小麦旗叶性状对光合作用和产量的影响及旗叶基因的AFLP标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦旗叶的光合作用对籽粒形成和产量贡献巨大。已有研究表明,旗叶直立的性状态与光合作用存在较大的联系。本研究采用旗叶直立(2-26)和倒披(H420)两种性状的小麦品系杂交,形成的F2:3群体为材料,对其进行光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)测定及产量考察。通过旗叶性状对光合特性及产量的影响进行分析,结果表明,不同性状的旗叶对小麦光合指标的影响不同。直立性状的小麦旗叶净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)平均值均比性状倒披的小麦旗叶低,蒸腾速率(Tr)平均值直立的旗叶比倒披的旗叶高。不同性状的旗叶各个光合指标间差异不显著(P>0.05)。在构成小麦产量的3个因素中,旗叶性状倒披的小麦穗数和千粒重均高于旗叶直立的小麦,只是穗粒数直立的旗叶高于倒披的旗叶。不同性状的旗叶之间,穗粒数、千粒重之间的差异达到显著水平(P<0.05),穗数差异不显著(P>0.05)。表明最终形成产量过程中,除旗叶性状外,还与其他因素有关。如,源库流理论、旗叶的长、宽、叶面积、小麦群体冠层上三叶性状及它们的光合能力等。因此,关于小麦旗叶的性状对小麦产量的影响还需要进一步试验研究。
     同时,本文以H420(旗叶倒披)、2-26(旗叶直立)及H420x2-26的F2代224个单株为材料,对控制旗叶直立和倒披的性状进行了遗传分析,并利用AFLP技术对小麦旗叶直立形态基因进行分子标记。结果表明,在这两个亲本之间,控制旗叶直立与倒披的性状是受一对差异基因控制的,直立性状为显性。随机选取的304个AFLP引物组合,经过初筛选得到96个引物组合在2-26、H420和(-)池、(+)池间产生多态性,多态性检出率为32%。我们将两个亲本及建立的两个池与随机选取F2代两个相对性状各5株单株一起上小群体,再次筛选引物,获得了8个引物组合在他们之间稳定表现多态性。用H420x2-26的F2代224个单株对以上8个引物组合进行连锁性鉴定,发现有1个引物组合PsrI-TAG/MseI-CGA产生的220bp特异片段与旗叶直立基因具有较强连锁性。利用Mapmarker3.0软件进行连锁分析PstI-TAG/MseI-CGA产生的特异片段距目的基因的遗传连锁距离为8.1cM。为采用分子标记辅助选育高光效和高产量小麦品种以及转基因育种奠定了良好的基础。
The wheat flag leaf is the most important photosynthetic organs for wheat grain production.It has been known that the ablity of photosynthesis is related to vertical shape of flag leaf. In present study, using wheat lines 2-26 and H420 with vertical shape and inverted shape of flag leaf, respectively, and their hybrid progenies as materials, net conduct photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) were tested, and the main yield charaters were also counted. The effects on photosynthetic characteristics and yield with different shapes of the flag leaf were analyzed. The result showed that different shapes of wheat flag leaf have different influence on photosynthetic characteristics. Net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of the vertical shape of flag leaf on average was lower than that of inverted shape of wheat flag leaf, Transpiration rate (Tr) of the vertical shape of flag leaf on average was higher than the inverted shape of wheat flag leaf. No significant differences in all Photosynthetic characteristics were founded in two different shapes of flag leaves (P> 0.05). In the three factors of forming wheat production, the wheat spike number and 1000-kernel weight of inverted shape of flag leaf were higher than that vertical flag leaves of wheat, grains per spike of vertical flag leaf was higher than the inverted flag leaves of wheat. Significant differences for grains per spike and 1000-kernel weight, and not significant difference for sipke number between two flag leaves of different shapes were observed. It showed that other factors except the shape of flag leaf had relations during the forming of wheat yield for example, For example, theory of the Origin and flow Library, length of flag leaf, width, leaf area, characters of wheat group clover canopy and their photosynthetic capacity and so on. Therefore, the shape of the flag leaf of wheat affecting on wheat yield need further study.
     The gene with vertical shape of wheat flag leaf was primary also maked adopted wheat line H420 with inverted flag leaf and 2-26 with vertical flag leaf and the F2 generation including 224 plants between H420×2-26 as materials by the AFLP technology. The results showed that there was one pair gene to control the vertical and inverted shape of flag leaf in the two different parents. The vertical shape of flag leaf was dominant.96 primer combinations in the 2-26, H420 and inverted flag leaf gene (+) pool and vertical flag leaf gene pools (-) were polymorphic among 304 AFLP primer combinations of randomly selected, the polymorphism rate was 32%. We used again the parents and gene pools and randomly selected five different plants from F2 generation to selected 96 primer combinations with polymorphism, eight primer combinations showing stability polymorphism among them. However,224 plants from F2 generation of H420×2-26 was used to further select for 8 primer combinations, only one primer combination, Pstl-TAG/Msel-CGA produced 220bp specific fragment to link the gene of the flag leaf was obtained. Linkage analysis by using Mapmarker3.0 software, the genetic linkage distance of specific fragment produced by Pstl-TAGIMsel-CGA to gene was 8.1 cM. It provided a good foundation for utilizing molecular marker to select high yield wheat and transgenic varieties in breeding programs.
