番茄材料PI114490黄色果肉形成的分子分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类胡萝卜素是自然界分布最广的一类色素,它具有很强的抗氧化能力,是人类和动物不可或缺的营养物质。同时类胡萝卜素也是植物内源激素脱落酸(ABA)合成的前体,类胡萝卜素的代谢与植物的生长发育密切相关。明确类胡萝卜素的合成机制对于改善果实品质,理解植物生长发育调控机理具有重要意义。
     八氢番茄红素合成酶(PSY1)基因是类胡萝卜素合成途径的关键基因,它的表达水平直接决定果实类胡萝卜素的含量。番茄r突变体由于Psy1基因组中插入转座子导致转录异常无法积累类胡萝卜素而形成黄色果肉。PI114490是野生型黄果樱桃番茄,控制其黄果肉性状的基因与r基因等位,但已有研究表明PI114490的Psyl基因除内含子中的一个碱基发生改变外,其余序列全部正常。为明确其黄果形成分子机制,本研究开展了以下几方面的工作:(1)分析PI114490果实中的类胡萝卜素组成,验证其表型是否属于r突变:(2)分析PI114490中Psy1的mRNA序列及其表达模式,研究Psy1基因与黄果肉形成的关系;(3)利用PI114490和OH88119的F2代群体和不同的黄果番茄材料分析目前已经发现的突变位点(SNP)与黄果肉性状的连锁关系,同时对该位点进行功能验证;(4)分析PI114490中Psyl基因上下游序列的突变碱基及其与黄色果肉的连锁关系。
     研究结果显示:(1)番茄PI114490果实类胡萝卜素的组成模式与己知的r突变体一致,证明番茄PI114490也是Psy1位点发生突变;(2)番茄PI114490中Psy1基因存在两种转录本,一种是正常转录本Psy1,另一种是异常转录本Psy1/Unknown。Psy1/Unknown的mRNA序列在3末端发生突变,使Psy1/Unknown蛋白合成八氢番茄红素的活性下降。由于两个转录本在成熟过程中共用相同的前体mRNA, Psy1/Unknown的高水平表达抑制了Psy1的转录,在果实成熟后期,正常转录本无法产生足量的有活性的酶合成八氢番茄红素,因此果实表现黄色;(3)Psy1/Unknown是一个嵌合基因,连接的两个基因包含了Psyl基因的大部分序列和一个未知基因的部分序列,分别由两条互补的DNA链转录而来,推测Psy1/Unknown可能是反式剪接反应的产物;(4)在Psy1基因及其相邻的DNA序列中发现两个突变位点:SNP和下游的SSR序列,二者的突变与Psy1/Unknown的转录同步出现,推测这两个位点可能是造成PI114490中Psy1基因发生反式剪接产生两个转录本的原因;(5)Psy1基因内含子中的SNP,可以引发基因产生选择性剪接异构体。
     本研究的结果有助于揭示Psy1基因的转录调控机制,对于阐明番茄黄色果实形成的分子机制,完善类胡萝卜素合成理论具有重要的意义。
Carotenoids are a diverse group of colourful pigments naturally found in plants, algae, fungi and bacteria. They are accumulated in non-photosynthetic tissues such as fruits and flowers showing yellow, orange, and red colors in various plant species. Carotenoids are also important components of the human diet due to their high antioxidative potential. They play essential roles in development, photosynthesis and the production of phytohormones, such as abscisic acid. Understanding the mechanism of carotenoids biosynthesis is benefit to improve the qulity of crops and is important to comprehend the regulated mechanism of development for the plants.
