体外化学物质致敏性检测模型和组织工程皮肤真菌感染模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在欧洲,组织工程皮肤作为一种重要的实验动物替代工具,已经被应用于包括皮肤腐蚀性、刺激性、光毒性及基因毒性等在内的多项安全性检测,以及皮肤念珠菌病、黑素瘤等多种皮肤相关疾病模型的构建。而在我国,关于组织工程皮肤作为动物替代方法进行化学物质安全性检测以及利用组织工程皮肤建立皮肤疾病模型的报道十分有限。本课题就构建化学物质致敏性检测的体外模型和组织工程皮肤真菌感染模型两方面展开研究,主要包括以下三部分内容:
     第一部分组织工程皮肤的构建
     目的构建组织工程真皮、组织工程表皮及组织工程皮肤(全层)。
     方法1.利用原代培养的成纤维细胞与含有10%胎牛血清和10%DMEM的牛胶原溶液混合孵育,液下培养3d构建组织工程真皮;
     2.以成纤维细胞的动态培养为饲养层,分别气液界面培养角质形成细胞和HaCaT细胞,或气液界面培养角质形成细胞和黑素细胞,培养10d构建组织工程表皮;
     3.液下培养含成纤维细胞的胶原凝胶3d后,在其表面分别接种角质形成细胞和HaCaT细胞,或者角质形成细胞和黑素细胞,气液界面培养10d构建组织工程皮肤(全层);所有培养物用常规石蜡包埋切片方法制备组织切片,通过苏木精-伊红染色观察培养物的组织结构;不含色素的组织工程表皮角蛋白免疫组化染色,含色素的表皮和皮肤S100免疫组化染色。
     结果1.成功建立组织工程真皮,其外观形态为淡红色半透明胶状,具有一定韧性和弹性,HE染色显示胶原呈束状分布,结构致密,成纤维细胞呈梭形平行于上表面;
     2.成功建立不含或者含色素的组织工程表皮,苏木精-伊红染色观察,表皮细胞形成多达十余层结构的表皮,HaCaT构建者较角质形成细胞构建者表皮层数更多,但表皮内存在空泡;K1/K10角蛋白免疫组化染色中,随着细胞层数的增加,角质形成细胞构建者K1/K10角蛋白染色阳性逐渐增强,而HaCaT构建者为阴性,K5/K14角蛋白免疫组化染色中,两者均为阳性;含色素的组织工程表皮S100染色可见随着培养时间的延长,黑素细胞由最初分布于基底层及上方发展到表皮全层均有分布;3.不含色素的组织工程皮肤HE染色显示,角质形成细胞和HaCaT细胞生长分化均形成具有十余层细胞结构的表皮,但后者表皮结构不如前者有序,细胞形态变化不如前者规律,且HaCaT构建的表皮层较角质形成细胞构建者更易从真皮表面脱落;含有色素的角质形成细胞和黑素细胞共同构建组织工程皮肤在宏观形态上,随着培养时间的延长,培养物表面的颜色逐渐加深,色素颗粒增多;S100染色显示随着培养时间的延长,黑素细胞的分布从基底层逐渐发展到角质层。
     结论本研究成功建立了组织工程真皮、表皮和皮肤(全层),为今后皮肤相关化学物质的安全性评价,皮肤疾病相关机制的研究及多种药物的药效学研究提供了有利工具。
     第二部分致敏性体外模型的构建
     目的构建角质形成细胞/THP-1细胞共培养模型和含色素的组织工程表皮与THP-1细胞的三维分室共培养模型用于化学物质的致敏性检测。
     方法1.将THP-1细胞与角质形成细胞进行分室共培养,浓度为0.1×,0.5x和1×最小ICso的待检测物质作用24h后,流式细胞仪检测THP-1细胞表面的CD86和CD54表达水平;2.将THP-1细胞培养于含色素的组织工程表皮下方的培养液内,用0.1×ICso的待检物质凝胶作用于组织工程皮肤表面,24h后,流式细胞仪检测THP-1细胞表面的CD86和CD54表达水平,用ELISA法测定培养液中IL-1p、IL-6和IL-8含量。
     结果1.致敏物质二硝基氯苯、苯二胺、甲醛、硫酸镍、丁香酚、异丁香酚可诱导THP-1表面的共刺激分子CD86和CD54不同程度的表达,而被非致敏物月桂基硫酸钠、乳酸、苯扎氯铵等理后,THP-1细胞表面共刺激分子CD86和CD54与阴性对照组比较未见统计学差异;
     2.致敏物二硝基氯苯、苯二胺、硫酸镍、丁香酚、苯佐卡因凝胶在0.1×IC50浓度时,可明显诱导THP-1细胞表面CD86和CD54的表达,非致敏物月桂基硫酸钠、苯扎氯铵凝胶无此效应,同时仅在强效致敏物作用时,培养液中IL-1β含量明显升高,在中弱效致敏物和非致敏物作用下未见明显变化,培养液中IL-6和IL-8在致敏物作用组和非致敏物作用组未见明显差异。
     结论1.角质形成细胞/THP-1细胞共培养模型用于检测可溶性化学物质的致敏性,其操作步骤简单,灵敏度高,是一种较好的致敏性检测方法,有较广泛的应用前景,其不足在于无法用于非可溶性化学物质及制剂的检测;2.含色素的组织工程表皮/THP-1细胞三维分室共培养模型的成功建立,解决了不溶性化学物质和外用制剂的致敏性检测的难题,它更符合变态反应致敏阶段的发生机制,有更强的可比性和可信度。
     第三部分组织工程皮肤在真菌感染性皮肤病中的应用
     目的构建白念珠菌、须癣毛癣菌、红色毛癣菌和糠秕马拉色菌感染的组织工程皮肤模型,为各种常见皮肤真菌病致病机制及病原菌毒力的研究及药效学的研究提供一种新型的工具;同时,初步探讨红色毛癣菌感染的组织工程皮肤模型在抗真菌药物药效学评价方面的应用。
     方法1.将浓度为约1×106/ml的白念珠菌、须癣毛癣菌、红色毛癣菌和糠秕马拉色菌菌悬液5μl接种于含色素的组织工程皮肤表面,于35℃,5%CO2孵箱内培养,分别于6h、12h、24h、48h和72h后,石蜡包埋切片,HE染色和PAS染色观察;2.将红色毛癣菌菌悬液加至含色素的组织工程皮肤表面,与此同时,向组织工程皮肤下方的培养液中分别加入0.001μg/ml,0.01μg/ml,0.1μg/ml和1μg/ml的特比萘芬溶液,48h后,石蜡包埋切片,HE染色和PAS染色观察。
     结果1.白念珠菌、须癣毛癣菌和红色毛癣菌组中可见菌丝及孢子随着时间的推移,渐渐侵入表皮层甚至真皮层,同时真菌对皮肤产生明显的破坏作用,而糠秕马拉色菌仅生长于表皮层上方或表皮浅层,对皮肤的破坏作用不明显;2.在红色毛癣菌感染模型中,随着特比萘芬浓度的升高,红色毛癣菌的菌丝侵入数量减少,对皮肤的破坏程度逐渐减轻。
     结论成功建立了白念珠菌感染的组织工程皮肤模型、须癣毛癣菌感染的组织工程皮肤模型、红色毛癣菌感染的组织工程皮肤模型和糠秕马拉色菌感染的组织工程皮肤模型,有利于上述常见皮肤真菌体外模型的发展;通过研究特比萘芬对红色毛癣菌感染的组织工程皮肤模型的干预作用,提示今后抗真菌药物的体外药效学评价可以菌丝侵入程度的变化及皮肤破坏程度的严重程度为指标,作为一种新型的体外模型,亲人性红色毛癣菌感染的组织工程皮肤模型对临床用抗真菌药物及抗真菌新药的药效学评价有极为重要的价值。
In Europe, the tissue-engineered skin as an important tool for the animal alternative testing has been used in many kinds of safety tests, such as skin corrosion, skin irritation, skin photo-toxicity and genetic toxicity, and also for the construction of several skin-related disease models, such as cutaneous candidiasis, melanoma and so on. However, in China, such reports are very limited. In this study, the in vitro sensitization testing model and fungal infected tissue-engineered skin model were constructed successfully, and reported here as following three parts:
     Part 1 Construction of tissue-engineered skin
     Objective To construct tissue-engineered dermis, tissue-engineered epidermis and tissue-engineered skin.
