分布环境下的海量三维地形可视化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维地形可视化已经发展为计算机图形学的一个重要分支,它的应用逐渐涉及到GIS、虚拟现实、3D游戏等众多领域,是近年来国内外众多学者的研究热点之一。而以往三维地形可视化的研究主要是在单机的环境下进行,与之相应的提高地形渲染速度和可视化系统性能的技术与方法也多是基于单机环境的,但是三维地形数据的海量特性以及三维可视化系统的实时性和交互性特点,使得现有技术条件下单机系统的性能已经不能很好的满足目前主流应用的要求。
     因此,考虑到目前作为主流的分布式多机并行调度与服务的蓬勃发展,本文通过对分布环境下的海量三维地形可视化中多项关键技术研究,探讨通过多台计算机在分布环境中并行协同处理,共同完成对海量地形数据有效存储调度;并根据视觉原理与场景本身特点有效地简化三维地形,减少图形系统实时处理的图形数量,最终实现海量三维地形可视化的实时性和交互性。主要内容包括:
     1.针对海量地形高程数据特点,研究有利于分布环境下海量高程数据快速调度和处理的数据组织结构和存储方式,建立高效的数据组织模型以及相应的索引机制,实现对全球尺度的地形高程数据进行有效的管理和存储。
     2.研究海量三维地形模型绘制中地形实时简化方法,在对比目前比较成功的地形简化算法的优缺点和适用范围基础上,建立地形简化模型,解决因地形局部发生变化而导致整体都要重新处理的问题。并对简化模型的进行测试,证明其可用性。
     3.针对海量影像纹理数据的特点,结合海量地形高程数据组织方案,研究适合分布式环境下调度和处理的海量影像纹理数据的组织方式;研究针对海量影像纹理的映射技术,提出一种视点相关的基于误差的动态多分辨四叉树纹理映射方法,并予以试验验证。
     4.探讨利用现有条件,综合应用并行调度技术,数据库管理技术、网络传输技术,通过局域网内多台计算机协同操作,建立一种适合于分布式网络结构的海量三维地形数据调度和处理模型,合理地进行存储与计算资源的分配;并依据该模型制定地形数据动态调度策略,达到海量三维地形数据的最大共享与利用。
     5.应用上述一些研究和实验的成果,使用Direct3D图形组件库设计并初步建立一个分布式环境下的全球三维地形漫游试验演示系统,实现分布环境下海量地形实时、交互漫游;然后,根据相关应用数据对系统进行了性能测试,检验研究成果的可用性。依据以上研究内容,针对性地进行了方法创新,包括以下方面:
     1.分布式环境下的海量地形高程数据、影像纹理数据多分辨率层次四叉树组织模型和相应索引机制
     本研究旨在保证分布式环境负载平衡的前提下,探索出一种有利于海量地形数据快速调度、处理以及显示的数据组织结构和存储方式,并以此建立一个海量地形高程数据、纹理数据多分辨率层次四叉树组织模型,实现对全球尺度的海量地形数据进行有效的管理和存储。演示系统实验证明了该模型适合于分布式环境下地形数据的网络传输和多机协同处理,对具有一定的应用价值。
     2.基于四叉树模型的海量三维地形局部自适应最优化简化算法(LaostModel模型)
     该简化算法针对海量地形数据的组织与存储情况以及不同分辨率地形拼接处形易成裂缝等问题对其进行改进,根据视点以及局部地形粗糙程度动态地改变四叉树数据块分裂或合并状态,并实时调整块内不同四叉树节点处地形的显示层次,重点解决地形局部发生变化而导致整体都要重新处理的问题。模型应用效果良好,实现了海量地形数据流畅漫游,为今后的四叉树为基础的地形简化模型提供了很好的借鉴。
     3.局域网环境下客户/服务模式的海量三维地形数据分布调度和处理模型
     该模型以地形数据分块为基础充分发挥了客户、服务以及服务管理器的作用,采用了两阶段的通信模式以及非等待式的异步调度处理方式,提供了有效的地形数据管理,保证了数据调度服务协同处理与网络通讯负载平衡。应用上述调度和处理模型的三维地形数据的动态调度策略最终达到海量三维地形数据的最大共享与利用。通过演示系统的性能测试验证了该模型的可靠性和效率。
     随着地形获取技术、网络技术、三维可视化技术的发展,分布环境下海量三维地形可视化关键技术的研究正不断地扩展其应用的领域,同时也更具有其研究的价值。
As an important branch of computer graphics, terrain 3D visualization gradually involves with GIS, Virtual Reality, 3D games, and many other fields, and has been one of the research focuses by many scholars in recent years. In the past, research on terrain 3D visualization is mainly in a single computer. Accordingly, the technologies and algorithms which are used to increase the rendering speed of 3D terrain and improve the performance of terrain 3D visualization system are also based on the environment of. However, the existing technology can not effectively meet the demand of real-time and interaction of 3D visualization system because of the huge amount of terrain data under a single computer.
