鼠尾藻遗传多样性的AFLP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠尾藻是我国常见的暖温带海藻,具有较高的经济价值和营养价值。作为经济水产养殖动物的优质饵料,随着海参及鲍鱼养殖业的迅猛发展,其需求量也不断增加。目前鼠尾藻在我国尚未形成规模化养殖,仅靠年产量较低的自然繁殖和小规模的人工养殖,无法满足生产需要。尽管鼠尾藻养殖规模较小,但其养殖对野生鼠尾藻种菜的需求和依赖性较大,导致人们大量采集自然生长的鼠尾藻作为养殖种菜或直接作为海参等的养殖饵料,导致沿海地区的鼠尾藻种质资源遭到严重破坏。因此开展鼠尾藻的人工养殖种苗培育和优良品种开发的研究势在必行,同时其遗传多样性鉴定和种质资源保护也变得尤为重要。
     实验采用AFLP分子标记技术对大连5个野生鼠尾藻种群:庄河石城岛(SCD),瓦房店将军石(JJS),长海县大长山(DCS),旅顺董砣子(DTZ),旅顺盐场(YC)与山东蓬莱(PL) 1个种群共60个个体进行遗传多样性和亲缘关系分析。采用10对选择性扩增引物组合共扩增出条带530条,其中多态性带417条,多态性平均检出比例78.68%。AMOVA分析显示,在种群总的遗传变异中,大部分的遗传变异(76.58%)存在于种群内,少部分(23.42%)存在于种群之间。遗传分化系数Gst为0.2418,与Fst的值(0.2342)接近,表明鼠尾藻种群内部具有较高的遗传分化。UPGMA聚类分析可知,大连5个野生鼠尾藻种群与山东蓬莱鼠尾藻种群亲缘关系较远,明显聚为两支;大连种群中将军石和大长山两种群聚为一支,遗传相似系数为0.7698,再与董砣子种群聚类到一起;盐场种群单独聚为一支,与其它种群之间的遗传相似系数均在0.5830以下。分析结果表明,各鼠尾藻种群内部存在着较高的遗传多样性,而种群间的遗传多样性水平较低,其亲缘关系的远近不仅与地理隔离因素有关,局部高盐等外界环境胁迫也可能起到了一定的作用。
     本研究选用AFLP分子标记技术探讨了大连沿海5个野生种群和山东蓬莱1个野生种群鼠尾藻的遗传多样性,通过在分子水平上分析各野生种群内部和种群之间的遗传分化相关指数,计算各群体间的遗传距离及遗传相似性,生成聚类关系图谱,揭示了6个野生鼠尾藻种群的遗传多样性及其相互关系,这些遗传背景的初步揭示可以为野生鼠尾藻种质资源鉴定,人工育苗以及杂交育种技术中的亲本选择提供可靠的理论依据。
Sargassum thunbergii is a common warm-temperate seaweed in China which has high economic and nutritional values. With the rapid development of sea cucumber aquaculture industry, the demand of S. thunbergii is also rising rapidly. But currently S. thunbergii culture have not formed large-scale farming, and the annual production was lower. Because S. thunbergii culture is quite dependent on the selection of seedling sources, and a large amounts of nature wild S. thunbergii was used as food of sea cucumber, S. thunbergii germplasm resources have been seriousely damaged. Therefore, the artificial cultivation of S. thunbergii is imperative, and its germplasm resources conservation and identification of genetic diversity have become particularly important.
     Amplified fragment length polymorphism (AFLP) was used to assess the genetic diversity of five wild populations of S. thunbergii in Dalian: SHICHENGDAO(SCD), JIANGJUNSHI(JJS), DACHANGSHAN(DCS), DONGTUOZI(DTZ), YANCHANG(YC) and a Shandong population: PENGLAI(PL). 530 loci were obtained using 10 combinations of selective primers. Of these loci, 417 were polymorphic, accounting for average 78.98% of the total. Analysis of molecular variance (AMOVA) revealed that a higher portion (76.58%) of variations was detected within populations, while a lower portion (23.42%) of variation was found among populations. The Gst value was 0.2418, which was consistent with Fst (0.2342), indicating strong genetic differentiation within populations. When integrated with the UPGMA dendrogram of the six populations, they can be clustered into two major groups. One was Shandong population, the other was Dalian populations; among Dalian populations, JJS and DCS were clustered into one group, reaching a coefficient of similarity 0.7698, but YC was lonely clustered into one group, whose coefficient of similarity was below 0.5830 comparing with the other five populations. The results showed that there was higher genetic diversity within the six populations, however it was lower among the populations; and that relationship of populations was decided not only on the geographical distance but also on the external environmental factors such as high salt and so on.