     Methods 1. Primary cultured fibroblasts were incubated in bovine collagen solution containing 10% fetal bovine serum and 10% DMEM for 3 days. 2. The keratinocytes, HaCaT cells and keratinocytes with melanocytes were seeded respectively on the surface of feeder layer, which was prepared by the dynamic culture of fibroblasts. Then, the air-liquid interface culture for 10 days was carried on. 3. After fibroblasts were cultured in collagen gel for 3 days, keratinocytes, HaCaT cells and keratinocytes with melanocytes were seeded respectively on the surface. Then air-liquid interface culture for 10 days was carried on.
     The paraffin embedded sections method was used to prepare the tissue slides and the hematoxylin-eosin staining was performed for the observation. Immunohistochemistry staining of keratins were used for non-pigmented tissue-engineered epidermis. Pigmented tissue-engineered epidermis and skin were stained by immunohistochemistry of S100. Results 1. Tissue-engineered dermis was successfully established. It was the translucent pink colloid-liked matter, with some flexibility and elasticity. It was shown by hematoxylin-eosin staining that collagen was in the fasciculated distribution with compact structure and spindle-shaped fibroblasts were parallel to the interface.
     2. Non-pigmented and pigmented tissue-engineered epidermis was successfully established. It was shown by hematoxylin-eosin staining that keratinocytes and HaCaT cell formed more than ten layers in the epidermis and it was thicker by HaCaT cells than keratinocytes. But there were some vacuoles in the epidermis of HaCaT cells. K1/K10 keratin immunohistochemistry was positive in tissue-engineered epidermis constructed by keratinocytes, but negative in that constructed by HaCaT cells. K5/K14 keratin immunohistochemistry was positive in both keratinocyte-derived tissue-engineered epidermis and HaCaT-derived tissue-engineered epidermis. S100 immunohistochemistry staining was used for tracking the distribution of melanocytes in pigemnted tissue engineering epidermis. It showed that melanocytes migrated from the basal layer to the horny layer with times.
     3. Hematoxylin-eosin staining of both keratinocyte-derived and HaCaT-derived non-pigmented tissue-engineered skin showed that more than ten layer epidermis formed. But the structure of the latter is less orderly and regular. The HaCaT-derived epidermis is more easily detached from the dermal sheet. The color of tissue-engineered skin with melanocytes gradually deepeded as the culture time prolonged. S100 staining showed the same characteristcs.
     Conclusion In Part 1, tissue-engineered dermis, epidermis and full thickness skin were successfully established, which provided a useful tool for the safety evaluation of chemicals, researches on pathogenesis of skin diseases and pharmacokinetics studies of the medicines.
     Part 2 Construction of sensitization testing in vitro model
     Objective To construct the co-culture model of keratinocytes/THP-1 cells and three-dimensional co-culture model of pigmented tissue-engineered epidermis/THP-1 cells to evaluate the sensitization potential of chemicals.
     Methods 1. THP-1 cells and karatinocytes were co-cultured in different compartments. After 24h treatment of chemicals at 0.1×0.5×and 1×the minimal IC50, the expression of CD86 and CD54 were evaluated by flow cytometry. 2. The THP-1 cells were cultured in the medium below the pigmented tissue-engineered epidermis. After 24h treatment of the gels of chemicals with the concentration of 0.1×IC50, CD86 and CD54 expression was determined by flow cytometry. And the content of IL-1β, IL-6 and IL-8 in the culture medium was determined by ELISA.
     Results 1. Dinitrochlorobenzene, p-phenylenediamine, formaldehyde, nickel sulfate, eugenol, isoeugenol induced THP-1 expressing CD86 and CD54, rather than sodium lauryl sulfate, lactic acid and benzalkonium chloride in keratinocyte/THP-1 cell co-culture model; 2. The gel of dinitrochlorobenzene, p-phenylenediamine, nickel sulfate, eugenol, benzocaine at the concentration of 0.1×IC50, can significantly induce THP-1 expressing CD86 and CD54, while the gel of sodium lauryl sulfate, benzalkonium chloride had no such effect. Furthermore, IL-1βin the culture medium only increased by the strong allergens. The determination of IL-6 and IL-8 showed no significant difference between sensitizers and non-sensitizers.
     Conclusion 1. Keratinocytes/THP-1 cell co-culture model was useful for the detection of soluble chemical in sensitization testing, which had simple operation, high sensitivity. However, the disadvantage of this co-culture model was that insoluble chemicals can not be evaluated; 2. Pigmented tissue-engineered epidermis/THP-1 cell co-culture model were successfully established, which solved the sensitization evaluation of insoluble chemicals and topical preparations. It is more in line with the mechanism of sensitization stage so that it had stronger comparability and credibility.
     Part 3 The application of tissue-engineered skin in fungal infection
     Objective To construct in vitro model of tissue-engineered skin infected by Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum and Malassezia furfur, which will provide a new tool for the studies about skin fungal infection and pharmacodynamics of anti-fungal medicines. Meantime, to evaluate the feasibility of the application of Trichophyton rubrum infected tissue-engineered skin in pharmacodynamic study of antifungal medicine.
     Methods 1. The suspension of Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum and Malassezia furfur at 1 cfu/ml were inoculated with pigmented tissue-engineered skin in the incubator at 35℃with 5% CO2. After 6h,12h,24h,48h and 72h, paraffin embedded sections, HE staining and PAS staining were performed. 2. The suspension of Trichophyton rubrum was added to the surface of pigmented tissue-engineered skin. At the same time, terbinafine was added to the culture medium of the tissue-engineered skin at 0.001μg/ml,0.01μg/ml, 0.1μg/ml, 1μg/ml,respectively.48h later, paraffin embedded sections, hematoxylin-eosin staining and periodic acid-schiff staining were performed.
     Results 1. It was shown by hematoxylin-eosin staining and periodic acid-schiff staining that the hyphae and spores were visible and gradually penetrated the epidermis and dermis in tissue-engineered skin infected by Candida albicans, Trichophyton mentagrophytes and Trichophyton rubrum. It was also found that skin damage was significant with time. It was shown by hematoxylin-eosin staining and periodic acid-schiff staining that blastospores of Malassezia furfur were only seen in the upper of epidermis. The damage of the skin was not significant. 2. In Trichophyton rubrum infected tissue-engineered skin, the number of invased hyphae reduced, and the damage of the skin gradually reduced as the concentration of terbinafine increased.
     Conclusion Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum and Malassezia furfur infected tissue-engineered skin were successfully established, respectively. It was significant for the development of in vitro models of Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum and Malassezia furfur. The results of Trichophyton rubrum infected tissue-engineered skin treated with terbinafine suggest that the depth and amount of invasive hyphae and the damage of the skin can be considered as indicators for pharmacodynamics studies of anti-fungal medicines.
引文
[1]Rheinwald JG GH. Serial cultivation of strains of human epidermal keratinocytes:the formation of keratinizing colonies from single cells. Cell,1975,6(3):331-343.
    [2]Boyce ST, Ham RG. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol,1983,81(1 Suppl):33s-40s.
    [3]Poumay Y, Boucher F, Leclercq-Smekens M, ct al. Basal cell adhesion to a culture substratum controls the polarized spatial organization of human epidermal keratinocytes into proliferating basal and terminally differentiating suprabasal populations. Epithelial Cell Biol,1993,2(1):7-16.
    [4]Banks-Schlegel S, Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol,1981,90(3):732-737.
    [5]Yuspa SH, Kilkenny AE, Steinert PM, et al. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol,1989,109(3):1207-1217.
    [6]Kolly C, Suter MM, Muller EJ. Proliferation, cell cycle exit, and onset of terminal differentiation in cultured keratinocytes:pre-programmed pathways in control of C-Myc and Notch1 prevail over extracellular calcium signals. J Invest Dermatol,2005,124(5):1014-1025.
    [7]Prunieras M, Regnier M, Woodley D. Methods for cultivation of keratinocytes with an air-liquid interface. J Invest Dermatol,1983,81(1 Suppl):28s-33s.
    [8]Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin:the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface,2007,4(14):413-437.
    [9]MacNeil S. Progress and opportunities for tissue-engineered skin. Nature,2007,445(7130):874-880.
    [10]Schaum KD.2007 update:skin replacement and skin substitute application codes. Adv Skin Wound Care, 2007,20(5):267-268.
    [11]Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineering-In vivo and in vitro applications. Adv Drug Deliv Rev,2011.
    [12]McGuigan FX. Skin substitutes as alternatives to autografting in a wartime trauma setting. J Am Acad Orthop Surg,2006,14(10 Spec No.):S87-89.