     Chromoplast-specific phytoene synthase (PSY1) is generally considered as the most important regulatory enzyme in carotenoid biosynthesis pathway in fruit. The expression of Psyl gene determines the content of carotenoids in fruit. It has been shown that insertion of transposon in PSY1genome results in aberrant transcription of Psyl causing lack of carotenoids in fruit in yellow flesh tomato mutant (r). A S. lycopersicum var. cerasiforme accession PI114490with yellow flesh phenotype, which is conditioned by a gene allelic to the known r gene, has a complete genomic DNA sequence for the Psyl gene with one nucleotide difference in the fourth intron comparing to the wild type. In order to understanding the cause for the yellow-flesh phenotype in PI114490, we will do the following work:(1) testing the yellow flesh phenotype for PI114490by analyzing the carotenoids contents in fruit,(2) discovering the mRNA sequence of Psyl gene and analyzing the expression levels of this gene in different tissues,(3) investigating the relationship of linkage between the SNP and yellow-flesh phenotype in the F2population of PI114490×OH88119and the different lines tomato with yellow flesh phenotype, and functional analysis of the SNP, and (4) Identifing the mutant sequences neibouring of PSY1gene and the relationship of linkage to yellow-flesh phenotype.
     We showed here the results including the contents as following:(1) carotenoid contents of fruit in PI114409are in accordance with LA3532known being the yellow-flesh mutant.(2) We have identified two different transcript forms, a wide-type transcript (Psy1) and an abnormal transcript (Psy1/Unknown) with different3'end, existing in a yellow-fruited tomato accession PI114490. The PSYl/Unknown has a lower function than PSY1in a bacterial expression system due to the mutation of3'end. High expression of Psyl/Unknown dramatically inhibited the transcription of Psyl at the maturing stage of fruit and resulted in low accumulation of carotenoid and yellow flesh in PI114490.(3) The chimeric transcript Psy1/Unknown is generated by joining exons from two convergent genes, Psyl and an unknown gene, transcribed using both DNA complementary strands. It might be the product of trans-splicing reaction.(4) Two modified sites, a SNP and a SSR, in genomic DNA might being the cause of Psy1/Unknown generation, and (5) The SNP site in the forth intron could initiated alternative splicing to generated new splicing isoforms. The results will help to understand the effects of Psyl gene on fruit color and its regulation mechanisms, which aims to undercover the mechanisms of yellow flesh color formation and improves the knowledge of carotenoid biosynthesis pathway in tomato.
引文
陈大华,叶和春,李国风,刘彦。植物类异戊二烯代谢途径的分子生物学研究进展。植物学报,2000,42(6):551-558
    黄森,张继澍,张院民。赤霉素处理对采后柿果实乙烯生物合成的影响。中国农学通报,2006,22(2):88-90
    孟祥春,高子祥,张昭其,张爱玉。夏橙果实发育后期及返青期类胡萝卜素积累及乙烯的调控。中国农业科学,2011,44(3):538-544
    陶俊,张上隆,陈昆松,赵智中,陈俊伟。GA3处理对柑橘果皮色素变化的影响。园艺学报,2002,2(6):566-568
    魏佳,贾承国,李振,汪炳良,蒋红玲,汪俏。利用突变体研究植物激素对番茄果实品质的影响。核农学报,2009,23(3):521-525
    朱长甫,陈星,王应典。植物类胡萝卜素生物合成及其相关基因在基因工程中的应用。植物生理及分子生物学学报,2004,30(6):609-618
    Alba R, Payton P, Fei Z, McQueen R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell,2005,17:2954-2965
    Alos E, Cercos M, Rodrigo M-J, Zacarias L, Talon M. Regulation of color break in Citrus fruits. changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. J Agric Food Chem,2006,54:4888-4895
    Ampomah-Dwamena C, McGhie T, Wibisono R, Montefior M, Hellens R P, Allan A C.The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J Exp Bot,2009, 60 (13):3765-3779.
    Andreassi C, Riccio A. To localize or not to localize:mRNA fate is in 3'UTR ends. Trends Cell Biol, 2009,19:465-474.