引文
[1]Reynolds MP, Pfeiffer WH. Applying physiological strategies to improve yield potential//Royo C, ed. Durum Wheat Improvement in the Mediterranean Region [J].NewChallenges.Spanish: Ciheam-Iamz.2000,95-103.
    [2]胡廷积,杨永光,马元喜,等.小麦生态与生产技术[M].郑州:河南科技出版社,1986:19-23.
    [3]郑丕尧.作物生理学导论[M].北京农业大学出版社,1992:121-127.
    [4]朱德群.冬小麦主茎旗叶光合性状的相关性[J].作物学报,1982,8(3):199-204.
    [5]魏燮中.小麦株型结构分析与产量育种咨询系统[M].东南大学出版社,南京,1994.
    [6]凌启鸿.小麦各叶片对产量形成的作用[J].作物学报,1965,4(3):219-233.
    [7]傅兆麟,马宝珍.小麦旗叶与穗粒重关系的研究[J].麦类作物学报,2001,21(1):92-94.
    [8]Yoshida S.Physiological aspects of gain yield [J]. Ann Rev Plant Physiol.1972,23:437-464
    [9]马东辉,赵长星.施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响[J].生态学报,2008,28(10):4896-4901.
    [10]S.拉加拉姆等,邹裕春,等译.CIMMYT的小麦育种[M].成都:四川科技出版社,1993,1-24.
    [11]徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献[J].作物学报,1995,21(2):204-209.
    [12]王辉,时晓伟.中国小麦育种研究进展[M].合肥:中国科学技术出版社,2002,100-106.
    [13]Evans LT. Factors Controlling Grain Weight [J]. Nature,1977,266 (24):348-34.
    [14]殷毓芬,张存良,姚凤霞.冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究[J].作物学报,1995,21(5):263-267.
    [15]叶子飘,于强.冬小麦旗叶光合速率对光强度和CO2浓度的响应[J].扬州大学学报,2008,29(3):33-37.
    [16]李跃建,朱华忠,伍玲,等.不同小麦品种剑叶的光合速率、影响因素及其与穗重关系的研究[J],四川大学学报.2006,40(3):578-589.
    [17]郭程瑾,肖凯,李雁鸣,等.不同生态型小麦品种旗叶光合性能的研究[J].麦类作物学报,2002,22(3):42-46.
    [18]姚维传,张从宇.小麦旗叶和芒的遗传及其与产量性状的相关性研究[J].种子,2000,(5):19-21.
    [19]薛香,吴玉娥.小麦旗叶性状与光合特性的相关性分析[J].陕西农业科学,2007,(4):22-23.
    [20]王敏,张从宇.小麦旗叶性状与产量因素的相关与回归分析[J].种子,2004,23(3):17-21.
    [21]李玉发,何中国,栾天浩.春小麦旗叶性状与产量性状的相关与回归分析[J].吉林农业科学,2008,33(6):5-6,18.
    [22]张海英,许勇,王永健.分子标记技术概述(上)[J].长江蔬菜,2001,4-6.
    [23]贾继增.分子标记种质资源和分子标记育种[J].中国农业科学,1996,29:1-10.
    [24]Williams JGK, AR Kubelik, KJ Livak, et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Res,1990,18:6531-6535.
    [25]Welsh J and McClelland M, Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res,1990,18(24):7213-7218.
    [26]Paran I, Michelmore R W, Development of reliable PCR-based markers linked to downy resistance genes in lettuce[J].Theor. Appl.Genet.,1993,85:985-993.
    [27]赵建萍.DNA分子标记在小麦抗病育种中的应用[J].陇东学院学报(自然科学版),2006,16(1)65-69.
    [28]Zabeau M, Vos P. Selective restriction fragement amlplification:a general method for DNA fingerprinting. European Patent Application 924026297(Public number:0535858-Al). Paris:European Patent Office,1993.
    [29]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA finger printing [J]. Nucleic Acids Res.,1995,23(21):4407-4414.
    [30]罗培高,任正隆等.AFLP分子标记及其在作物遗传育种中的应用与前景[J].四川农业大学学报,2001,19(4):406-410
    [31]Ma z, Lapitan N L V.A comparison of amplified and restriction fragment length polymorphism in wheat [J].Cereal Research Communications.1998,26(1):7-13.