     Thus, considering the vigorous development of distributed parallel scheduling and services at present, the research on the major technologies of 3D visualization of massive terrain under distributed environment is carried out. Through the cooperatively parallel processing of many computers in a distributed environment, the scheduling and storage of massive terrain data could be performed effectively. 3D terrain should be simplified effectively according to vision principle and the own characteristics of scenes, and the real-time and interaction of 3D visualization of massive terrain is realized ultimately by reducing the number of graphics on real-time processing of the graphics system. Generally speaking, the main contents are as follows:
     1. According to the characteristics of massive terrain elevation data, a data organizational structure and storage model was studied, which is favor of rapid processing and scheduling of massive elevation data under distributed environment. Through establishing a Quadtree-based non-uniform resolution organization method which supports the efficient data block partition as well as the index mechanism for elevation data, the effective management and storage for the global terrain elevation data was accomplished.
     2. By studying real-time LoD algorithms for dynamic rendering of massive 3D terrain, a local adaptive optimization simplified terrain model (LaostModel) using Quadtree for massive terrain was established, which is used to solve the problem that whole terrain need to reprocess because of partial changes in some algorithms. The availability of the LaostModel algorithm was proved by system testing.
     3. According to the characteristics of massive image data and the organization methods of massive terrain elevation data, the data organizational structure and storage mode for massive image texture data was discussed, which should support the data scheduling and processing organization under distributed environment. And with it, a pyramid-pattern structure for global image texture data was realized. The other research content is texture mapping technology for massive image data.
     4. On the base of discussing parallel scheduling technology, database management technology, network technology, and so on, a data scheduling and processing model for massive terrain was expounded, which is suitable for distributed network architecture and supports cooperation of many computers within LAN. Also, dynamic scheduling strategy for terrain data is given, which is based on the above model and supports real-time rendering of massive 3D terrain.
     5. By using the models and methods introduced in this paper, a prototype system of global terrain 3D visualization within LAN was developed with Direct3D graphics components. Then, the performance testing for the prototype system was done for trying out the usability of the above research achievements.
     According to the above five aspects, the innovation in methods and techniques of this research were presented:
     i. The Quadtree-based multi-resolution organization model and index mechanism for massive terrain elevation and image texture data under distributed environment.
     Through studying data organizational structure and storage mode which support scheduling, processing and display of massive terrain data under distributed environment, a Quadtree-based multi-resolution organization model for massive terrain elevation and image texture data was established, with which the global terrain elevation data can be managed and stored effectively. It has been proved that the above model is suitable for network transmission and parallel processing for massive terrain data by the testing of prototype system.
     ii. The Quadtree-based local adaptive optimization simplified terrain algorithm for massive terrain (namely. LaostModel).