    Bai L, Kim EH, DellaPenna D, Brutnell TP. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant J,2009,59:588-599
    Ballester A-R, Molthoff J, Vos R, Hekkert BL, Orzaez D, Fernandez-Moreno J-P, Tripodi P, Grandillo S, Martin C, Heldens J, et al..Biochemical and Molecular Analysis of Pink Tomatoes:Deregulated Expression of the Gene Encoding Transcription Factor S1MYB12 Leads to Pink Tomato Fruit Color. Plant Physiol,2010,152:71-84
    Barry CS, McQuinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni J. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol,2005,138: 267-275
    Bartley GE, Scolnik PA. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem,1993,268:25718-25721.
    Bartley GE, Scolnik PA. Plant Carotenoids:Pigments for Photoprotection, Visual Attraction, and Human Health. Plant Cell,1995,7:1027-1038
    Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I. Golden Rice:introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr.2002,132:506S-510S
    Biet E, Sun J, Dutreix M. Conserved sequence preference in DNA binding among recombination proteins:an effect of ssDNA secondary structure. Nucleic Acids Res,1999,27:596-600.
    Brett D, Pospisil H, Valcarcel J, Reich J, Bork P. Alternative splicing and genome complexity. Nat. Genet.2002.30:29-30.
    Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJ. Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8. Plant Cell,2009,21:39-53
    Cazzonelli CI, Pogson BJ. Source to sink:regulation of carotenoid biosynthesis in plants. Trends Plant Sci,2010,15:266-274.
    Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol,1995,46:521-547
    Cheng XD, Zhang DF, Chegn ZK, Keller B, Ling HQ. A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics,2009,181:1183-1193
    Chetelat RT. Revised list of monogenic stocks. Tomato Genet Coop Rep,2005,55:48-69
    Chmielewski T, Berger S. Investigations on the inheritance of high concentrations of provitamin A in tomato. Hodowla Roslin Aklim Nasienn,1966,10:385-400
    Clayberg CD, Butler L, Rick CM, Young PA. Second list of known genes in the tomato. J Hered,1960, 51:167-174
    Corona V, Aracri B, Kosturkova G, Bartley GE, Pitto L, Giorgetti L, Scolnik PA, Giuliano G. Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J,1996,9: 505-512
    Cunningham Jr. FX, Gantt E. A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes:Adonis aestivalis as a case study. Photosynth Res,2007,92:245-259
    Cunningham Jr. FX, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol,1998,49:557-583
    Cunningham Jr. FX, Gantt E. One ring or two? Determination of ring number on carotenoids by lycopene ε-lycopene cyclase. Pro Natl Acad Sci USA,2001,98(5):2905-2910
    Cuttriss AJ, Chubb AC, Alawady A, Grimm B, Pogson BJ. Regulation of lutein biosynthesis and prolamellar body formation in Arabidopsis. Funct Plant Biol,2007,34:663-672
    Czapski J, Saniewski M. The effect of methyl jasmonate vapour on same characteristics of fruit ripening, carotenoids and tomatine changes in tomato (Lycopersicon esculentum Mill). Acta Agrobotanica, 1995,48(2):27-35
    Dutreix M. (GT) n repetitive tracts affect several stages of RecA promoted recombination. J Mol Biol, 1997,273:105-113
    Fischer SEJ, Butler MD, Pan Q, Ruvkun G (2008) Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7. Nature 455:491-496
    Frank HA, Cogdell RJ. Carotenoids in photosynthesis. Photochem Photobiol,1996,63(3):257-264
    Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res,2004,43: 228-265
    Fraser PD, Romer S, Shipton CA, Mills PM, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM,. Biochemical evaluation of transgenic tomato plants expressing an addition phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA,2002,99 (2):1092-1097
    Fraser PD, Schuch W, Bramley PM. Phytoene synthase from tomato (Lycopersicon esculemtun) chloroplasts-partial purification and biochemical properties. Planta,2000,211:361-369.
    Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM. Carotenoid biosynthesis during tomato fruit development (evidence for tissue specific gene expression). Plant Physiol,1994,105:405-413.
    Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol,1993,22:589-602.
    Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D. Constitutive expressionof a fruit phytoene synthase gene intransgenic tomatoes causes dwarfism by redirecting metabolites from the ibberellins pathway. Plant J,1995,8:693-701
    Frenkel-Morgenstern M, Valencia A. Novel domain combinations in proteins encoded by chimeric transcripts. Bioinformatics,2012,28:i67-i74
    Fu H, Dooner HK. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA,2002,99:9573-9578
    Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J. A Chromoplast-Specific Carotenoid Biosynthesis Pathway Is Revealed by Cloning of the Tomato white-flower Locus. Plant Cell,2006,18:1947-1960
    Giorio G, Stigliani AL, D'Ambrosio C. Phytoene synthase genes in tomato (Solanum lycopersicum L.): new data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J, 2008,275:527-535
    Giovannucci E. Lycopene and prostate cancer risk. Methodological considerations in the epidemiologic literature. Pure and Applied Chemistry,2002,74:1427-1434
    Giuliano G, Bartley G E., Scolnik P A. Regulation of Carotenoid Biosynthesis during Tomato Development. The Plant Cell,1993,5:379-387
    Goodwin TW. The biochemistry of the carotenoid (Volume Ⅰ Plants). London and New York: Chapman and Hall,1980
    Grumbach, K.H., Lichtenthaler, H.K., Chloroplast pigments and their biosynthesis in relation to light intensity. Photochem Photobiol,1982,35:209-212
    Hirsehberg J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol,2001,4:210-218
    Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics,2009,9:363-376
    Hunt GM, Baker EA:Phenolic constituents of tomato fruit cuticles. Phytochemistry,1980,19:1415-1419
    Ikoma Y, Komatsu A, Kita M, Ogawa K, Omura M, Yano M, Moriguchi T, Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development. Physiol Plantarum,2001,111(2):232-238
    Imanishi S Nagata M. The effect of methyl jasmonate on expression of the genes involved in ethylene biosynthesis in tomato fruits. Abstract 169. Honolulu:American Society of Plant Biologists. Plant Biology.2003
    Isaacson T, Ronen G, Zamir D, Hirschberg J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell,2002, 14:333-342
    Jeffery D, Smith C, Goodenough P, Prosser I, Grierson D. Ethylene-independent and ethylene-dependent biochemical changes in ripening tomatoes, Plant Physiol,1984,74:32-38
    Jeffreys AJ, Murray J, Neumann R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol Cell,1998,2:267-273
    Jenkins JA, Mackinney G. Carotenoids of the apricot tomato and its hybrids with yellow and tangerine. Genetics,1955,40:715-720
    Jiang N, Visa S, Wu S, van der Knaap E. Rider transposon insertions and phenotypic change in tomato. In Plant Transposable Elements.Grandbastien M-A and Casacuberta JM (eds). Topics in Current Genetics 24, Berlin Heidelberg:Springer-Verlag,2012,297-312
    Kachanovsky DE, Filler S, Isaacson T, Hirschberg J. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci USA,2012, 109:19021-19026
    Kang B, Zhao W, Hou Y, Tian P. Expression of carotenogenic genes during the development and ripening of watermelon fruit. Sci Hortic,2010,124(3):368-375
    Karvouni Z, John I, Taylor JE, Watson CF, Turner AJ, Grierson D. Isolation and characterization of a melon cDNA clone encoding phytoene synthase. Plant Mol Biol,1995,27:1153-1162
    Kawase T, AkatsukaY, Torikai H, Morishima S, Oka A, Tsujimura A, Miyazaki M, Tsujimura K, Miyamura K, Ogawa S, et al. Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen. BLOOD,2007,110:1055-1063
    Kerckhoffs LHJ, Kendrick RE. Photocontrol of anthocyanin biosynthesis in tomato. J Plant Res,1997, 110:141-149
    Kerr EA. Linkage relations of gf. Tomato Genet Coop Rep,1958,8:21
    Labate JA, Grandillo S, Fulton T, Munos S, Caicedo AL, Peralta I, Ji Y, Chetelat RT, et al. Genome Mapping and Molecular Breeding in Plants, Volume 5 Vegetables. Kole C (Ed.), Springer-Verlag Berlin Herdelferg,2007,62-66