    [13]Shakespeare PG The role of skin substitutes in the treatment of burn injuries. Clin Dermatol, 2005,23(4):413-418.
    [14]Boyce ST, Kagan RJ, Yakuboff KP, et al. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg,2002,235(2):269-279.
    [15]Mansbridge J. Skin substitutes to enhance wound healing. Expert Opin Investig Drugs,1998,7(5):803-809.
    [16]Auger FA, Rouabhia M, Goulet F, et al. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels:clinical and fundamental applications. Med Biol Eng Comput, 1998,36(6):801-812.
    [17]Harrison CA, Gossiel F, Layton CM, et al. Use of an in vitro model of tissue-engineered skin to investigate the mechanism of skin graft contraction. Tissue Eng,2006,12(11):3119-3133.
    [18]Harrison CA, Heaton MJ, Layton CM, et al. Use of an in vitro model of tissue-engineered human skin to study keratinocyte attachment and migration in the process of reepithelialization. Wound Repair Regen, 2006,14(2):203-209.
    [19]Bronneberg D, Bouten CV, Oomens CW, et al. An in vitro model system to study the damaging effects of prolonged mechanical loading of the epidermis. Ann Biomed Eng,2006,34(3):506-514.
    [20]Welss T, Basketter DA, Schroder KR. In vitro skin irritation:facts and future. State of the art review of mechanisms and models. Toxicol In Vitro,2004,18(3):231-243.
    [21]Liebsch M, Spielmann H. Currently available in vitro methods used in the regulatory toxicology. Toxicol Lett, 2002,127(1-3):127-134.
    [22]Damour O, Augustin C, Black AF. Applications of reconstructed skin models in phannaco-toxicological trials. Med Biol Eng Comput,1998,36(6):825-832.
    [23]Kandarova H, Liebsch M, Spielmann H, et al. Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. Toxicol In Vitro, 2006,20(5):547-559.
    [24]Grindon C, Combes R, Cronin MT, et al. A review of the status of alternative approaches to animal testing and the development of integrated testing strategies for assessing the toxicity of chemicals under REACH梐 summary of a DEFRA-funded project conducted by Liverpool John Moores University and FRAME. Altern Lab Anim,2006,34 Suppl 1:149-158.
    [25]Lilienblum W. [Alternative methods to animal experiments. What can they afford in the safety testing of chemical substances under REACH?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2008,51 (12):1434-1443.
    [26]Ponec M. Skin constructs for replacement of skin tissues for in vitro testing. Adv Drug Deliv Rev,2002,54 Suppl 1:S 19-30.
    [27]Cotovio J, Grandidier MH, Portes P, et al. The in vitro skin irritation of chemicals:optimisation of the EPISKIN prediction model within the framework of the ECVAM validation process. Altern Lab Anim, 2005,33(4):329-349.
    [28]Hoffmann S, Hartung T. Designing validation studies more efficiently according to the modular approach: retrospective analysis of the EPISKIN test for skin corrosion. Altern Lab Anim,2006,34(2):177-191.
    [29]Aeby P, Ashikaga T, Bessou-Touya S, et al. Identifying and characterizing chemical skin sensitizers without animal testing:Colipa's research and method development program. Toxicol In Vitro,2010,24(6):1465-1473.
    [30]Jean J, Lapointe M, Soucy J, et al. Development of an in vitro psoriatic skin model by tissue engineering. J Dermatol Sci,2009,53(1):19-25.
    [31]Barker CL, McHale MT, Gillies AK, et al. The development and characterization of an in vitro model of psoriasis. J Invest Dermatol,2004,123(5):892-901.
    [32]Tjabringa G, Bergers M, van RD, et al. Development and validation of human psoriatic skin equivalents. Am J Pathol,2008,173(3):815-823.
    [33]Kalish RS, Simon M, Harrington R, et al. Skin equivalent and natural killer cells:a new model for psoriasis and GVHD. J Invest Dermatol,2009,129(3):773-776.
    [34]Dieterich C, Schandar M, Noll M, et al. In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology,2002,148(Pt 2):497-506.
    [35]Andrei G, Duraffour S, Van den Oord J, et al. Epithelial raft cultures for investigations of virus growth, pathogenesis and efficacy of antiviral agents. Antiviral Res,2010,85(3):431-49.
    [1]Heineken FG SR. Tissue Engineering:A Brief Overview. J Biomech Eng,1991,113(2):111-112.
    [2]Spielmann H, Hoffmann S, Liebsch M, et al. The ECVAM international validation study on in vitro tests for acute skin irritation:report on the validity of the EPISKIN and EpiDenn assays and on the Skin Integrity Function Test. Altern Lab Anim,2007,35(6):559-601.
    [3]Eaglstein WH. Dermagraft treatment of diabetic ulcers. J Dermatol,1998,25(12):803-804.
    [4]Lamb KA, Denyer SP, Sanderson FD, et al. The metabolism of a series of ester pro-drugs by NCTC 2544 cells, skin homogenate and LDE testskin. J Pharm Pharmacol,1994,46(12):965-973.
    [5]Eaglstein WH, Falanga V. Tissue engineering and the development of Apligraf, a human skin equivalent. Clin Ther,1997,19(5):894-905.
    [6]Flamand N, Marrot L, Belaidi JP, et al. Development of genotoxicity test procedures with Episkin, a reconstructed human skin model:towards new tools for in vitro risk assessment of dermally applied compounds. Mutat Res,2006,606(1-2):39-51.
    [7]Slivka SR, Landeen LK, Zeigler F, et al. Characterization, barrier function, and drug metabolism of an in vitro skin model. J Invest Dermatol,1993,100(1):40-46.
    [8]Doucet O, Robert C, Zastrow L. Use of a serum-free reconstituted epidermis as a skin pharmacological model. Toxicol In Vitro, 1996,10(3):305-313.
    [9]Zoller NN, Kippenberger S, Thaci D, et al. Evaluation of beneficial and adverse effects of glucocorticoids on a newly developed full-thickness skin model. Toxicol In Vitro,2008,22(3):747-759.
    [10]Semlin L, Schafer-Korting M, Borelli C, et al. In vitro models for human skin disease. Drug Discov Today, 2011,16(3-4):132-139.
    [1]伍津津.胶原在皮肤组织工程中的应用.重庆医学,2003,32(5):609-611.
    [2]Krappmann S, Bignell EM, Reichard U, et al. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol,2004,52(3):785-799.
    [3]肖仕初.真皮替代物.国外医学.生物医学工程分册,2001,24(01):19-22.
    [4]Dubin MG, Feldman M, Ibrahim HZ, et al. Allograft dermal implant (AlloDerm) in a previously irradiated field. Laryngoscope,2000,110(6):934-937.
    [5]鲁元刚,朱堂友,杨宏珍.四种真皮替代物的制备和比较研究.第三军医大学学报,2003,25(07):649-650.
    [6]Moiemen N, Yarrow J, Hodgson E, et al. Long-term clinical and histological analysis of Integra dermal regeneration template. Plast Reconstr Surg,2011,127(3):l 149-1154.
    [7]Omar AA, Mavor Al, Jones AM, et al. Treatment of venous leg ulcers with Dermagraft. Eur J Vase Endovasc Surg,2004,27(6):666-6672.
    [8]不同类型胶原蛋白构建的组织工程皮肤收缩情况研究.中国皮肤性病学杂志,2009,23(1):24-26.
    [1]Rheinwald JG GH. Serial cultivation of strains of human epidermal keratinocytes:the formation of keratinizing colonies from single cells. Cell,1975,6(3):331-343.
    [2]Hoffmann S, Hartung T. Designing validation studies more efficiently according to the modular approach: retrospective analysis of the EPISKIN test for skin corrosion. Altern Lab Anim,2006,34(2):177-191.
    [3]Spielmann H, Hoffmann S, Liebsch M, et al. The ECVAM international validation study on in vitro tests for acute skin irritation:report on the validity of the EPISKIN and EpiDerm assays and on the Skin Integrity Function Test. Altern Lab Anim,2007,35(6):559-601.
    [4]Lelievre D, Justine P, Christiaens F, et al. The EpiSkin phototoxicity assay (EPA):development of an in vitro tiered strategy using 17 reference chemicals to predict phototoxic potency. Toxicol In Vitro, 2007,21(6):977-995.
    [5]吴凯南.成纤维细胞生长因了的生物学功能及应用综述.中国修复重建外科杂志,1997,11(5):272-275.