     According to organizational structure and storage mode of massive terrain elevation data, the LaostModel algorithm dynamically split or merges Quadtree data block according to viewpoint as well as the degree of roughness of local terrain, which also solves a lot of other problems, such as, the crack problem caused by different resolution grid mosaic of terrain, the problem that whole terrain need to reprocess because of partial changes. The different level terrain is display by real-timely adjusting the different Quadtree nodes in a data block with the LaostModel algorithm. Testing of prototype system shows that the model fits satisfactorily and offers a useful reference for further studying.
     iii. The data scheduling and processing model for massive terrain based on client / service mode in LAN.
     Bringing customers, services, and service management into full play and using a two-stage mode of communication as well as non-wait-asynchronous scheduling approach, the above model provides effective management to massive terrain data and ensures cooperative processing of data dispatch services and load balancing of network communications. Also, dynamic scheduling strategy based on the above model achieves the maximum sharing and utilizing of massive terrain data. Testing of prototype system had validated the reliability and efficiency of the model.
     With the development of the technologies, such as terrain data acquisition, networks communication, 3D visualization, the research on the major technologies of 3D visualization of massive terrain under distributed environment is expanding its application domains and is worthy to be intensively investigated further.
引文
[1] 常勇, 施闯. 基于增强现实的空间信息三维可视化及空间分析[J]. 系统仿真学报, 2007, 19 (9): 1991-1995, 1999.
    [2] 李清泉, 李德仁. 三维空间数据模型集成的概念框架研究[J]. 测绘学报, 1998, 21(2): 24-27.
    [3] 杨必胜. 数字城市模型的三维建模与可视化技术研究[D]. 武汉大学博士论文,2002.
    [4] 肖乐斌, 钟耳顺, 刘纪远等. 三维 GIS 的基本问题探讨[J]. 中国图象图形学报, 2001, 6(9): 842-848.
    [5] 唐泽圣, 周嘉玉, 李新友. 计算机图形学基础[M]. 北京: 清华大学出版社, 1995.
    [6] 朱军, 龚建华. 大规模地形实时绘制算法[J]. 地理与地理信息科学, 2005, 21(2): 24-27.
    [7] 李扬, 耿昌宇, 张丽芬. 基于 Socket 通信模式下的跨平台数据同步[J]. 北京理工大学学报, 2002, 22 (1): 81-84.
    [8] Wen C C, Chu Y S, Chen K J. Causal-ordered communication of grid computing on Internet[C]. Proceedings of the IEEE International Conference on Communications, 2004: 20-24.
    [9] 李利杰, 雷咏梅. 一种面向网格的二级并行计算模型研究与实现[J]. 计算机工程与应用, 2003, 43 (18): 142-145.
    [10] 陈述彭, 陈秋晓, 周成虎. 网格地图与网格计算[J]. 测绘科学, 2002, 27 (4): 1-6.
    [11] 李俊照, 罗家融. 基于 Linux 集群的并行计算[J]. 计算机测量与控制, 2004, 12 (11): 1064-1066.
    [12] 邓集波, 洪帆. 基于任务的访问控制模型[J ]. 软件学报, 2003 14(1): 76-82.
    [13] Lindstrom P, Koller D,Ribarsky W, et al. Real-time, continuous level of detail rendering of height fields[C]. Computer Graphics (SIG-GRAPH’96 Proceedings), 1996: 109-118.
    [14] 周扬, 姬渊. 基于三角形折叠的连续多分辨率 LOD 算法[J] . 测绘学院学报, 2004 , (4) : 279-285.
    [15] 王健, 何明一. 基于边顶点重要度的网格简化算法及应用[J]. 计算机应用研究, 2003, (4): 243-245.
    [16] Duchaineauy M, Wolinsky M, Sigeti D E, et al. Roaming terrain: real-time optimally adapting meshes[C]. IEEE Visualization’97 Proceeding, 1997: 81-88.
    [17] Stefan R, Heidrich W, Slusallek P, et al. Real-time generation of continuous levels of detail for height fields[C]. Proc. WSCG’98, 1998: 315-322.