    Labrador M, Mongelard F, Plata-Rengifo P, Baxter EM, Corces VG, Gerasimova TI. Protein encoding by both DNA strands. Nature,2001,409:1000
    Landrum JT, Bone RA. Dietary lutein & zeaxanthin:reducing the risk for macular degeneration. Agro Food Industry Hi-Tech,2004,15:22-25
    Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys,2001, 385:28-40
    Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell,2009,21:3535-3553
    Lesley JW, Lesley MM. A virescent tangerine mutant in R2 from seed treatment with radioactive isotope P32. Tomato Genet Coop Rep,1956,6:17-18
    Lincoln RE, Porter JW. Inheritance of beta-carotene in tomatoes. Genetics,1950,35:206-211
    Lindbo JA. TRBO:A High-Efficiency Tobacco Mosaic Virus RNA-Based Overexpression Vector. Plant Physiology,2007,145:1232-1240
    Liu Y, Roof S, Ye Z, BarryC, vanTuinenA, Vrebalov J, Bowler C, Giovannoni J Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA,2004,101:9897-9902
    Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A. Carotenoid biosynthesis during tomato fruit development:regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J, 2000,22:503-513
    Lopes M, candela ME, Sabater F. Carotenoids from capsicum annuum fruits:influence of spectral quanlity of radiation, Biologia Plantarum,1986,28 (2):100-104
    Lopez A B, Eck J V, Conlin B J, Paolillo D J, O'Neill J, Li L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot,2008, 59 (2):213-223
    Lu S, Li L. Carotenoid metabolism:biosynthesis, regulation, and beyond. J Integr Plant Biol,2008,50: 778-785
    Lu S, Van EJ, Zhou X, Lopez AB, O'Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, et al.. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell,2006,18:3594-3605
    Lurie S, Handros A, Fallik E, Shapira R. Reversible inhibition of tomato fruit gene expression at high temperature. Effects on tomato fruit ripening. Plant Physiol,1996,110:1207-1214
    Maass D, Arango J, Wust F, Beyer P, Welsch R. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.2009, PLoS ONE 4:e6373.
    MacArthur J. Linkage groups in the tomato. J Genet,1934,29:123-133
    Maher CA, Palanisamy N, Brenner JC, Cao X, Kalyana-Sundaram S, Luo S, Khrebtukova I, Barrette TR, Grasso C, Yu J et al.. Chimeric transcript discovery by paired-end transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America,2009, 106:12353-12358
    Marcel V, Tran PL, Sagne C, Martel-Planche G, Vaslin L, Teulade-Fichou MP, Hall J, Mergny JL, Hainaut P, Van Dyck E. G-quadruplex structures in TP53 intron 3:role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis,2011,32:271-278
    Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M et al.. CDD:specific functional annotation with the conserved domain database. Nucleic Acids Res,2009,37:D205-D210
    Marty I, Bureaul S, Sarkissianl G, Goublel B, Audergon JM, Albagnac G. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J Exp Bot,2005,56 (417):1877-1886
    Mayne ST. Beta-carotene, carotenoids and disease prevention in humans. FASEB J,1996,10:690-701
    McGarvey DJ, Croleau R. Terpenoid metabolism. Plant Cell,1995:1015-1026
    Misawa N, Yamano S, Linden H, de Felipe M R., Lucas M, Ikenaga H, Sandmann G. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of β-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon. Plant J,1993,4(5):833-840
    North HM, Frey A, Boutin J P,Sotta B, Marion-Poll A. Analysis of xanthophylls cycle gene expression during the adaptation of Arabidopsis to excess light and drought stress:changes in RNA steady-state levels do not contribute to short-term responses, Plant Sci,2005,169(1):115-124