    [6]肖仕初,杨珺,王永胜,等.含表皮细胞和成纤维细胞的复合皮构建及移植实验.中华外科杂志2002,(07):531-533.
    [7]Tezuka T, Qing J, Saheki M, et al. Terminal differentiation of facial epidermis of the aged: immunohistochemical studies. Dermatology,1994,188(1):21-24.
    [8]Curran JA, Laverty FS, Campbell D, et al. Epstein-Barr virus encoded latent membrane protein-1 induces epithelial cell proliferation and sensitizes transgenic mice to chemical carcinogenesis. Cancer Res, 2001,61(18):6730-6738.
    [9]Senshu T, Kan S, Ogawa H, et al. Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem Biophys Res Commun,1996,225(3):712-719.
    [10]卢朝辉.S-100生白与肿瘤.临床与实验病理学杂志,2006,22(3):361-364.
    [11]连小华,蔡绍晳.诱导表皮角质形成细胞体外分层的途径及机制.第三军医大学学报,2005,(12):1201-1203.
    [1]Ponec M. Skin constructs for replacement of skin tissues for in vitro testing. Adv Drug Deliv Rev,2002,54 Suppl 1:S 19-30.
    [2]Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineering-In vivo and in vitro applications. Adv Drug Deliv Rev,2011.
    [3]Semlin L, Schafer-Korting M, Borelli C, et al. In vitro models for human skin disease. Drug Discov Today, 2011,16(3-4):132-139.
    [4]肖仕初,杨珺,王永胜,等.含表皮细胞和成纤维细胞的复合皮构建及移植实验.中华外科杂志2002,(07):531-533.
    [5]郭树忠,王臻.培养的正常和瘢痕角质形成细胞上清液对瘢痕成纤维细胞增殖和胶原合成的影响.中华整形外科杂志,2002,(02):83-85.
    [6]de Brugerolle A. SkinEthic Laboratories, a company devoted to develop and produce in vitro alternative methods to animal use. ALTEX,2007,24(3):167-171.
    [7]Souto LR, Rehder J, Vassallo J, et al. Model for human skin reconstructed in vitro composed of associated dermis and epidermis. Sao Paulo Med J,2006,124(2):71-76.
    [8]Lugovic L, Situm M, Ozanic-Bulic S, et al. Phototoxic and photoallergic skin reactions. Coll Antropol,2007,31 Suppl 1:63-67.
    [1]Basketter D, Cockshott A, Corsini E, et al. An evaluation of performance standards and non-radioactive endpoints for the local lymph node assay. The report and recommendations of ECVAM Workshop 65. Altern Lab Anim,2008,36(2):243-257.
    [2]Basketter DA, Deannan RJ, Kimber I, et al. The impact of LLNA group size on the identification and potency classification of skin sensitizers:a review of published data. Cutan Ocul Toxicol,2009,28(1):19-22.
    [3]Ryan CA, Hulette BC, Gerberick GF. Approaches for the development of cell-based in vitro methods for contact sensitization. Toxicol In Vitro,2001,15(1):43-55.
    [4]Basketter D, Maxwell G. In vitro approaches to the identification and characterization of skin sensitizers. Cutan Ocul Toxicol,2007,26(4):359-373.
    [5]Moulon C, Peguet-Navarro J, Courtellemont P, et al. Human in vitro T cell sensitization using hapten-modified epidermal Langerhans cells. Adv Exp Med Biol,1993,329:209-212.
    [6]Krasteva M, Peguet-Navarro J, Moulon C, et al. In vitro primary sensitization of hapten-specific T cells by cultured human epidermal Langerhans cells-a screening predictive assay for contact sensitizers. Clin Exp Allergy,1996,26(5):563-570.
    [7]Coutant KD, de Fraissinette AB, Cordier A, et al. Modulation of the activity of human monocyte-derived dendritic cells by chemical haptens, a metal allergen, and a staphylococcal superantigen. Toxicol Sci, 1999,52(2):189-198.
    [8]Guironnet G, Dalbiez-Gauthier C, Rousset F, et al.In vitro human T cell sensitization to haptens by monocyte-derived dendritic cells. Toxicol In Vitro,2000,14(6):517-522.
    [9]Pichowski JS, Cumberbatch M, Dearman, et al. Investigation of induced changes in interleukin lbeta mRNA expression by cultured human dendritic cells as an in vitro approach to skin sensitization testing. Toxicol In Vitro,2000,14(4):351-360.
    [10]Tuschl H, Kovac R, Weber E. The expression of surface markers on dendritic cells as indicators for the sensitizing potential of chemicals. Toxicol In Vitro,2000,14(6):541-549.
    [11]Ashikaga T, Yoshida Y, Hirota M, et al. Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro, 2006,20(5):767-773.
    [12]Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol,2007,220(2):113-124.
    [13]Yoshida Y, Sakaguchi H, Ito Y, et al. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol In Vitro, 2003,17(2):221-228.
    [14]Azam P, Peiffer JL, Chamousset D, et al. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers. Toxicol Appl Pharmacol,2006,212(1):14-23.
    [15]Natsch A, Emter R. Skin sensitizers induce antioxidant response element dependent genes:application to the in vitro testing of the sensitization potential of chemicals. Toxicol Sci,2008,102(1):110-119.
    [16]Natsch A, Emter R, Ellis G. Filling the concept with data:integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicol Sci, 2009,107(1):106-121.
    [17]Emter R, Ellis G, Natsch A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol Appl Pharmacol,2010,245(3):281-290.
    [18]Caux C, Vanbervliet B, Massacrier C, et al. Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+hematopoietic progenitor cells. Blood,1996,87(6):2376-2385.
    [19]Aiba S, Terunuma A, Manome H, et al. Dendritic cells differently respond to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur J Immunol,1997,27(11):3031-3038.
    [20]Pichowski JS, Cumberbatch M, Dearman RJ, et al. Allergen-induced changes in interleukin 1 beta (IL-1 beta) mRNA expression by human blood-derived dendritic cells:inter-individual differences and relevance for sensitization testing. J Appl Toxicol,2001,21 (2):115-121.
    [21]Sakaguchi H, Ryan C, Ovigne JM, et al. Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials. Toxicol In Vitro,2010,24(6):1810-1820.
    [22]Sakaguchi H, Ashikaga T, Miyazawa M, et al. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT). Cell Biol Toxicol, 2009,25(2):109-126.
    [23]Sakaguchi H, Miyazawa M, Yoshida Y, et al. Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1. Arch Dermatol Res,2007,298(9):427-437.
    [24]Acby P, Ashikaga T, Bessou-Touya S, et al. Identifying and characterizing chemical skin sensitizers without animal testing:Colipa's research and method development program. Toxicol In Vitro,2010,24(6):1465-1473.
    [25]Vandebriel RJ, Pennings JL, Baken KA, et al. Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol Sci,2010,117(1):81-89.
    [26]Vandebriel RJ, van LH. Non-animal sensitization testing:state-of-the-art. Crit Rev Toxicol, 2010,40(5):389-404.
    [27]Cumberbatch M, Dearman RJ, Groves RW, et al. Differential regulation of epidermal langerhans cell migration by interleukins (1L)-1 alpha and IL-1 beta during irritant-and allergen-induced cutaneous immune responses. Toxicol Appl Pharmacol,2002,182(2):126-135.
    [1]Ashikaga T, Yoshida Y, Hirota M, et al. Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro, 2006,20(5):767-773.
    [2]Sakaguchi H, Ashikaga T, Miyazawa M, et al. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT). Cell Biol Toxicol, 2009,25(2):109-126.
    [3]Mitjans M, Viviani B, Lucchi L, et al. Role of p38 MAPK in the selective release of 1L-8 induced by chemical allergen in naive THp-1 cells. Toxicol In Vitro,2008,22(2):386-395.
    [4]Sakaguchi H, Miyazawa M, Yoshida Y, et al. Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1. Arch Dermatol Res,2007,298(9):427-437.
    [5]Caux C, Vanbervliet B, Massacrier C, et al. Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells. Blood,1996,87(6):2376-2385.
    [6]Aiba S, Terunuma A, Manome H, et al. Dendritic cells differently respond to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur J Immunol,1997,27(11):3031-3038.
    [7]Pichowski JS, Cumberbatch M, Dearman RJ, et al. Allergen-induced changes in interleukin 1 beta (IL-1 beta) mRNA expression by human blood-derived dendritic cells:inter-individual differences and relevance for sensitization testing. J Appl Toxicol,2001,21 (2):115-121.
