fan, A.J. Bard. An electrochemical coulomb staircase: detection of single electron-transfer events at nanometer electrodes. Science, 1997, 277: 1791-1793
    [1]庞代文,颜蔚.基因传感技术及目前存在的问题和发展对策。高等学校化学学报, 2001, 22 (3): 389-395
    [2] M. J. Heller, DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng., 2002, 4: 129-153
    [3] A. W. Peterson, L.K. Wolf, R.M. Georgiodis, Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc., 2002, 124: 14601-14607
    [4]缪谦,金葆康,林祥钦. ss-DNA在纳米金上固载和杂化的电化学传感研究。高等学校化学学报, 2000, 21 (1) : 27-30
    [5]徐春,蔡宏,何品刚等.二茂铁标记DNA电化学探针的研制及性质研究。高等学校化学学报, 2001, 22 (9) : 1492-1495
    [6] C. Xu, P.G. He, Y. Z. Fang, Electrochemical labeled DNA probe for the detection of sequence-specific DNA.Analytica Chimica Acta, 2000, 411 (12): 31-36
    [7] J. Wang, X. H. Cai, G. Rivas, et al., DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus, Anal. Chem.,1996, 68: 2629-2643
    [8] D. Ozkan, P. Kara, K. Kerman, et al., DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label, Bioelectrochem. 2002, 58: 119-126
    [9] A. Erdem, K. Kerman, B. Meric, et al., Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus, Anal. Chim. Acta, 2000, 422 : 139-149
    [10] E. L. S. Wong, P. Erohkin, J. J. Gooding, A comparison of cationic and anionic intercalators for the electrochemical transduction of DNA hybridization via long range electron transfer, Electrochem. Commun., 2004, 6: 648-654
    [11] J. Prakash, H. Joachin, Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution, Electrochim. Acta, 2000, 45: 2289-2296
    [12] J. Wang, R. Polsky, D. Xu, Silver-enhanced colloidal gold electrochemicalstripping detection of DNA hybridization. Langmuir, 2001, 17: 5739-5741
    [13] J. Wang, D. Xu, R. Polsky, Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc., 2002, 124: 4208-4209
    [14] D. Hernández-Santos, M.B. González-Gar?ya, A. Costa-Gar?ya, Metal nano- particles based electroanalysis. Electroanal., 2002, 14: 1225-1235
    [15] O. Lioubashevski, V. I. Chegel, F. Patolsky, et al., Enzymecatalyzed Biopumping of electrons into Au-nanoparticles: a surface plasmon resonance and electrochemical study. J. Am. Chem. Soc., 2004, 126: 7133-7143
    [16] P.C. Biswas, Y. Nodasaka, M. Haruta, Electro-oxidation of CO and methanol on graphite-based platinum electrodes combined with oxide supported ultrafine gold particles, J. Electroanal. Chem., 1995, 381: 167-177
    [17] A. M. Yu, Z. J. Liang, J. H. Cho, et al., Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett., 2003, 3: 1203-1207
    [18] R. A. Reynolds III, C. A. Mirkin, R. L. Letsinger, Homogeneous, nanoparticle- based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc., 2000, 122: 3795-3796
    [19] R.C. Jin, G.S. Wu, Z. Li, et al., What controls the melting properties of DNA-linked gold nanoparticle assemblies, J. Am. Chem. Soc., 2003, 125: 1643-1654
    [20] H. Cai, C. Xu, P. G. He, et al., Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J. Electroanal. Chem., 2001, 510: 78-85
    [21] Y.H. Wu, S. S. Hu, The fabrication of a colloidal gold-carbon nanotubes composite film on a gold electrode and its application for the determination of cytochrome c. Colloids Surf., B Biointerfaces, 2005, 41: 299-304
    [22] F. Wang, Y.X. Xu, Y.H. Wu, et al., Electroreduction of dioxygen on Aunano– DNA film electrode in acidic electrolyte, Bioelectrochem., 2006, 69: 148-157
    [23]胡效亚,陈洪渊,纳米团簇研究新进展及其在分析化学中的应用.大学化学, 2002,17(2):1-12