    Nuchnoi P, Nantakomo D, Chumchua V, Plabplueng C, Isarankura-Na-Ayudhya C, Prachayasittikul V. The identification of functional non-synonymous SNP in human ATPbinding cassette (ABC), subfamily member 7 gene:application of bioinformatics tools in biomedicine. J Bioanal Biomed 2011,3:1
    Pecker I, Gabbay R, Cunningham F J, Hisrschberg J. Cloning and characterization of the cDNA for lycopene cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol,1996,30:807-819
    Perez AG, Sanz C, Richardson DG, Olias JM. Methyl jasmonate vapor promotes β-carotene synthesis and chlorolphyll degradation in GoldeN Delicious apple peel. J Plant Growth Regul,1993,12(3): 163-167
    Peters JL, Van Tuinen A, Adamse P, Kendrick RE, Koornneef M. High pigmentmutants of tomato exhibit high sensitivity for phytochrome action. J Plant Physiol,1989,134:661-666
    Price HL, Drinkard AW Jr:Inheritance in tomato hybrids. Virg Agric Exp Stn Bull,1908,177:17-53
    Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res,2007,17:471-482
    Ray J, Bird CR, Maunders M, Grierson D, Schuch W:Sequence of pTOM5, a ripening related cDNA from tomato. Nucleic Acids Res,1987,15:10587
    Ray J, Moureau P, Bird C, Bird A, Grierson D. Maunders M, Truesdale M, Bramley P, Schuch W: Cloning and ibberellinsion of a gene involved in phytoene synthesis from tomato. Plant Mol Biol 1992,19:401-404
    Rick CM, Butler L. Cytogenetics of the tomato. Adv Genet,1956,8:267-382
    Rick CM, Fobes JF. Association of an allozyme with nematode resistance. Tomato Genet Coop Rep, 1974,24:25
    Rick CM, Smith PG. Novel variation in tomato species hybrids. Am Nat,1953,87:359-373
    Rick CM. New mutants. Tomato Genet Coop Rep,1956,6:22-23
    RickCM, ThompsonAE, BrauerO. Genetics anddevelopment of an unstable chlorophyll deficiency in Lycopersicon esculentum. Am J Bot,1959,46:1-11
    Rodriguez-Suarez C, Atienza S G, Pist6n F. Allelic variation, alternative splicing and expression analysis of PSY1 gene in Hordeum chilense Roem. et Schult. PLoS One,2011,6:e19885
    Rodriguez-Villal6n A, Gas E, Rodriguez-Concepci6n M. Colors in the dark:A model for the regulation of carotenoid biosynthesis in etioplasts. Plant Signal Behav,2009b,4:965-967
    Rodriguez-Villalon A, Gas E, Rodriguez-Conception M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J,2009a,60:424-435
    Romani A, Guerra E, Trerotola M, Alberti S (2003) Detection and analysis of spliced chimeric mRNAs in sequence databanks. Nucleic Acids Res 31:17
    Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM. Elevation of the provitamin A content of transgenic tomato plants. Nat Biotech,2000,18:666-669
    Ronen G, Carmel-Goren L, Zamir D, Hirschberg J, An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA,2000,97:11102-11107
    Ronen G, Cohen M, Zamir D, Hirschberg J. Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J,1999,17:341-351
    Sandmann G, Romer S, Fraser PD. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng,2006,8:291-302
    Saniewski M, Czapski J. The effect of methyl jasmonate on lycopene and P-carotene accumulat ion in ripening red tomatoes. Cell Mol Life Sci,1983,39:1373-1374
    Schofield A, Paliyeth G. Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity, Plant Physiol Bioch,2005,43(12):1052-1060
    Scolnik PA, Hinton P, Greenblatt IM, Giuliano G, Delanoy MR, Spector DL, Pollock D. Somatic instability of carotenoid biosynthesis in the tomato ghost mutant and its effect on plastid development. Planta,1987,171:1-18
    Severing El, Dijk ADV, Ham RCV. Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data. BMC Plant Biol,2011,11:82
    Severing EI, Dijk ADV, Stiekema WJ, Ham RCV. Comparative analysis indicates that alternative splicing in plants has a limited role in functional expansion of the proteome. BMC Genomics,2009, 10:154
    Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY, Seed-specific over-expression of phytoene synthase:increase in arytenoids and other metabolic effects. Plant J,1999,20:401-412