    [8]Yoshida Y, Sakaguchi H, Ito Y, et al. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol In Vitro, 2003,17(2):221-228.
    [9]Sakaguchi H, Ryan C, Ovigne JM, et al. Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials. Toxicol In Vitro,2010,24(6):1810-1820.
    [10]Sakaguchi H, Ashikaga T, Miyazawa M, et al. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol In Vitro,2006,20(5):774-784.
    [11]Bergstrom MA OH, Carlsson A NM, Zwadlo-Klarwasser G JCA. A skin-like cytochrome P450 cocktail activates prohaptens to contact allergenic metabolites. J Invest Dermatol,2007,127(5):1145-1153.
    [12]Cumberbatch M DRJ, Griffiths CE K.I. Epidermal Langerhans cell migration and sensitisation to chemical allergens. Apmis,2003,111(7-8):797-804.
    [13]Van Och FM VLH, Van Wolfswinkel JC MAJ, Vandebriel RJ. Assessment of potency of allergenic activity of low molecular weight compounds based on IL-1 alpha and IL-18 production by a murine and human keratinocyte cell line. Toxicology,2005,210(2-3):95-109.
    [14]Barratt MD BDA. Possible origin of the skin sensitization potential of isoeugenol and related compounds. (I). Preliminary studies of potential reaction mechanisms. Contact Dermatitis,1992,27(2):98-104.
    [15]Al Masaoudi T SS, Callahan CP MHF, Blomeke B. Eugenol but Not Isoeugenol Induces CYPIA1 mRNA in Human Keratinocytes. Int Arch Allergy Immunol,2001,124(1-3):309-311.
    [16]Sieben S HM, AI Masaoudi T MHF, Blomeke B. Characterization of T cell responses to fragrances. Toxicol Appl Pharmacol,2001,172(3):172-178.
    [17]Baron JM ZG, Jugert F HW, Rubben A MH. Cytochrome P450 1B1:a major P450 isoenzyme in human blood monocytes and macrophage subsets. Biochem Pharmacol,1998,56(9):1105-1110.
    [18]Sieben S BJM, Blomeke B MHF. Multiple cytochrome P450-isoenzymes mRNA are expressed in dendritic cells. Int Arch Allergy Immunol,1999,118(2-4):358-361.
    [19]Wanner R SA, Quatchadze M SM, Peiser M ZT. Classification of sensitizing and irritative potential in a combined in-vitro assay. Toxicol Appl Pharmacol,2010,245(2):211-218.
    [20]Schreiner M PM, Briechle D SR, Zuberbier T WR. A loose-fit coculture of activated keratinocytes and dendritic cell-related cells for prediction of sensitizing potential. Allergy,2007,62(12):1419-1428.
    [I]Tuschl H KR. Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol In Vitro,2001,15(4-5):327-331.
    [2]Ryan CA KI, Baskettcr DA PM, Gildea LA GGF. Dendritic cells and skin sensitization:biological roles and uses in hazard identification. Toxicol Appl Pharmacol,2007,221(3):384-394.
    [3]Hulette BA RCA, Gerberick GF. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment. Toxicol Appl Pharmacol,2002,182(3):226-233.
    [4]Sakaguchi H, Ashikaga T, Miyazawa M, et al. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT). Cell Biol Toxicol, 2009,25(2):109-126.
    [5]Tuschl H KR, Weber E. The expression of surface markers on dendritic cells as indicators for the sensitizing potential of chemicals. Toxicol In Vitro,2000,14(6):541-549.
    [6]Tietze C BB. Sensitization assays:monocyte-derived dendritic cells versus a monocytic cell line (THP-1). J Toxicol Environ Health A,2008,71 (13-14):965-968.
    [7]Yoshida Y, Sakaguchi H, Ito Y, et al. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol In Vitro, 2003,17(2):221-228.
    [8]Lambrechts N VS, Lodewyckx H FA, Hooyberghs J WH, et al. THP-1 monocytes but not macrophages as a potential alternative for CD34+ dendritic cells to identify chemical skin sensitizers. Toxicol Appl Pharmacol, 2009,236(2):221-230.
    [9]Sakaguchi H, Ashikaga T, Miyazawa M, et al. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol In Vitro,2006,20(5):774-784.
    [1]陈先进,沈永年,吕桂霞,等.红色毛癣菌感染豚鼠模型的构建.中国医学科学院学报,2008,(05):599-602+641.
    [2]Svecova D. [Experimental Trichophyton rubrum infection in animals]. Epidemiol Mikrobio! Imunol, 2000,49(2):75-79.
    [3]Uchida K TT, Yamaguchi H. Achievement of complete mycological cure by topical antifungal agent NND-502 in guinea pig model of tinea pedis. Microbiol Immunol,2003,47(2):143-146.
    [4]Fidel PL J, Barousse M ET, Ficarra M SJ, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun,2004,72(5):2939-2946.
    [5]De Bernardis F BM, Adriani D GA, Cassone A. Intravaginal and intranasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis. Infect Immun, 2002,70(5):2725-2729.
    [6]Huppert M SSH, Gross AJ. Evaluation of an experimental animal model for testing antifungal substances. Antimicrob Agents Chemother,1972,1(5):367-372.
    [7]Deepe GS J, Gibbons RS. Cellular and molecular regulation of vaccination with heat shock protein 60 from Histoplasma capsulatum. Infect Immun,2002,70(7):3759-3767.
    [1]Aljabre SH RMD, Scott EM RA, Shankland GS. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dennatol,1993,18(3):231-235.
    [2]Zurita J HRJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dennatol,1987,89(5):529-534.
    [3]Rashid A. Arthroconidia as vectors of dermatophytosis. Cutis,2001,67(5 Suppl):23.
    [4]Samdani AJ DPJ, Marks R. The proteolytic activity of strains of T. mentagrophytes and T. rubrum isolated from tinea pedis and tinea unguium infections. J Med Vet Mycol,1995,33(3):167-170.
    [5]Monod M CS, Lechenne B ZC, Holdom M JO. Secreted proteases from pathogenic fungi. Int J Med Microbiol, 2002,292(5-6.):405-419.
    [6]Zhang Y LQL. [Research on secreted keratin proteases of Dermatophytes]. Chin J Mol,2007,6(3):190-192.
    [7]Bartie KL WDW, Wilson MJ PAJ, Lewis MA. Differential invasion of Candida albicans isolates in an in vitro model of oral candidosis. Oral Microbiol Immunol,2004,19(5):293-296.
    [8]Bonowitz A SM, Laude J RK, Korting HC. Comparative therapeutic and toxic effects of different povidone iodine (PVP-I) formulations in a model of oral candidosis based on in vitro reconstituted epithelium. J Drug Target,2001,9(1):75-83.
    [9]Green CB CG, Chandra J MP, Ghannoum MA HLL. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology,2004,150(Pt 2):267-275.
    [10]Jayatilake JA SYH, Cheung LK SLP. Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med,2006,35(8):484-491.
    [11]Naglik JR MD, Makwana J KP, Tsichlaki E WG, et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology,2008,154(Pt 11):3266-3280.
    [12]Samaranayake YH DRS, Cheung BP JJA, Yeung KW YJY. Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. Apmis,2006,114(12):857-866.
    [13]Bernhardt J HD, Sheridan M CR. Adherence and invasion studies of Candida albicans strains, using in vitro models of esophageal candidiasis. J Infect Dis,2001,184(9):1170-1175.
    [14]Bernhardt J BH, Knoke M LK. Influence of voriconazole and fluconazole on reconstituted multilayered oesophageal epithelium infected by Candida albicans. Mycoses,2004,47(7):330-337.
    [15]Schaller M BM, Korting HC BS, Hamm G MM. The secreted aspartyl proteinases Sapl and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun,2003,71(6):3227-3234.
    [16]Schaller M PH, Januschke E KHC. Light and electron microscopic findings in a model of human cutaneous candidosis based on reconstructed human epidermis following the topical application of different econazole formulations. J Drug Target,1999,6(5):361-372.
    [17]Schaller M KHC, Borelli C HG, Hube B. Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect Immun,2005,73(5):2758-2765.
    [18]Korting HC PU, Schaller M MHI. A model of human cutaneous candidosis based on reconstructed human epidermis for the light and electron microscopic study of pathogenesis and treatment. J Infect, 1998,36(3):259-267.
    [19]Schaller M MR, Korting HC. Cytokine expression induced by Candida albicans in a model of cutaneous candidosis based on reconstituted human epidermis. J Med Microbiol,2002,51(8):672-676.