    [24] H. Cai, Y. Q. Wang, P. G. He, et al., Studies on an electrochemical DNA bio- sensor based on gold nanoparticle-labeled DNA probe. Chem. J. Chinese Univ., 2003,24: 1390-1394
    [25] X. Y. Hu, H. Y. Chen, The improvement of nanoparticle study and the implica- tion in analytical chemistry. College Chemistry, 2002, 17: 1-12
    [26] M. H. Chowdhury, A. M. Julian, C. J. Coats, et al., Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. J. Biomed. Opt., 2004, 9: 1347-1357
    [27] A. Kumar, S. Mandal, S. P. Mathew, et al., Benzene-and-anthracene-mediated assembly of gold nanoparticles at the liquid-liquid interface, Langmuir, 2002, 18: 6478-6483
    [28] H. Li, L. Rothberg, Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. J. Am. Chem. Soc., 2004, 126: 10958-10961
    [29] S. Bharathi, M. Nogami, S. Ikeda, Novel electrochemical interfaces with a tunable kinetic barrier by self-Assembling organically modified silica gel and gold nanoparticles. Langmuir, 2001, 17: 1-4
    [30] D. W. Pang, M. Zhang, Z. L. Wang, et al. Modification of glassy carbon and glod electrodes with DNA. J. Electroanal. Chem., 1996, 403: 183-188
    [31] F. Mizutani, S.Yabuki. Y. Sato, S. Iijima, Amperometric measurement of dsDNA content using a peroxidase-modified electrode. Bioelectrochem., 2004, 63: 257-259
    [32] W. Yang, M. Ozasoz, D.B. Hibbert, J.J. Gooding, Evidence for the direct interaction between methylene blue and guanine bases using DNA-Modified carbon paste electrodes, Electroanal., 2002, 14: 1299-1302
    [1] R. L Dutta, B. R. Das. Schiff base complexes of lanthanides. J. Scient. Ind. Res., 1988, 47: 41.
    [2] El-Khawaga O.A.Y. J. Protective action of copper (II) complex of a Schiff base against DNA damage induced by m-chloroperbenzoic acid using a novel DNA unwinding technique. Biochem. Biophys. Methods, 2003, 55: 205-214
    [3]李桂枝。2种水杨醛缩氨基酸及其10种金属配合物的杀菌活性研究。聊城大学学报,2003, 16(1): 57-59
    [4] A. Golcu, M. Tumer, H. Demirelli, et al. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands:synthesis, characterization, properties and biological activity. Inorg. Chim. Acta, 2005, 358: 1785-1797
    [5]杨颖群,李薇,陈志敏等.配合物[Cu(phen)(H2O)2].SO4的合成、晶体结构及电化学性质。衡阳师范学院学报, 2005, 26(6): 38-41
    [6]汪中明,周志芬,林华宽等. 2,9-二甲基-1,10-菲咯啉的dl-丙氨酸衍生物的合成表征及其镧(Ⅲ)配合物与DNA作用光谱研究.无机化学学报, 2000, 16(3):503-509
    [7]张芳,张前前,李苓等.铜(Ⅱ)-苏氨酸-咪唑混配配合物的合成及其与DNA作用的光谱研究.中国海洋大学学报, 2005,35(3): 467-470
    [8] M. Tumera, D. Ekinci, F. Tumer, et al., Synthesis, characterization and properties of some divalent metal(II) complexes: Their electrochemical, catalytic, thermal and antimicrobial activity studies. Spectrochim. Acta Part A, 2007, 67: 916-929
    [9] D. K. Chand, H. J. Schneider, J. A. Aguilar, et al., Copper complexes of polyaza[n] cyclophanes and their interaction with DNA and RNA. Inorg. Chim. Acta, 2000, 316: 71-78
    [10]席晓岚,黎植昌.氨基酸Schiff碱及其金属配合物的抑菌抗癌活性的研究进展.氨基酸和生物资源, 1998, 20(4):40-43
    [11] A. A. Soliman, G. G. Mohamed. Study of the ternary complexes of copper withsalicylidene-2-aminothiophenol and some amino acids in the solid state. Thermochim. Acta, 2004, 421: 151-159
    [12] A. Garoufis, M. Louloudi, S. Kasselouri,et al., Ternary complexes of copper(II) containing inosine (Ino), guanosine (Guo) and the dipeptides, GLY-GLY, GLY- -ALA, GLY- -VAL and GLY- -LEU. Polyhedron, 1995, 14(9): 1155-1162
    [13]李锦州,蒋礼.酰基吡唑酮缩氨基酸席夫碱的合成与稀土配位性能和生物活性研究.中国稀土学报, 2004, 22(2): 189.
    [14]林明丽,刘醒民,崔秀兰等.稀土与苯并咪唑甲基酮缩二乙三胺Schiff碱配合物的合成、表征及生物活性.稀土, 2004, 25(6):38.