     Using AFLP molecular markers the study investigated the genetic diversity of S. thunbergii of five wild populations along the coast of Dalian and a wild population of Shandong Penglai. The analyzed index related to genetic differentiation within and between wild populations at the molecular lever, the genetic distance and genetic similarity between groups, UPGMA dendrogram, and the genetic diversity of the six wild populations of S. thunbergii. These will provide a strong theoretical basis and strong genetic background for development and cultivation of the germplasm resources.
引文
[1]方同光,张学明,赵学武.几种海藻的渗透生理与它们在潮间带分布的关系[J].海洋与湖沼, 1964, 6(1): 85-96.
    [2]曾呈奎,张峻甫.中国沿海海藻区系的初步研究[J].海洋与湖沼, 1963, 5(3): 245-253.
    [3]曾呈奎,陆保仁.中国海藻志.北京:科学出版社, 2000: 56-58.
    [4]曾呈奎,张德瑞,张峻甫.中国经济海藻志.北京:科学出版社, 1962.
    [5]堀辉三.藻类的生活史集成:单细胞性、鞭毛藻类.东京:内田老鹤圃出版社, 1993, 3: 62.
    [6]袁成玉.海参饲料研究的现状与发展方向[J].水产科学, 2005, 24(12): 54-56.
    [7]林超,丁曙光,郭道森.鼠尾藻中褐藻多酚化合物的抑菌活性研究[J].海洋科学, 2006, 30(3): 94-97.
    [8]韩晓弟,李岚萍.鼠尾藻特征特性与利用[J].特种经济动植物. 2005, 1: 27.
    [9]张尔贤,俞丽君,肖湘,齐汝斌.鼠尾藻醇提取物的生理活性和生物化学研究[J],中国海洋药物, 1994, 1(1): 30-34.
    [10]邹吉新,李源强,刘雨新,王义民.鼠尾藻的生物学特性及筏式养殖技术研究.齐鲁渔业, 2005, 22(3): 25-28.
    [11]原永党,张少华,孙爱凤,刘海燕.鼠尾藻劈叉筏式养殖试验.海洋湖沼通报, 2006, (2): 126-128.
    [12] Hunter R L, Marker C L. Histochemical demonstration of isozymes separated by zone electropheresis in starch gels. Science, 1957, 125: 1294-1296.
    [13]庞金安,李淑菊,霍振荣.黄瓜形态标记研究进展.天津农业科学, 2003, 9(4): 28-31.
    [14]沈永宝,施季森.植物种或品种鉴定的展望.江苏林业科技, 2004, 31(5): 41-45.
    [15] Smith P J, Benson P G, McVeagh S M. A comparison of three genetic methods used for stock discrimination of orange roughy, Hoplostethus atlanticus: Allozymes, mitochondrial DNA, and random amplified polymorphic DNA. Oceanoguapic Literature Review, 1998, 45(2): 406.
    [16] Oconnell M, Skibinski D F, Beardmore J A. Allozyme and mtDNA divergence between Atlantic salmon populations in North Wales, Journal of Fish Biology, 1996, 48(3): 1023-1026.
    [17] Bensch S, Alesson M. Ten years of AFLP in ecology and evolution :why so few animals? Mol. Ecol, 2005, 14(2): 899-914.
    [18] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238: 1-37.
    [19] Vos P, Hogers R, Bleeker M,et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23(21): 4407-4414.
    [20] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 105: 1050-1057.
    [21] Becker J, Vos P, Kuiper M, et al. Combined mapping of AFLP and RFLP markers in barley. Md Gen Genet, 1995, 249: 65-73.
    [22] Jones D F. Heterosis resulting from degenerative changes. Genetics, 1945, 30: 527-542.
    [23] Kusumo H T, Druehl L D. Variability over space and time in the genetic structure of the winged kelp Alaria marginata. Mar Biol, 2000, 136: 397-409.
    [24] Donaldson L S, Chopin T, Saunders W G. Amplified Fragment Length Polymorphism(AFLP) as s sourse of genetic markers for red algae. J Appl. Phycol, 1998, 10: 365-370.