    Shumskaya M, Bradbury LMT, Monaco RR, Wurtze ET. Plastid Localization of the Key Carotenoid Enzyme Phytoene Synthase Is Altered by Isozyme, Allelic Variation, and Activity. Plant Cell, 2012,24:3725-3741
    Simkin AJ, Laboure A-M, Kuntz M, Sandmann G. Comparison of carotenoid content, gene expression and enzyme levels in tomato (Lycopersicon esculentum) leaves. Z. Naturforsch.2003,58C:371-380
    Steward I, Wheaton TA. Carotenoids in citrus:Their accumulation induced by ethylene. J Agric Food Chem,1972,20:448-449
    Stubbe H. Mutanten der kulturtomate Lycopersicon esculentum Miller. IV Die Kulturpflanze.1963,11: 603-644
    Stubbe H. Mutanten der wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill. Ⅲ. Die Kulturpflanze, 1965,13:517-544
    Tan TLH, Ranymundo LC. Biosynthesis of carotenoids in bittermelon at high temperature. Phytochem, 1999,52:275-280
    Theologis A, Oeller P W, Wong L M, Rottmann WH, Gantz DM. Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process. Dev Genet,1993, 14(4):282-295
    Thompson AE, Tomes ML, Erickson HT, Wann EV, Armstrong RJ. Inheritance of crimson fruit color in tomatoes. Proc Am Soc Hort Sci,1967,91:495-504
    Toledo-Ortiza G, Huqb E, Rodriguez-Concepcion M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA,2010,107:11626-11631
    Tomes ML, Quackenbush FW, McQuistan M. Modification and dominance of the gene governing formation of high concentrations of beta-carotene in the tomato. Genetics,1954,39:810-817
    Tomes ML. Temperature inhibition of carotene synthesis in tomato. Bot Gaz,1963,124:180-185
    van Tuinen A, Cordonnier-Pratt M, Pratt LH, Verkerk R, Zabel P, Koornneef M. The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor Appl Genet,1997,94:115-122
    von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H, Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J,1997,12:625-634.
    Weedon BCL, Moss GP. Structure and nomenclature, In "Carotenoids:Spectroscopy," G. Britton (ed.). Birkhauser Verlag. Boston,1995,27-70
    Welsch R, Medina J, Giuliano G, Beyer P, von Lintig J, Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta,2003,216:523-534
    Welsch R, Wiist F, Bar C, Al-Babili S, Beyer P. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol,2008,147:367-380
    Ye XD, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science,2000,287:303-305
    Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni J. The tomato high-pigment (hp) locusmaps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet,1997,95:1069-1079
    Yeum KJ, Russell RM. Carotenoid bioavailability and bioconversion. Annu Rev Nutr.2002,22:483-504
    Young PA. ry, A modifier gene for red color in yellow tomato fruit. Tomato Genet Coop Rep,1956,6: 33
    Yuan D, Chen J, Shen H, Yang W. Genetics of flesh color and nucleotide sequence analysis of phytoene synthase gene 1 in a yellow-fruited tomato accession PI114490. Sci Hortic,2008,118:20-24
    Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol,1988,39:439-473
    Zhang M, Yuan B, Leng P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot,2009,60:579-1588
    Zhang Y, Stommel JR. RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theor Appl Genet,2000,100:368-375
    Zhao Q, Schoborg RV, Pintel DJ. Alternative Splicing of Pre-mrnas Encoding the Nonstructural Proteins of Minute Virus of Mice Is Facilitated by Sequences within the Downstream Intron. J Virol,1994,68:2849-2859
    Zhu C, Yamamura S, Koiwa H, Nishihara M, Sandmann G. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea. Plant Mol Biol,2002,48:277-285
    Zhu C, Yamamura S, Nishihara M, Koiwa H, Sandmann G. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development. Biochim Biophys Acta,2003,1625:305-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700