    [15] D. M. Boghaei, M. Gharagozlou. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates. Spectrochimica Acta Part A. 2007, 67: 944-949
    [16] A. A. Soliman, G. G. Mohamed. Study of the ternary complexes of copper with salicylidene-2- aminothiophenol and some amino acids in the solid state. Thermochim. Acta, 2004, 421: 151-159
    [17]李红,乐学义,吴建中等.铜邻菲咯啉蛋氨酸配合物与DNA相互作用研究.化学学报, 2003, 61(2): 245.
    [18]叶勇,胡继明,曾云鹗等.22氯代苯甲醛2丙氨酸席夫碱类抗癌药物对DNA作用的谱学研究[J].无机化学学报, 1998, 14(1): 84.
    [19]林秋月,冯旭文,胡瑞定等.水杨醛缩赖氨酸Schiff碱金属配合物的合成和表征[J].化学研究与应用, 2004, 16(4): 547.
    [20] Xia Zhong, Hu-Lai Wei, Wei-Sheng Liu, et al., The crystal structures of copper(II), manganese(II), and nickel(II) complexes of a (Z)-2-hydroxy- N’-(2-oxoindolin-3- ylidene) benzohydrazide-potential antitumor agents.Bioorganic & Medicinal Chemistry Letters, 2007, 17: 3774-3777
    [21] N. Mondal, M. K. Saha, B. Bag, et al., Synthesis and crystal structure of mononuclear copper(II) complex of tridentate Schiff base ligand and its ferrocyanide- bridged pentanuclear complex. Polyhedron, 2001, 20: 579-584
    [22] Jie Liu, Tixiang Zhang , Tongbu Lu , et al., DNA-binding and cleavage studies of macrocyclic copper(II) complexes. J. Inorg. Biochem., 2002, 91: 269-276
    [23]赵广超,朱俊杰,陈洪渊.电化学诱导咪唑铜配合物断裂DNA的研究.高等学校化学学报,2003, 24: 414-418
    [24]史卫良,陈德余,吴清洲。水杨醛缩L-天冬氨酸过度金属配合物的合成及表征。无机化学学报,1999, 15(6): 761-765
    [25]陆晓虹,林秋月,贺新前等。稀土-香兰素缩赖氨酸希夫碱配合物的合成、表征及其与DNA作用的研究。中国稀土学报, 2006, 24(4): 403-407
    [26] C. P. Pradeep, S. Supriya, P. S. Zacharias, et al., A tetra- nuclear copper(II) complex stabilizes an extended structure of a water nonamer: Synthesis and character- ization of [Cu4(C54H46N4O14)(OH)2]·10H2O. Polyhedron, 2006, 25: 3588-3592
    [27] G. T. Musie, X.B. Li, D. R. Powell. Novel tetranuclear copper (II) complex of dicarboxyamine ligand: Syntheses, crystal structures and redox properties. Inorg. Chim. Acta, 20006, 359: 1989-1996
    [1] J. K. Barton. Metals and DNA: Molecular Left-Handed Complements. Science, 1986, 233:727-730
    [2] C. Q. Pan, S. E.Finkel, S. E. Cramton, et al., Variable Structures of Fis-DNA Complexes Determined by Flanking DNA-Protein Contacts. J. Mol. Biol. 1996, 264: 675-695
    [3] P. B. Dervan, Design of Sequence-Specific DNA-Binding Molecules. Science, 1986, 232: 464-468
    [4] S. M. Hecht. The chemistry of activated bleomycin. Acc. Chem. Res. 1986, 19: 383-391
    [5] S. J. Lippard, Platinum complexes: probes of polynucleotide structure and antitumor drugs. Acc. Chem. Res 1978, 11:211-217
    [6] R. Tamilarasan, D. R. McMillin, Photophysical studies of copper phenanthrolines bound to DNA. Inorg. Chem. 1990, 29: 2798-2802
    [7] T. E. Goyne, D. S. Sigman. Nuclease Activity of 1,10-Phenanthroline- Copper Ion. Chemistry of Deoxyribose Oxidation. J. Am. Chem. Soc. 1987, 109: 2846-2848
    [8] S. Mahadevan, M. Palaniandavar, Spectroscopic and voltammetric studies of copper(II) complexes of bis(pyrid-2-yl)-di/trithia ligands bound to calf thymus DNA. Inorg. Chim. Acta. 1997, 254: 291-302
    [9] S. Mahadevan, M. Palaniandavar, Spectroscopic and Voltammetric Studies on Copper Complexes of 2,9-Dimethyl-1,10-phenanthrolines Bound to Calf Thymus DNA. Inorg. Chem. 1998, 37: 693-700