    [25] Schaeffer T N, Smith G J, Foster M S, De Tomaso A. Genetic differences between two growth-forms of Lithophyllum margaritae (Rhodophyta) in baja California sur, Mexico. J Phycol, 2002, 38: 1090-1098.
    [26] Mvller J, Friedl T, Hepperle D, et al. Disinction between multiple isolations of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and ITS rDNA sequence. J Phycol, 2005, 41: 1236-1247.
    [27] Mammschreck Beate, Fink Tobias, Melzer Arnulf. Biosystematics of selected Chara species (Charophyta) using amplified fragment length polymorphism. Phycologia, 2002, 41: 657-666.
    [28] Niwa K, Kikuchi N, Iwabuchi M, Aruga Y. Morphological and AFLP variation of Porphura yezoensis Ueda from Narawaensis Miura (Bangiales, Rhodophyta). Phycol, 2004, 52: 180-190.
    [29] Erting L, Daugbjerg N, Pedersen P M. Nucleotide diversity within and between four species of Laminaria (Phaeophuceae) analyzed using partial LSU and ITS rDNA sequences and AFLP. Eur J Phycol, 2004, 39: 243-256.
    [30]杨锐,刘必谦,骆其君,戴继勋.利用扩增片段长度多态性(AFLP)研究坛紫菜的遗传变异.高技术通讯, 2002, 1: 83-86.
    [31]张全胜,石媛媛,杨官品.我国引种海带和栽培品种(系)来源配子体克隆的AFLP分析[J].中国海洋大学学报, 2008, 38(3): 429-435.
    [32]石媛嫄,杨官品,刘永健,尚书.海带和长海带配子体无性繁殖系微卫星DNA多态性比较分析.中国海洋大学学报, 2008, 38(2): 303-308.
    [33]李世国,单体锋,逄少军等.九个海带栽培品种自交系后代遗传多样性和亲缘关系的AFLP分析[J].中国水产科学. 2009, 16(2): 214-220.
    [34] Shan T F, Pang S J. Assessing genetic identities of sporophytic offspring of the brown alga Undaria pinnatifida derived from mono-crossing of gametophyte clones by use of AFLP and microsatellite markers. Phycological Research, 2009, 57: 36-44.
    [35]单体锋,逄少军.浙江洞头不同羊栖菜品系的形态特征及一个代表性养殖群体的AFLP分析.中国水产科学, 2009, 16(1): 61-68.
    [36]逄巧巧.采用SSR和AFLP标记技术对龙须菜的遗产多样性分析[D].中国海洋大学, 2009.
    [37] Teasdale B, West A, Taylor H. Klein A. A simple restriction fragment length polymorphismfm (RFLP) assay to discriminate common Porphyra (Bangiophuceae, Rhodophyta) taxa from the Northwest Atlantic. J Appl. Phycol, 2002, 14: 293-298.
    [38] Fain S R, Druehl L D, Baillie D L. Repeat and single copy sequences are differentially conserved in the evolution of kelp chloroplast DNA. J Phycol, 1988, 24: 292-302.
    [39] Kagami Y, Mogi Y, Arai T, Yamamoto M, kawano S, Sexuality and uniparental inheritance of chloroplast DNA in the isogamous green alga Ulva compressa (Ulvophyceae). J Phycol, 2008, 44: 691-702.
    [40] Cheang C C, Chu K H, Ang P O. Morphological and genetic variation in the population of Sargassum hemiphyllum (Phaeophyceae) in the Northwestern Pacific. J Phycol, 2008, 44: 855-865.
    [41] Williams J G, Kubelik A R. DNA polymorphisms amplified by arbitrary primers are useful as genetic marker. Nucleic Acids Res, 1990, 18: 6531-6535.
    [42] Yeh W J. Genetic similarity of geographic Caulerpa (Chlorophyta) population in Taiwan island revealed by random amplified polymorphic DNA. J Fish Soc Taiwan, 2000, 27(2): 115-127.
    [43] Faugeron S, Martinez E A, Cardenas L, Destombe C, Valero M. Reduced genetic diversity and increased population differentiation in peripheral and overharvested populations of Gigartina skottsbergii (Rhodophyta, Gigartinales) in southern Chile. J Phycol, 2004, 40: 454-462.