    [18] Luebke D, Erikson C. View-dependent simplification of arbitrary polygonal environments[C]. Computer Graphics (SIG-GRAPH’97 Proceedings), 1997, 146-162.
    [19] 许妙忠, 李德仁. 基于点删除的地形TIN 连续LOD 模型的建立与实时动态显示[J] . 武汉大学学报(信息科学版) , 2003, 28(3): 321-324.
    [20] 武晓波, 王世新, 肖春生. Delaunay 三角网的生成算法研究[J]. 测绘学报, 1999, 28 (1): 28-35.
    [21] Hoppe H. Progressive meshes [C]. Computer Graphics (SIG-GRAPH’96 Proceedings), 1996: 99-108.
    [22] Hoppe. H. View-dependant progressive mesh[C]. Computer Graphics (SIG-GRAPH’97 Proceedings), 1997: 189-198.
    [23] 武玉国. 大规模地 TIN 模型的 LOD 算法设计与实现[J]. 系统仿真学报, 2005, 17(3): 665- 669.
    [24] 徐青, 常歌, 杨力. 基于自适应分块 TIN 三角网建算法[J]. 中国图象图形学, 2000, 5 (6) : 461-465.
    [25] 孙敏, 薛勇, 马霭乃. 基于格网划分的大数据集DEM三维可视化[J]. 计算机辅助设计与图形学学报, 2002 , 14(6) : 566-570.
    [26] 刘学军, 龚健雅. 约束数据域的 Delaunay 三角剖分与修改算法[J]. 测绘学报, 2001, 30 (1): 82-88.
    [27] Hoppe H. Smooth view-dependent level-of-detail control and its application to terrain rendering [C]. IEEE Visualization’98 Proceeding. 1998: 35-42.
    [28] Blow J. Terrain rendering at high levels of detail[EB/OL]. http://www.bolt-action.com /papers/gdc2000-final.zip.
    [29] Peter J Kovach 著(李晔, 等译). Direct3D 技术内幕[M ]. 北京:清华大学出版社, 2001.
    [30] McGraw T. Generalized reaction–diffusion textures[J], Computers & Graphics, 2008, 32 (1) : 82-94.
    [31] Burt P J,Adelson E H. The palladian pyramid as a compact image code[EB/OL]. http:// www.cs.dartmouth.edu/~farid/ teaching/ cs88/ tcomm83.pdf.
    [32] Beers A C, Agrawala M, Chaddha N. Rendering from compressed textures[C]. Computer Graphics (SIG-GRAPH’96 Proceedings), 1996: 373-378.
    [33] Dornaika F, Sappa A.D. Rigid and non-rigid face motion tracking by aligning texture maps and stereo 3D models[J], Pattern Recognition Letters ,2007 ,28(15): 2116-2126.
    [34] 谭兵, 徐青, 马东洋. 用约束四叉树实现地形的实时多分辨率绘制[J]. 计算机辅助设计与图形学学报, 2003, 15 (3):270-276.
    [35] Iglesias A. Computer graphics for water modeling and rendering: a survey [J]. Future Generation Computer Systems, 2004 ,20(8): 1355-1374.
    [36] Reynald D, Fabio P, James A. Perceptually driven decision theory for interactive realistic rendering [EB/OL]. http: //www.graphics.cornell.edu/~jaf/publications/p152-dumont.pdf.
    [37] Chai B B, Sethuraman S, Sawhney H S, et al. Depth map compression for real-time view-based rendering[J]. Pattern Recognition Letters, 2004, 25(7): 755-766.分布环境下的海量三维地形可视化关键技术研究
    [38] 周勇. 网络环境下全球地形数据组织[J]. 地理空间信息, 2007, 5(3): 53-55.
    [39] 钟正, 朱庆. 一种基于海量数据库的 DEM 动态可视化方法[J]. 海洋测绘, 2003, 23(2): 9-12, 19.
    [40] 陈刚, 万刚, 夏青. 面向全球的三维地理信息可视化系统的设计[J]. 系统仿真学报, 2003, 15 (增刊) : 411-413.