    [20]曾秋林,陈灵敏,闵志刚.PAS染色显示真菌在临床上的应用.检验医学与临床,2010,(21):2425.
    [21]Dieterich C, Schandar M, Noll M, et al. In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology,2002,148(Pt 2):497-506.
    [22]Rashid A, Edward M&R, M. D. Activity of terbinafine on Trichophyton mentagrophytes in a human living skin equivalent model. J Med Vet Mycol,1995,33:229-233.
    [23]秦启贤,秦立模.红色毛癣菌病.临床真菌学.上海:复旦大学出版社,2001:123-127.
    [24]Svecova D. [Experimental Trichophyton rubrum infection in animals]. Epidemiol Mikrobiol Imunol, 2000,49(2):75-9.
    [25]陈先进,沈永年,吕桂霞,等.红色毛癣菌感染豚鼠模型的构建.中国医学科学院学报,2008,(05):599-602+641.
    [26]肖媛媛,王爱平,曹存巍,等.皮肤癣菌体外蛋白水解酶活性测定.中国真菌学杂志,2008,(01):5-7.
    [1]佘晓东,刘维达.非哺乳动物模型与真菌病研究.中国真菌学杂志,2007,2(4):250-252.
    [2]佘晓东,刘维达.动物模型与真菌病研究.国际皮肤性病学杂志,2006,32(2):79-82.
    [3]Svecova D. [Experimental Trichophyton rubrum infection in animals]. Epidemiol Mikrobiol Imunol, 2000,49(2):75-79.
    [4]Petranyi G, Meingassner JG, Mieth H. Antifungal activity of the allylamine derivative terbinafine in vitro. Antimicrob Agents Chemother,1987,31 (9):1365-8.
    [5]Arzeni D, Barchiesi F, Compagnucci P, et al. In vitro activity of terbinafine against clinical isolates of dermatophytes. Med Mycol,1998,36(4):235-7.
    [6]Hazen KC. Fungicidal versus fungistatic activity of terbinafine and itraconazole:an in vitro comparison. J Am Acad Dermatol,1998,38(5 Pt 3):S37-41.
    [7]Fernandez-Torres B, Pereiro M Jr, Llovo J, et al. [Influence of incubation time in the in vitro antifungal activity of terbinafine against Trichophyton rubrum.]. Rev Iberoam Micol,1998,15(4):290-3.
    [8]安惠霞,斯拉甫·艾白,古力娜·达吾提,等.特比萘芬的抗真菌作用及机制的研究.中国抗生素杂志,2010,(06):479-482.
    [9]陈先进,沈永年,吕桂霞,等.红色毛癣菌感染豚鼠模型的构建.中国医学科学院学报,2008,(05):599-602+641.
    [1]Li A, He M, Wang H, et al. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92. Biochcm Biophys Res Commun,2007,352(1):42-7.
    [2]Geissmann F, Revy P, Brousse N, et al. Retinoids regulate survival and antigen presentation by immature dendritic cells. J Exp Med,2003,198(4):623-34.
    [3]Tenaud I, Khammari A, Dreno B. In vitro modulation of TLR-2, CDld and IL-10 by adapalene on normal human skin and acne inflammatory lesions. Exp Dermatol,2007,16(6):500-6.
    [4]Hengesbach LM, Hoag KA. Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J Nutr, 2004,134(10):2653-9.
    [5]Tao Y, Yang Y, Wang W. Effect of all-trans-retinoic acid on the differentiation, maturation and functions of dendritic cells derived from cord blood monocytes. FEMS Immunol Med Microbiol,2006,47(3):444-50.
    [6]Zapata-Gonzalez F, Rueda F, Petriz J, ct al.9-cis-Retinoic acid (9cRA), a retinoid X receptor (RXR) ligand, exerts immunosuppressive effects on dendritic cells by RXR-dependent activation:inhibition of peroxisome proliferator-activated receptor gamma blocks some of the 9cRA activities, and precludes them to mature phenotype development. J Immunol,2007,178(10):6130-9.
    [7]Engedal N, Gjevik T, Blomhoff R, et al. All-trans retinoic acid stimulates IL-2-mediated proliferation of human T lymphocytes:early induction of cyclin D3. J Immunol,2006,177(5):2851-61.
    [8]Ludanyi K, Nagy ZS, Alexa M, et al. Ligation of RARgamma inhibits proliferation of phytohaemagglutinin-stimulated T-cells via down-regulating JAK3 protein levels. Immunol Lett, 2005,98(1):103-13.
    [9]Toth B, Ludanyi K, Kiss I, et al. Retinoids induce Fas(CD95) ligand cell surface expression via RARgamma and nur77 in T cells. Eur J Immunol,2004,34(3):827-36.
    [10]Rasooly R, Schuster GU, Gregg JP, et al. Retinoid x receptor agonists increase bcl2al expression and decrease apoptosis of naive T lymphocytes. J Immunol,2005,175(12):7916-29.
    [11]Blomhoff HK. Vitamin A regulates proliferation and apoptosis of human T-and B-cells. Biochem Soc Trans, 2004,32(Pt 6):982-4.
    [12]Hoag KA, Nashold FE, Goverman J, et al. Retinoic acid enhances the T helper 2 cell development that is essential for robust antibody responses through its action on antigen-presenting cells. J Nutr, 2002,132(12):3736-9.
    [13]Stephensen CB, Rasooly R, Jiang X, et al. Vitamin A enhances in vitro Th2 development via retinoid X receptor pathway. J Immunol,2002,168(9):4495-503.
    [14]Tilley SL, Jaradat M, Stapleton C, et al. Retinoid-related orphan receptor gamma controls immunoglobulin production and Th1/Th2 cytokine balance in the adaptive immune response to allergen. J Immunol, 2007,178(5):3208-18.
    [15]Benson MJ, Pino-Lagos K, Rosemblatt M, et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007,204(8):1765-74.
    [16]Iwata M, Hirakiyama A, Eshima Y, et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity, 2004,21 (4):527-38.
    [17]Wei D, Yang Y, Wang W. The expression of retinoic acid receptors in lymph nodes of young children and the effect of all-trans-retinoic acid on the B cells from lymph nodes. J Clin Immunol,2007,27(1):88-94.
    [18]Chen Q, Ross AC. Vitamin A and immune function:retinoic acid modulates population dynamics in antigen receptor and CD38-stimulated splenic B cells. Proc Natl Acad Sci U S A,2005,102(40):14142-9.
    [19]Schcffel F, Heine G. Henz BM, et al. Retinoic acid inhibits CD40 plus IL-4 mediated IgE production through alterations of sCD23, sCD54 and IL-6 production. Inflamm Res,2005,54(3):113-8.
    [1]Botham PA. Classification of chemicals as sensitisers based on new test methods. Toxicol Lett,1992,64-65 Spec No:165-71.
    [2]Stewart I, Seawright AA, Schluter PJ, et al. Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospennopsin. BMC Dermatol,2006,6:5.
    [3]Thorne PS, Hawk C, Kaliszewski SD, et al. The noninvasive mouse ear swelling assay.1. Refinements for detecting weak contact scnsitizers. Fundam Appl Toxicol,1991,17(4):790-806.
    [4]Kimber I, Dearman RJ, Basketter DA, et al. The local lymph node assay, past, present and future. Contact Dermatitis,2002,47(6):315-28.
    [5]Humphreys NE, Dearman RJ, Kimber I. Assessment of cumulative allergen-activated lymph node cell proliferation using flow cytometry. Toxicol Sci,2003,73(1):80-9.
    [6]Ryan CA, Hulcttc BC, Gerbcrick GF. Approaches for the development of cell-based in vitro methods for contact sensitization. Toxicol In Vitro,2001,15(1):43-55.
    [7]Coquette A, Berna N, Vandenbosch A, et al. Analysis of interleukin-1 alpha (IL-1 alpha) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization. Toxicol In Vitro,2003,17(3):311-21.
    [8]Hulette BA, Ryan CA, Gerberick GF. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment. Toxicol Appl Pharmacol,2002,182(3):226-33.
    [9]Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol,2007,220(2):113-24.
    [10]Azam P, Peiffer JL, Chamousset D, et al. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers. Toxicol Appl Pharmacol,2006,212(1):14-23.
    [11]Sakaguchi H, Ashikaga T, Miyazawa M, et al. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test-human cell line activation test (h-CLAT). Cell Biol Toxicol,2008.
    [12]Neves BM, Cruz MT, Francisco V, et al. Differential modulation of CXCR4 and CD40 protein levels by skin sensitizers and irritants in the FSDC cell line. Toxicol Lett,2008,177(1):74-82.