    [44] Martinez E A, Cardenas L. Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after E1 Nino 1982/1983. J Phycol, 2003, 39: 504-508.
    [45] Alberto F, Santos R, Leitao J M. DNA extraction and RAPD markers to assess the genetic similarity among Gelidium sesquipedale (Rhodophyta) populations. J Phycol, 1997, 33: 706-710.
    [46] Lim P, Thong K, Phang S. Molecular differentication of two morphological variants of Gracilaria salicornia. J Appl, 2001, 13: 335-342.
    [47] Coyer J A, Olsen J L, Stam T W. Genetic variability and spatial separation in the sea palm kelp Postelsia palmaeformis (Phaeophyceae) as assessed with M13 fingerprints and RAPDs. J Phycol, 1997, 33: 561-568.
    [48] Park J W, Cho Y C, Nam B H, Jin H J, Hong Y K. RAPD identification of genetic variation inseaweed Hizikia fusiformis (Fucales, Phaeophyta). J Mar Biotechnol, 1998, 6: 62-64.
    [49] Wright J T, Zuccarello G C, Steinberg P D. Genetic structure of the subtidal red alga Delisea pulchra. Mar Biol, 2000, 136: 439-448.
    [50] Yotsukura N, Kawai T, Motomura T, Ichimura T. Random amplified polymorphic DNA markers for three Japanese laminaria species. Fish Sci, 2001, 67: 857-862.
    [51] Dutcher J A, Kapraun D F. Random amplified polymorphic DNA (RAPD) identification of genetic variation in three species of Poyphya (Bangiales, Rhodophyta). J Appl Phycol, 1994, 6: 267-273.
    [52] Song L S, Duan D L, Li X H, Li C X. Use of RAPD for detecting and identifying Porphyra (Bangiales, Rhodophyta). Chin J Oceanol Limnol, 1998, 16(3): 237-242.
    [53] Kuang M, Wang S J, Li Y, Shen D J, Zeng C K. RAPD study on some common species of Porphyra in China. Chin J Oceanol Limnol, 1998, 16(suppl): 140-146.
    [54] Ho C, Phang S M, Phang T. Molecular charaterization of Sarassum polycystum and S.siliquosum (Phaeophyta) by polymerase chain reaction (PCR) using random amplified polymorphic DNA (RAPD) primers. J Appl Phycol, 1995, 7: 33-41.
    [55] Wong C L, Phang S M. Use of RAPD in differentiation of selected species of Sargassum (Sargassaceae, Phaeophyta). J Appl Phycol, 2007, 17: 771-781.
    [56] Wang X L, Yang Y X, Cong Y Z, Duan D L. DNA fingerprinting of selected Laminaria (Phaeophyta) gametophytes by RAPD markers. Aquaculture, 2004, 238: 143-453.
    [57]贾建航,王萍,金德敏,曲雪萍,王倩,李传友,翁曼丽,王斌. RAPD标记在紫菜遗传多样性检测和种质鉴定中的应用.植物学报, 2000, 42(4): 403-407.
    [58] Weng M, Liu B, Jin D, Yang Q, Wang B. Identification of 27 Porphyra lines (Rhodophyta) by DNA fingerprinting and molecular markers. J Appl Phycol, 2005, 17: 91-97.
    [59] Haring M A, Schuring F, Urbanus J, Musgrave A, Ferris P J. Random amplified polymorphic DNA markers (RAPDs) as tools for gene mapping in Chlamydomonas eugametos (Chlorophyta) . J Phycol, 1996, 32: 1043-1048.
    [60] Sim M C, Lim P E, Gan S Y, Phang S M. Identification of random amplified polymorphic DNA (RAPD) marker for differentiation male from female and sporophytic thalli of Gracilaria changii (Rhodophyta). J Appl Phycol, 2007, 19: 763-769.
    [61] Zietkiewicz E, Rafalske D. Genome fingerpringting by simple sequence repeat (ISSR) anchored polymerase chain reaction amplification. Genome, 1994, 20: 173-183.
    [62] Bornet B, Antoine E, Bardouil M, Baut C M. ISSR as a new markers for genetic characterization and evaluation of relationships among phytoplankton. J Appl Phycol, 2004, 16: 285-290.
    [63] Hall M M, Vis M L. Genetic variation in Batrachospermum helminthosum (Batrachospermales, Rhodophyta) among and within stream reaches using intersimple sequence repeat molecular markers. Phycol Res, 2002, 50: 155-162.