    [41] 奚以成. 多尺度空间数据集成方法与应用[D]. 辽宁工程技术大学硕士论文, 2004.
    [42] 郭薇, 郭青, 胡志勇. 空间数据库索引技术[M]. 上海: 上海交通大学出版社, 2006.
    [43] Markwick P J,Valdes P J. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 213(1): 37-63, 413.
    [44] D?ll P, Lehner B.Validation of a new global 30-min drainage direction map[J]. Journal of Hydrology, 2002, 258(1): 214-231.
    [45] 张作昌. 基于要素的多比例尺线状地物空间数据组织[D]. 武汉大学硕士论文, 2005.
    [46] 马照亭, 潘懋, 胡金星, 等. 一种基于数据分块的海量地形快速漫游方法[J]. 北京大学学报(自然科学版), 2004, 40(4): 619-625.
    [47] 邓雪清. 栅格型空间数据服务体系结构与算法研究[D]. 解放军信息工程大学博士学位论文, 2003.
    [48] 王青山. 面向对象地理数据模型的研究与实践[D]. 中国人民解放军信息工程大学测绘学院博士学位论文, 2000.
    [49] 戴晨光, 邓雪清, 张永生. 一种用于实时可视化的海量地形数据组织与管理方法[J]. 系统仿真学报, 2005, 17(2): 406-409, 413.
    [50] 王永君, 龚健雅. 用于大范围虚拟地形环境的动态场景管理方法[J]. 测绘学院学报, 2003, 20(3): 231-234.
    [51] 杜莹. 全球多分辨率虚拟地形环境关键技术的研究[D].解放军信息工程大学博士学位论文, 2005.
    [52] 张玉杰. 大规模地形数据的组织与可视化研究[D]. 解放军信息工程大学硕士学位论文, 2006.
    [53] 王恩泉. 中国版 Google Earth 的空间数据组织与管理研究[D].中国测绘科学研究院硕士学位论, 2007.
    [54] 曾芬芳. 虚拟现实技术[M]. 上海: 上海交通大学出版社, 1997. 123-151.
    [55] 吴振雄. 大规模地形网格简化算法研究[D]. 哈尔滨工业大学硕士学位论文, 2006.
    [56] Rabnovich B, Gotsman C. Visualization of large terrains in resource-limited computing environments[C]. IEEE Visualization’97 Proceeding, 1997: 95-102.
    [57] Hoppe H. Smooth view-dependent level-of-detail control and its application to terrain rendering [C].IEEE Visualization'98 Proceedings, 1998: 35-42.
    [58] Svarovsky R. View-independent progressive meshing[M]. Game Programming Gems. Charles River Media, 2000: 454-464.
    [59] Duchaineau M, Wolinsky M. ROAMing terrain: real-time optimally adaptive meshes[C]. I IEEE Visualization'97 Proceedings, 1997 :81-88.
    [60] Lindstrom P, Pascucci V. Visualization of large terrains made easy[C]. IEEE Visualization'01 Proceedings, 2001:363-370.
    [61] Lindstrom P, Pascucci V. Terrain simplification simplified: a general framework for view-dependent out-of-core visualization[C]. IEEE Transactions on Visualization and Computer Graphics, 2002: 925-937.
    [62] 杨平, 胡鹏, 吴艳兰. 一种基于可变四叉树的大地形实时可视化算法[J]. 测绘通报. 2002, (10): 58-61.
    [63] 涂超. ROAM 算法原理及其应用研究[J]. 辽宁工程技术大学学报, 2003, 22 (2): 176-179.
    [64] Pajarola R. Large scale terrain visualization using the restricted quadtree triangulation[C]. IEEE Visualization’98 Proceeding, 1998: 19-26
    [65] 齐敏, 郝重阳, 佟明安. 三维地形生成及实时显示技术研究进展[J]. 中国图象图形学报, 2000, 5 (4): 269-275.