    [13]Hooyberghs J, Schoeters E, Lambrechts N, et al. A cell-based in vitro alternative to identify skin sensitizers by gene expression. Toxicol Appl Pharmacol,2008,231(1):103-11.
    [14]Schreiner M, Peiser M, Briechle D, et al. A loose-fit coculture of activated keratinocytes and dendritic cell-related cells for prediction of sensitizing potential. Allergy,2007,62(12):1419-28.
    [15]Rougier N, Redziniak G, Mougin D, et al. In vitro evaluation of the sensitization potential of weak contact allergens using langerhans-like dendritic cells and autologous T cells. Toxicology,2000,145(1):73-82.
    [16]Regnier M, Patwardhan A, Scheynius A, et al. Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Comput,1998,36(6):821-4.
    [17]Facy V, Flouret V, Regnier M, et al. Reactivity of Langerhans cells in human reconstructed epidermis to known allergens and UV radiation. Toxicol In Vitro,2005,19(6):787-95.
    [18]Uchino T, Takezawa T, Ikarashi Y, et al. [Construction of three-dimensional human skin model involving dendritic cells and its application to skin sensitization test]. Yakugaku Zasshi,2008,128(1):45-50.
    [19]Koeper LM, Schulz A, Ahr HJ, et al. In vitro differentiation of skin sensitizers by cell signaling pathways. Toxicology,2007,242(1-3):144-52.
    [1]Yamano T, Shimizu M, Noda T. Quantitative comparison of the results obtained by the multiple-dose guinea pig maximization test and the non-radioactive murine local lymph-node assay for various biocides. Toxicology,2005,211(1-2):165-75.
    [2]Nakamura A, Momma J, Sekiguchi H, et al. A new protocol and criteria for quantitative determination of sensitization potencies of chemicals by guinea pig maximization test. Contact Dermatitis,1994,31(2):72-85.
    [3]Botham P, Urtizberea M, Wiemann C, et al. A comparative study of the sensitivity of the 3-induction and 9-induction Buehler test procedures for assessing skin sensitisation potential. Food Chem Toxicol,2005,43(1):65-75.
    [4]Basketter DA, Gerberick GF. An interlaboratory evaluation of the Buehler test for the identification and classification of skin sensitizers. Contact Dermatitis,1996,35(3):146-51.
    [5]Frankild S, Volund A, Wahlberg JE, et al. Comparison of the sensitivities of the Buehler test and the guinea pig maximization test for predictive testing of contact allergy. Acta Derm Venereol,2000,80(4):256-62.
    [6]Basketter D, Cockshott A, Corsini E, et al. An evaluation of performance standards and non-radioactive endpoints for the local lymph node assay. The report and recommendations of ECVAM Workshop 65. Altern Lab Anim,2008,36(2):243-57.
    [7]Basketter DA, Gerberick GF, Kimber I. The local lymph node assay:current position in the regulatory classification of skin sensitizing chemicals. Cutan Ocul Toxicol,2007,26(4):293-301.
    [8]Ryan CA, Chaney JG, Kern PS, et al. The reduced local lymph node assay:the impact of group size. J Appl Toxicol,2008,28(4):518-23.
    [9]Kojima H, Takeyoshi M, Sozu T, et al. Inter-laboratory validation of the modified murine local lymph node assay based on 5-bromo-2'-deoxyuridine incorporation. J Appl Toxicol,2010,31(1):63-74.
    [10]Golla S, Madihally S, Robinson RL, Jr., et al. Quantitative structure-property relationship modeling of skin sensitization:a quantitative prediction. Toxicol In Vitro,2009,23(3):454-65.
    [11]Patlewicz GY, Basketter DA, Pease CK, et al. Further evaluation of quantitative structure--activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Dermatitis,2004,50(2):91-7.
    [12]Gerberick GF, Vassallo JD, Bailey RE, et al. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci,2004,81(2):332-43.
    [13]Natsch A, Gfeller H, Rothaupt M, et al. Utility and limitations of a peptide reactivity assay to predict fragrance allergens in vitro. Toxicol In Vitro,2007,21(7):1220-6.
    [14]Ryan CA, Hulette BC, Gerberick GF. Approaches for the development of cell-based in vitro methods for contact sensitization. Toxicol In Vitro,2001,15(1):43-55.
    [15]Gorbachev AV, Fairchild RL. Induction and regulation of T-cell priming for contact hypersensitivity. Crit Rev Immunol,2001,21(5):451-72.
    [16]Corsini E, Primavera A, Marinovich M, et al. Selective induction of cell-associated interleukin-1alpha in murine keratinocytes by chemical allergens. Toxicology,1998,129(2-3):193-200.
    [17]Van Och FM, Van Loveren H, Van Wolfswinkel JC, et al. Assessment of potency of allergenic activity of low molecular weight compounds based on IL-1alpha and IL-18 production by a murine and human keratinocyte cell line. Toxicology,2005,210(2-3):95-109.
    [18]Corsini E, Mitjans M, Galbiati V, et al. Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens. Toxicol In Vitro,2009,23(5):789-96.
    [19]Galbiati V, Mitjans M, Lucchi L, et al. Further development of the NCTC 2544 IL-18 assay to identify in vitro contact allergens. Toxicol In Vitro,2010.
    [20]Muller G, Saloga J, Germann T, et al. Identification and induction of human keratinocyte-derived IL-12. J Clin Invest,1994,94(5):1799-805.
    [21]Coutant KD, de Fraissinette AB, Cordier A, et al. Modulation of the activity of human monocyte-derived dendritic cells by chemical haptens, a metal allergen, and a staphylococcal superantigen. Toxicol Sci,1999,52(2):189-98.
    [22]Al Masaoudi T, Sieben S, Callahan CP, et al. Eugenol but Not Isoeugenol Induces CYPIA1 mRNA in Human Keratinocytes. Int Arch Allergy Immunol,2001,124(1-3):309-11.
    [23]Lamberti M, Perfetto B, Costabile T, et al. In vitro evaluation of matrix metalloproteinases as predictive testing for nickel, a model sensitizing agent. Toxicol Appl Pharmacol,2004,195(3):321-30.
    [24]Natsch A, Emter R. Skin sensitizers induce antioxidant response element dependent genes:application to the in vitro testing of the sensitization potential of chemicals. Toxicol Sci,2008,102(1):110-9.
    [25]Emter R, Ellis G, Natsch A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol Appl Phannacol,2010,245(3):281-90.
    [26]Yoshikawa Y, Sasahara Y, Kitano Y, et al. Upregulation of genes orchestrating keratinocyte differentiation, including the novel marker gene ID2, by contact sensitizers in human bulge-derived keratinocytes. J Biochem Mol Toxicol,24(1):10-20.
    [27]McKim JM, Jr., Keller DJ,3rd, Gorski JR. A new in vitro method for identifying chemical sensitizers combining peptide binding with ARE/EpRE-mediated gene expression in human skin cells. Cutan Ocul Toxicol,2010,29(3):171-92.
    [28]Bonifas J, Hennen J, Dierolf D, et al. Evaluation of cytochrome P4501 (CYP1) and N-acetyltransferase 1 (NAT1) activities in HaCaT cells:implications for the development of in vitro techniques for predictive testing of contact sensitizers. Toxicol In Vitro,24(3):973-80.
    [29]Vandebriel RJ, Pennings JL, Baken KA, et al. Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol Sci.
    [30]Tuschl H, Kovac R. Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol In Vitro,2001,15(4-5):327-31.
    [31]Boisleve F, Kerdine-Romer S, Pallardy M. Implication of the MAPK pathways in the maturation of human dendritic cells induced by nickel and TNF-alpha. Toxicology,2005,206(2):233-44.
    [32]Aiba S, Manome H, Nakagawa S, et al. p38 Mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J Invest Dermatol,2003,120(3):390-9.
    [33]Arrighi JF, Rebsamen M, Rousset F, et al. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol,2001,166(6):3837-45.
    [34]Boisleve F, Kerdine-Romer S, Rougier-Larzat N, et al. Nickel and DNCB induce CCR7 expression on human dendritic cells through different signalling pathways:role of TNF-alpha and MAPK. J Invest Dermatol,2004,123(3):494-502.
    [35]Ryan CA, Gildea LA, Hulette BC,et al. Gene expression changes in peripheral blood-derived dendritic cells following exposure to a contact allergen. Toxicol Lett,2004,150(3):301-16.