    [64]孙雪,张学成,茅云翔,费修绠.几种江蓠属海藻的ISSR标记分析.高技术通讯, 2003, 9:89-93.
    [65] Wang X, Zhao F, Hu Z, Duan D L. Inter-simple sequence repeat (ISSR) analysis of genetic variation of Chondrus crispus populations from North Atlantic. Aquatic Botany, 2008, 88: 154-159.
    [66] Zhao F J, Liu F L, Duan D L, et al. Genetic structure analysis of natural Sargassum muticum (Fucales, Phaeophyta) populations using RAPD and ISSR markers. J Appl Phycol, 2008, 20: 191-198.
    [67] Zhao F J, Wang X L, Duan D L, et al. Population genetic structure of Sargassum thunbergii (Fucales, Phaeophyta) detected by RAPD and ISSR markers. J Appl Phycol, 2007, 19: 409-416.
    [68] Iglesias M D, Scholield O S, Batley J, Medlin L K, Hayes P K. Intraspecific genetic diverrsity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): The use of microsatellite analysis in marine phytoplankton population studies. J Phycol, 2006, 42: 526-536.
    [69] Billot C, Rousvoal S, Estoup A, et al. Isolation and characterization of microsatellite markers in the nuclear genome of the brown alga Laminaria digitata (Phaeophyceae). Mol Ecol, 1998, 7: 1778-1780.
    [70] Wallace A L, Klein A S, Mathieson A C. Determining the affinities of salt marshi fucoids using microsatellite markers: Evidence of hybridization and introgression between two species of Fucus (Phaeophyta) in a Marine estuary. J Phycol, 2004, 40: 1013-1027.
    [71] Li B J, Shi Y Y, Yang G P, Che S, Li X J, et al. Microsatellite DNA variation of the gametophyte clones isolated from introduced Laminaria japonica (Phaeophyta) and L.longissima of China and varieties derived from them. J Integr Plant Biol, 2008, 50: 352-359.
    [72] Batley J, Hayes P K. Development of high throughput single nucleotide polymorphism genotyping for the analysis of Nodularia (Cyanobacteria) population genetics. J Phycol, 2003, 39: 248-252.
    [73]王增福,刘建国.鼠尾藻(Sargassum thunbergii)有性生殖过程与育苗[J].海洋与湖沼, 2007, 38(5): 453-457.
    [74]曲良,肖慧,王仁君等.鼠尾藻和小珊瑚藻对赤潮异弯藻克生效应的初步研究[J].中国海洋大学学报(自然科学版), 2007, 37(4): 621-626.
    [75] Yoshida T, Stiger V, Horiguchi T. Sargassum boreale sp. nov. (Fucales,Phaeophyceae) from Hokkaido, Japan[J]. Phycol Res, 2000, 48(3): 125-131.
    [76] Pang S J, Zhang Z H, Zhao H J. Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. J Appl Phycol,2007, 19(5):557-565.
    [77] Pang S J, Shan T F, Zhang Z H. Cultivation of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura: mass production of zygote-derived seedlings under commercial cultivation conditions, a case study experience[J]. Aquac Res, 2008, 39(13): 1408-1415.
    [78] Hwang E K, Park C S, Baek J M. Artificial seed production and cultivation of the edible brown alga, Sargassum fulvellum (Turner) C. Agardh:developing a new species for seaweed cultivation in Korea[J]. J Appl Phycol, 2006, 18: 251-257.
    [79]邹吉新,李源强,王义民.鼠尾藻的生物学特性及筏式养殖技术研究[J].齐鲁渔业, 2005, 22(3): 11-33.
    [80]原永党,张少华,刘海燕.鼠尾藻劈叉筏式养殖试验[J].海洋湖沼通报, 2006, (2): 126-128.
    [81]张泽宇,李晓丽,由学策.鼠尾藻的繁殖生物学及人工育苗的初步研究[J].大连水产学院学报, 2007, 22(4): 255-259.
    [82]王飞久,孙修涛,李锋.鼠尾藻的有性繁殖过程和幼苗培育技术研究[J].海洋水产研究, 2006, (5): 1-6.
    [83]姜宏波,田相利,包杰.温度和光照强度对鼠尾藻生长和生化组成的影响[J].应用生态学报, 2009, 20(1): 185-189.