    [66] Wiesemann T, Schiefele J, Kubbat, W. Multi-resolution terrain depiction on an embedded 2D/3D synthetic vision system[J]. Aerospace Science and Technology, 2005, 9 (6): 517-524.
    [67] Endo M, Yasuda T, Yokoi, S. A distributed multiuser virtual space system[J]. IEEE Computer Graphics and Applications, 2003, 23 (1): 50-57.
    [68] Guthe M, Klein R. Streaming HLODs: an out-of-core viewer for network visualization of huge polygon models[J]. Computers & Graphics, 2004, 28 (1): 43-50.
    [69] Kidner D B, Smith D H. Advances in the data compression of digital elevation models[J]. Computers & Geosciences, 2003, 29 (8):985-1002.
    [70] 王宏武, 董士海. 一个与视点相关的动态多分辨率地形模型[J]. 计算机辅助设计与图形学学报, 2000, 12 (8): 575-579.
    [71] 谭兵. 基于遥感影像的地形三维重建技术研究. 硕士学位论文[D],郑州:解放军信息工程大学, 2001.
    [72] 许兆新, 花文华. 三维地形可视化技术研究[J]. 计算机工程与应用, 2008, 44 (3): 91-93.
    [73] Frueh C, Jain S, Zakhor A. Data processing algorithms for generating textured 3d building facade meshesfrom laser scans and camera images[J]. International Journal of Computer, 2005, 61(2): 159-184.
    [74] Decoret X, Sillion F, Schaufler G, et al. Multi-layered impostors for accelerated rendering. Computer[J]. Graphics Forum, 1999, 18(3): 61-73.
    [75] 王臻, 胡敏, 李响. 基于四叉树的动态多分辨率 LOD 地形快速简化[J]. 计算机应用, 2007, 27 (7): 1641-1643.
    [76] 殷宏, 许继恒, 周良伟, 等. 基于四叉树的大规模地形可视化及其实现[J].计算机应用研究, 2006, 23(5): 151-153.
    [77] 周发亮. 基于四叉树的 LOD 技术在地形渲染中的应用[J]. 计算机仿真, 2007, 24(1): 188-191.
    [78] 淮永建, 郝重阳. 基于自适应四叉树视相关的多分辨率地形简化[J]. 系统仿真学报. 2002, 14(6): 748-751.
    [79] Zhang L, Yang C, Liu D, et al. A web-mapping system for real-time visualization of the global terrain[J]. Computers & Geosciences, 2005, 31(3): 343-252.
    [80] Dollner J, Hinrichs K. An object-oriented approach for integrating 3D visualization systems and GIS[J]. Computers & Geosciences, 2000, 26 (1): 67-76.
    [81] 黄超超, 凌永顺, 吕相银. 地形纹理映射方法研究[J]. 计算机仿真, 2005, 22 (1): 209-212
    [82] Lindstrom P, Pascucci V. Terrain simplification simplified: a general framework for view- dependent out-of-core visualization [J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(3): 239-254.
    [83] V?r?s J. Quadtree-based representations of grid-oriented data[J]. Image and Vision Computing, 2006, 24(3): 263-270.
    [84] Balmelli L, Liebling T, Vetterli M. Computational analysis of mesh simplification using global error[J]. Computational Geometry, 2003, 25(3): 171-196.
    [85] Hansen P. OpenGL texture-mapping with very large datasets and multi-resolution tiles[C]. Computer Graphics (SIG-GRAPH’99 Proceedings), 1999:216-278
    [86] 王实, 高文. 数据挖掘中的聚类方法[J]. 计算机科学, 2000, 27( 4) : 42~45
    [87] 韩培友, 张雯, 郝重阳, 等. 一种基于混合编码的图像纹理压缩方法[J]. 微电子学与计算机, 2006, 23 (11): 178-180, 184.
    [88] 杨必胜, 李清泉, 史文中. 三维 GIS 中多分辨率纹理模型的研究[J]. 中国图象图形学报, 2003, 8 (3): 328-333.