    [36]Gildea LA, Ryan CA, Foertsch LM, et al. Identification of gene expression changes induced by chemical allergens in dendritic cells:opportunities for skin sensitization testing. J Invest Dennatol,2006,126(8):1813-22.
    [37]Ashikaga T, Hoya M, Itagaki H, et al. Evaluation of CD86 expression and MHC class Ⅱ molecule internalization in THP-Ⅰ human monocyte cells as predictive endpoints for contact sensitizers. Toxicol In Vitro,2002,16(6):711-6.
    [38]Yoshida Y, Sakaguchi H, Ito Y, et al. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol In Vitro,2003,17(2):221-8.
    [39]Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol,2007,220(2):113-24.
    [40]Azam P, Peiffer JL, Chamousset D, et al. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers. Toxicol Appl Pharmacol,2006,212(1):14-23.
    [41]Hulette BA, Ryan CA, Gerberick GF. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment. Toxicol Appl Pharmacol,2002,182(3):226-33.
    [42]Tsuchiya S, Yamabe M, Yamaguchi Y, et al. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer,1980,26(2):171-6.
    [43]Tsuchiya S, Kobayashi Y, Goto Y, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res,1982,42(4):1530-6.
    [44]Ashikaga T, Yoshida Y, Hirota M, et al. Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro,2006,20(5):767-73.
    [45]Sakaguchi H, Ashikaga T, Miyazawa M, et al. Development of an in vitro skin sensitization test using human cell lines, human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol In Vitro,2006,20(5):774-84.
    [46]Mitjans M, Viviani B, Lucchi L, et al. Role of p38 MAPK in the selective release of IL-8 induced by chemical allergen in naive THp-1 cells. Toxicol In Vitro,2008,22(2):386-95.
    [47]Miyazawa M, Ito Y, Yoshida Y, et al. Phenotypic alterations and cytokine production in THP-1 cells in response to allergens. Toxicol In Vitro,2007,21(3):428-37.
    [48]Hirota M, Moro O. MIP-1beta, a novel biomarker for in vitro sensitization test using human monocytic cell line. Toxicol In Vitro,2006,20(5):736-42.
    [49]Miyazawa M, Ito Y, Kosaka N, et al. Role of MAPK. signaling pathway in the activation of dendritic type cell line, THP-1, induced by DNCB and NiSO4. J Toxicol Sci,2008,33(1):51-9.
    [50]Nukada Y, Miyazawa M, Kosaka N, et al. Production of IL-8 in THP-1 cells following contact allergen stimulation via mitogen-activated protein kinase activation or tumor necrosis factor-alpha production. J Toxicol Sci,2008,33(2):175-85.
    [51]Cruz MT, Duarte CB, Goncalo M, et al. Differential activation of nuclear factor kappa B subunits in a skin dendritic cell line in response to the strong sensitizer 2,4-dinitrofluorobenzene. Arch Dermatol Res,2002,294(9):419-25.
    [52]Cruz MT, Goncalo M, Figueiredo A, et al. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line. Exp Dermatol,2004,13(1):18-26.
    [53]Ade N, Antonios D, Kerdine-Romer S, et al. NF-kappaB plays a major role in the maturation of human dendritic cells induced by NiSO(4) but not by DNCB. Toxicol Sci,2007,99(2):488-501.
    [54]Antonios D, Ade N, Kerdine-Romcr S, et al. Metallic haptens induce differential phenotype of human dendritic cells through activation of mitogen-activated protein kinase and NF-kappaB pathways. Toxicol In Vitro,2009,23(2):227-34.
    [55]Neves BM, Goncalo M, Figueiredo A, et al. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification? Toxicol Appl Pharmacol,250(2):87-95.
    [56]Sakaguchi H, Ashikaga T, Miyazawa M, et al. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT). Cell Biol Toxicol,2009,25(2):109-26.
    [57]Ashikaga T, Sakaguchi H, Sono S, et al. A comparative evaluation of in vitro skin sensitisation tests:the human cell-line activation test (h-CLAT) versus the local lymph node assay (LLNA). Altern Lab Anim,2010,38(4):275-84.
    [58]Aeby P, Ashikaga T, Bessou-Touya S, et al. Identifying and characterizing chemical skin sensitizers without animal testing:Colipa's research and method development program. Toxicol In Vitro,2010,24(6):1465-73.
    [59]Ade N, Leon F, Pallardy M, et al. HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line:role of the Keapl/Nrf2 pathway. Toxicol Sci,2009,107(2):451-60.
    [60]Sundstrom C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer,1976,17(5):565-77.
    [61]Larrick JW, Fischer DG, Anderson SJ, et al. Characterization of a human macrophage-like cell line stimulated in vitro:a model of macrophage functions. J Immunol,1980,125(1):6-12.
    [62]Olsson I, Gullberg U, Ivhed I, et al. Induction of differentiation of the human histiocytic lymphoma cell line U-937 by 1 alpha,25-dihydroxycholecalciferol. Cancer Res,1983,43(12 Pt 1):5862-7.
    [63]Masterson AJ, Sombroek CC, De Gruijl TD, et al. MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood,2002,100(2):701-3.
    [64]Larsson K, Lindstedt M, Borrebaeck CA. Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells. Immunology,2006,117(2):156-66.
    [65]Python F, Goebel C, Acby P. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol,2009,239(3):273-83.
    [66]Nelissen I, Selderslaghs I, Heuvel RV, et al. MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+progenitor-derived dendritic cells for testing of chemical sensitizers. Toxicol In Vitro,2009,23(8):1477-81.
    [67]Williams EH, Williams CA, McLeod JD. Identification of PDL-1 as a novel biomarker of sensitizer exposure in dendritic-like cells. Toxicol In Vitro,24(6):1727-35.
    [68]Hulette BC, Rowden G, Ryan CA, et al. Cytokine induction of a human acute myelogenous leukemia cell line (KG-1) to a CDla+ dendritic cell phenotype. Arch Dennatol Res,2001,293(3):147-58.
    [69]Yokozeki H, Katayama I, Nishioka K. Experimental study for the development of an in vitro test for contact allergens.1. Primary activation of hapten-specific T cells by hapten-conjugated epidermal cells. Int Arch Allergy Immunol,1995,106(4):394-400.
    [70]Krasteva M, Peguet-Navarro J, Moulon C, et al. In vitro primary sensitization of hapten-specific T cells by cultured human epidermal Langerhans cells--a screening predictive assay for contact sensitizers. Clin Exp Allergy,1996,26(5):563-70.
    [71]Vandebriel RJ, Van Och FM, van Loveren H. In vitro assessment of sensitizing activity of low molecular weight compounds. Toxicol Appl Phatmacol,2005,207(2 Suppl):142-8.
    [72]Schreiner M, Peiser M, Briechle D, et al. A loose-fit coculture of activated keratinocytes and dendritic cell-related cells for prediction of sensitizing potential. Allergy,2007,62(12):1419-28.
    [73]Wanner R, Sonnenburg A, Quatchadze M, et al. Classification of sensitizing and irritative potential in a combined in-vitro assay. Toxicol Appl Pharmacol,2010,245(2):211-8.
    [74]Ge Q, Palliser D, Eisen HN, et al. Homeostatic T cell proliferation in a T cell-dendritic cell coculture system. Proc Natl Acad Sci U S A,2002,99(5):2983-8.
    [75]Von Lilienfeld-Toal M, Sievers E, Bodemuller V, et al. Coculture with dendritic cells promotes proliferation but not cytotoxic activity of gamma/delta T cells. Immunol Lett,2005,99(1):103-8.
    [76]Guironnet G, Dalbiez-Gauthier C, Rousset F, et al. In vitro human T cell sensitization to haptens by monocyte-derived dendritic cells. Toxicol In Vitro,2000,14(6):517-22.
    [77]Coquette A, Berna N, Vandenbosch A, et al. Analysis of interleukin-1 alpha (IL-1alpha) and interleukin-8 (1L-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization. Toxicol In Vitro,2003,17(3):311-21.
    [78]Facy V, Flouret V, Regnier M, et al. Reactivity of Langerhans cells in human reconstructed epidermis to known allergens and UV radiation. Toxicol In Vitro,2005,19(6):787-95.
    [79]Uchino T, Takezawa T, Ikarashi Y. Reconstruction of three-dimensional human skin model composed of dendritic cells, keratinocytes and fibroblasts utilizing a handy scaffold of collagen vitrigel membrane. Toxicol In Vitro,2009,23(2):333-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700