    [84] Zhao F J, Wang X L, Liu J D. Population genetic structure of Sargassum thunbergii (Fucales,Phaeophyta) detected by RAPD and ISSR markers[J]. J Appl Phycol, 2007, 19(5): 409-416.
    [85]赵凤娟.马尾藻种群遗传及早期发育的研究[D].中国博士学位论文全文数据库, 2007.
    [86]王丽梅,戚贵成,高祥刚.中国沿海鼠尾藻遗传多样性分析[J].生物技术通报, 2009, (S1) : 277-279.
    [87]李世国,单体锋,侯和胜,逄少军.九个海带栽培品种自交系后代遗传多样性和亲缘关系的AFLP分析[J].中国水产科学,2009, 16(2): 214-220.
    [88] Bassam J B, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80-83.
    [89] Yeh F C, Yang R C , Boyle T, Ye Z H , Mao J X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center. University of Alberta, Edmonton, Alberta, Canada, 1997.
    [90] Kumar S, Tamura K, Jakobsen I B, et al. MEGA2: Molecular evolutionary genetics analysis software [J]. Bioinformatics, 2001, 17: 1244-1245.
    [91] Excooffier L, Laval G, Schneider S. Arlequinver.3.0; An integrated software package for population genetics data analysis. Evolutionary Bioinfornatics Online, 2005, 1: 47-50.
    [92] Nei M. Estimation of average heterezygosity and genetic distance from a small number of individuals [J]. Genetics, 1978(8): 583-590.
    [93] Barretts C H, Eckert C G, Husband B C. Evolution processes in aquatic plant population. Aquatic Botany, 1993, 44: 105-145.
    [94] Marshall D R, Brown A H D. Optimum sampling strategies in genetic conservation. Cambridge University Press. 1975.
    [95]金燕,卢宝荣.遗传多样性的取样策略[J].生物多样性. 2003, 11(2): 155-161.
    [96] Shan T F, Pang S J. Assessing genetic identities of sporophytic offspring of the brown alga Undaria pinnatifida derived from mono-crossing of gametophyte clones by use of AFLP and microsatellite markers. Phycological Research, 2009, 57: 36-44.
    [97]张全胜,石媛媛,杨官品.我国引种海带和栽培品种(系)来源配子体克隆的AFLP分析[J].中国海洋大学学报, 2008, 38(3): 429-435.
    [98]逄巧巧.采用SSR和AFLP标记技术对龙须菜的遗产多样性分析[D].中国海洋大学, 2009.
    [99]韩峰.海藻核酸提取的难点及对策.海洋科学, 2004, 28(10): 71-74.
    [100] Nassuth A, Pollari E, Helmeczy K. Improved RNA extraction and one 2 tube RT 2PCR assay for simultaneous detection of control plant RNA plus several virusses in plant extracts. J Virol Methods, 2000, 90(1): 37-49.
    [101] Hong Y K. Molecular characterization of seaweeds using RAPD and differential display. Bull Fac Bioresour Mie Univer, 1997, 17(1): 85.
    [102]张玲,李庆军,李德铢.雅鲁藏布江河谷丝须蒟蒻薯遗传多样性的初步研究[J].生物多样性, 2006, 14(11): 65-72.
    [103] Wright S. Evolution and genetics of populations. University of Chicago Press, Chicago, 1978, 4.
    [104] Bohonak A J. Dispersal, gene flow and population structure. Q Rev Biol, 1999, 74(1): 21-45.
    [105] Wright S. The genetical structure of populations[J]. Annals of Eugenics, 1951, 15: 323-334.
    [106] Hamrick J L, Godt M J W. Effects of life history traits on genetic diversity in plant species. Philos T Roy Soc B, 1996, 351(1345): 1291-1298.
    [107] Engelen A H, Olsen J L, Breeman A M, Stam W T. Genetic differentiation in Sargassum polyceratium (Fucales: Phaeopphyceae) around the island of Curacao (Nethrlands Antilles). Mar Biol, 2001, 139: 267-277.
    [108] Steen H. Effects of reduced salinity on reproduction and germling development in Sargassum muticum (Phaeophyceae, Fucales). Eur J Phycol, 2004, 39(3): 293-299.
    [109] Fletcher R L. Studies on recently introduced brown alga Sargassum muticum (Yendo) Flensholt. II Regenerative ability. Bot Mar, 1975, 18(3): 157-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700