    [89] Boukerroui D, Basset O, Guérin N. Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation[J]. European Journal of Ultrasound, 1998, 8(2): 135-144.
    [90] Gahegan M. Four barriers to development of effective exploratory visualization tools for geosciences[J ]. International Journal of Geographical Information Science, 1999, 13(5): 289-309.
    [91] 杨武, 董世都, 张光建. 一种基于小波系数上下文模型的图像压缩方法[J]. 微电子学与计算机, 2006, 23 (4) :153-159.
    [92] Agathos A, Fisher R B. Color texture fusion of multiple range images[C]. Proceedings of the Fourth International Conference on 3D digital Imaging and Modeling, 2003: 139-146.
    [93] Troccoli A, Allen P K. Recovering illumination and texture using ratio image[C]. Proceedings of the Fifth International Conference on 3D-Digital Imaging and Modeling, 2005: 93~102.
    [94] Bajaj C, Ihm I, Park S. Compression-based 3D texture mapping for real-time rendering[J]. Graphical Models, 2000, 62(6): 391~410.
    [95] 朱安宏, 张尤赛. 基于分形与纹理映射的 3D 地形仿真[J]. 计算机仿真, 2007, 24 (11): 224-226, 276.
    [96] 陈国良. 并行计算——结构、算法、编程[M]. 北京: 高等教育出版社, 2003.
    [97] 朱军, 龚建华, 张健钦, 等. 基于对等网络结构的分布式大规模地形实时漫游研究[J]. 地理与地理信息科学, 2006, 22(1): 40-43.
    [98] Falby J S, Zyda M J, Pratt D R, et al. NPSNET: hierarchical data structures for real-time three-dimensional visual simulation[J]. Computer & Graphic, 2002, 17 (1): 65-69.
    [99] 孙红梅. 分布式虚拟场景实时绘制技术的研究与实现[D].中国科学院计算技术研究所博士学位论文, 2000.
    [100] LI P P, Duquette W H, Curkendall D W. RIVA: a versatile parallel rendering system for interactive scientific visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 1996, 2(3): 186-201.
    [101] 刘亚杰, 窦文华. P2P 流媒体:一种新型的流媒体服务体系[J]. 计算机科学, 2004, 31 (4) :1-3, 30.
    [102] Andrew S. Tanenbaum. 计算机网络[M]. 北京: 清华大学出版社, 2003.
    [103] Sudholt W, Baldridge K K, Abramson D, et al. Application of grid computing to parameter sweeps and optimizations in molecular modeling[J]. Future Generation Computer Systems, 2005, 21 (1): 27-35.
    [104] 宋安军, 彭勤科, 胡保生. 并行计算模型在集群环境下的适应性[J]. 计算机工程, 2003,29 (18): 4-5, 17.
    [105] Aliaga D G, Lastra A. Automatic image placement to provide a guaranteed frame rate[C]. Proceedings of ACM SIGGRAPH’99, 1999: 307-316.
    [106] 李扬, 耿昌宇, 张丽芬. 基于 Socket 通讯模式下的跨平台数据同步[J]. 北京理工大学学报, 2002, 22 (1): 81-84.
    [107] 曾碧卿, 陈志刚, 刘安丰, 等. 集群计算系统中一种并 I/O 访问的自适应调度策略[J]. 计算机工程, 2005, 31( 2): 72-73.
    [108] Anthony Jones. Windows 网络编程技术[M]. 北京: 机械工业出版社,2000.
    [109] Perez J M, Garcia F, Carretero J, et al. Data allocation and load balancing for heterogeneous cluster storage systems[C]. Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03), 2003: 718-723.
    [110] Hwang I C, Maeng S R, Cho J W. Home-based cooperative cache for parallel I/O applications[J]. Future Generation Computer Systems, 2006, 22(5): 633-642
    [111] Haghighi A M, Mishev D P. A parallel priority queueing system with finite buffers[J]. Journal of Parallel and Distributed Computing, 2006, 66(3): 379-391.