    [10] M. Komiyama, N. Takasaki, H. Shigekawa, The Ligand l, 10-Phenanthroline- 2,9-dicarbaldehyde Dioxime can Act Both as a Tridentate and as a Tetradentate Ligand-Synthesis, Characterization and Crystal Structures of its Transition Metal. Complexes. Chem. Commun, 1999, 1443-1451
    [11] H. P. Berends, D. W. Stephan, Toward copper(II) hemocyanin models. 2. Synthesis and characterization of binuclear copper(II) complexes of a heptadentate ligand. Inorg.Chem, 1987, 26: 749-754
    [12] M. E. Branum, A. K. Tipton, Q. J. Lawrence, et al., Double-Strand Hydrolysis ofPlasmid DNA by Dicerium Complexes at 370C. J. Am. Chem. Soc., 2001, 123: 1898-1904
    [13] M. Rapta, P. Kamaras, G. A. Brewer, et al. Coordination Modes of Water-Derived Bridging Ligands in Diiron(III) Complexes: Stabilization of an Oxo-Hydroxo Bridge by Hydrogen Bonding. J. Am. Chem. Soc., 1995, 117: 12865-12866
    [14] J. S. Seo, R. C. Hynes, J. Chin, et al. Structure and Reactivity of Dinuclear Cobalt(III) Complexes with Peroxide and Phosphate Diester Analogues Bridging the Metal Ions. J. Am.Chem. Soc., 1998, 120: 9943-9944
    [15] M. Yashiro, A. Ishikubo, M. Komiyama, Efficient and Unique cooperation of Three Zinc(II) Ions in the Hydrolysis of Diribonucleotides by a trinuclear Zinc(II) Complex. Chem.Commun, 1997, 83-84
    [16] M. Wall, R. C. Hynes, J. Chin, Double lewis acid activation in phosphate diester cleavage. Angew. Chem. Int. Ed. Engl, 1993, 32: 1633-1635
    [17] J. W. H. Chapman, R. Breslow, Selective Hydrolysis of Phosphate Esters, Nitrophenyl Phosphates and UpU, by Dimeric Zinc Complexes Depends on the Spacer Length. J. Am. Chem. Soc, 1995, 117: 5462-5472
    [18] Jingwan Kang, Xiaoning Li, Guofan Wu, Zhihua Wang, Xiaoquan Lu, A new scheme of hybridization based on the Aunano-DNA modified glassy carbon electrode. Analytical biochemistry, 2007, 364: 165-170
    [19] Fang Wang, Jia Zhao, Yanxia Xu and Shengshui Hu. Electroreduction of dioxy- gen on Aunano-DNA film electrode in acidic electrolyte. Bioelectrochemistry, 2006, 69(2):148-157
    [20] Eric C. Long, Jacqueline K. Barton. On demonstrating DNA intercalation. Acc. Chem. Res., 1990, 23 (9):271-273
    [21]宋玉民,康敬万,高锦章等。钴(Ⅲ)配合物与DNA作用的研究。无机化学学报, 2000, 16:53-57
    [22] J. Liu, T. X. Zhang, T. B. Lu, et al. DNA-binding and cleavage studies of macrocyclic copper(Ⅱ)complexes. J. Inorg. Biochem., 2002, 91: 269-276
    [23] A. M. Pyle, J. P. Rehmann, R. Meshoyrer, et al. Mxied-ligand complexes of Ruthenium(II): factors governing. binding to DNA. J. Am. Chem. Soc., 1989, 11: 3051-3058
    [24] J. B Lepecq, C. J. Paoletti, A fluorescent com- plex between ethidium bromide and nucleic acids. J. Mol. Biol., 1967, 27:87-106
    [25]邓崇海,胡寒梅,丁爱民等。一种新型希夫碱钌联吡啶配合物的光电性质研究。合肥学院学报(自然科学版), 2005, 15(1):22-25
    [26] M.T. Carter, M. Rodriguez, A.J. Bard. Voltammetric studies of the interaction of metal chelates with DNA 2. Tris-chelated complexes of cobalt(III) and Iron(II) with 1,10-phenanthroline and 2, 2′-bipridine. J. Am. Chem. Soc., 1989, 111(24): 8901-8911
    [27] Xue-Mei Li, Heng-Qiang Ju, Cai-Feng Ding et al. Nucleic acid biosensor for detection of hepatitis B virus using 2,9-dimethyl-1,10-phenanthroline copper complex as electrochemical indicator.Analytica Chimica Acta, 2007, 582(1): 158-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700