    [112] 张会生, 李军, 刘永文, 等. 分布式并行仿真系统中的数据通信性能研究[J]. 计算机仿真, 2005, 22 (1): 126-127, 131.
    [113] 吕希奎, 易思蓉, 韩春华. 大规模地形真三维可视化系统设计与实现[J]. 计算机应用研究, 2008, 25(2): 603-606, 609.
    [114] 陈瑜, 刘淑芬, 朱永文. 基于 CSCW 的分布式军事仿真系统框架设计[J]. 舰船电子工程, 2008, 28(1): 87-89, 96.
    [115] 王恩泉, 李英成, 贾盛举. 基于J2EE 的网络三维地形显示系统的研究[J]. 微计算机信息, 2007, 25(4): 223-225.
    [116] 尚建嘎, 刘修国, 花卫华. 城市地质特定领域软件体系结构[J].中国地质大学学报(地球科学版), 2006, 31(5) : 673-677.
    [117] 刘大勇, 危辉, 王增进. 基于地理信息系统的智能化应用及原型设计[J]. 计算机工程与应用, 2003, 39 (28) : 224-226.
    [118] 屈红刚, 潘懋, 吕晓俭, 等. 城市三维地质信息管理与服务系统设计与开发[J]. 北京大学学报(自然科学版) 网络版, 2007, 2(3): 1-6.
    [119] 侯庆, 陈孝威. 基于OpenGL的流体交互式仿真[J]. 计算机应用研究, 2007, 24(2): 186-188.
    [120] 李刚, 赵玉新. 基于Direct3D 的海底地形显示方法研究[J]. 计算机工程与应用, 2007, 43(11): 238-240, 244.
    [121] 张小超, 王精业, 梁强. 基于 Direct3D 的虚拟战场环境中动态地形的实现方法[J]. 系统仿真学报, 2005, 17(5): 1145-1148, 1167.
    [122] 李清泉. 三维空间数据的实时获取、建模与可视化[M ]. 武汉:武汉大学出版社, 2003.
    [123] Mayez A M, Limalia I. Database approach to hierarchical image storage and recognition[J]. EngineeringApplications of Artificial Intelligence, 1997, 10(2): 189-204.
    [124] Yanai K, Shindo M, Noshita K. A fast image-gathering system from the World-Wide Web using a PC cluster[J]. Image and Vision Computing, 2004, 22(1): 59-71.
    [125] 邓春成, 刘先林, 叶泽田. 客户/服务器结构下的三维地形虚拟现实系统研究[J]. 测绘科学, 2003, 28(2): 6-8, 11.
    [126] 吕希奎, 易思蓉, 韩春华. 大规模地形真三维可视化系统设计与实现[J]. 计算机应用研究, 2008, 25(2): 603-606, 609.
    [127] 万定生, 卞海红. 地形三维可视化系统的设计与实现[J]. 计算机工程与应用, 2005, 22(6): 219-221.
    [128] Bernhard R, Michael E, Achim R. The shuttle radar topography mission: a new class of digital elevation models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57(4): 241-262
    [129] 汪凌. 美国航天飞机雷达地形测绘使命简介. 测绘通报,2000 (12) :38-40
    [130] 闫业超, 张树文, 岳书平. 东北川岗地形区 SRTM 数据质量评价[J]. 中国科学院研究生院学报, 2008, 25(1): 41-46.
    [131] Jarvis A, Rubiano J, Nelson A, et al. Practical use of SRTM data in the tropics —Comparisons with digital elevation models generated from cartographic data[EB/OL]. http://ciat-library.ciat.cgiar.org/ Articulos_Ciat/Jarvis4.pdf.
    [132] 马龙, 李颖. 从 GTOP030 到 SRTM DEM 精度研究——以西藏为例[J]. 水土保持通报, 2006, 26(5): 71-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700