    [32]Bohn M, Friedrich H, Melchinger A E. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance [J].Crop Sei.,1999,39:228-237.
    [33]Barrett B A, Kidwell K K. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific North wheat [J]. Crop Sci.,1998,38:1261-1271.
    [34]Huang X, Zeller F J, Hsam S LK, et al. Chromosomal location of AFLP markers in common wheat utilizing nulli—tetrasomic stocks [J]. Genome,2000,43:298-305.
    [35]Domini P, Law JR, Koebner RMD, et al. Temporal trends in the diversity of UK wheat [J].Theor. App L. Genet.,2000,100:912-917.
    [36]Manifesto M M, Schlatter A R, Hopp H E, et al. Quantitative evaluation of genetics diversity in wheat germplasm using molecular markers [J]. Crop Sci.,2001,41:682-690.
    [37]Heun M, Schafer-Pregl R, Klawan D, et al. Site of einkorn wheat domestication identificated by DNA fingerprinting[J].Science,1998,278 (5341):1312.
    [38]郝晨阳,王兰芬,董玉琛等.我国西北春麦区小麦育成品种的遗传多样性的AFLP分析[J].2003年全国作物遗传育种学术研讨会论文集,2003,364-371.
    [39]Law J R, Donini P, Kodmer R M D, et al. DNA profiling and plant variety registration. I:the statistical assessment of distinctness in wheat using amplified fragment length polymorphisms [J].Euphytica,1998,102:335-342.
    [40]Donini P, Elias L, Bougourd S, et al. AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs [J].Genome,1997,40:521-526.
    [41]田清震,贾继增.AFLP分子标记在小麦种质资源研究中的应用[J].麦类作物学报,2002,22(1)95-99.
    [42]Lotti C, Salvi S, Pasqualone A, et al. Integration of AFLP markers into an RFLP-based mop of durum wheat [J]. Plant Breeding,2000,119:393-401.
    [43]Penner G A. An AFLP based genome map of wheat (Triticum aestivum L.)[A]. Plant& Animal GenomeⅥ Conference[C]. San Diego, CA, January,1-16,1998, P163.
    [44]Bernard M L, Sourdille P, Cadalen T, et al. The Courto×Chinese spring wheat population and its interest for QTL detecrin[A].Pant and Animal GenomeⅦ Conference[C].Town& Country Hotel.San Dido, CA, January 12-16,2000. P232.
    [45]Elise H R, Brown J K M. AFLP markers for an adult plant resistance to powdery mildew in wheat [A].Plant and Animal Genome Ⅷ conference[C].Town Country Hotel. San Diego.CA, January 12-16, 1997.P166.
    [46]Peng J, Korot A B, Fahima T, et al. Molecular genetic maps in wild emmer wheat, (Triticum dicoccoides:genome—wide coverage.massive negative interference, and putative quani-linkage [J].Genome Rea,2000,10(10):1509-1531.
    [47]Juan M Gonzalez, Luis M Muniz, Nicolas Jouve. Mapping of QTLs for androgenetic response based on a molecular genetic map of×Triticosecale Wittmack[J].Genome; Dec 2005;48,6;ProQuest Biology Journals, pg.999.
    [48]李艳秋,王立新,苏志芳等.小麦AFLP-SCAR标记的遗传图谱定位[J].麦类作物学报,2008,28(4):543-549.
    [49]徐志,梅丽宏,李志英等.利用AFLP分子标记和无毒基因构建小麦白粉菌遗传连锁图谱[J].植物 病理学报,2009,39(1):16-22.
    [50]Jorge D, Marcucci-Poltri S, Appendino L,.et al. RFLP and AFLP maps of a new vernalization gene in wheat [A].Plant& Animal Genome V Conference [C].Town& Country Hotel,San Diego,CA, January 12-18.1997.P161.
    [51]Hard L, Mohler V, Zeller F J. et al.Identification of AFLP markers closely linked to the powdery mildew resistance genes Pmlc and Pm4a in common wheat(Triticum aestivum L.)[J]. Genome,1999, 42:322-329.
    [52]Huang X, Flsam S L K, Zelter F J, et al. Moleular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding [J].Theor.Appl.Genet,.2000,101: 407-414.
    [53]Zeller F J, Kong L, Hard L, Mohler V, Hsam S LK.(2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em,Thell).Gene Pm29 in line Pave. [J].Euphytica123:127-194.
    [54]Prins R,Marais G F,Snape J W et al.Tagging Lr19 with AFLP markers[A].Proceedings of the Tenth Regional Wheat Workshop for Eastern [C].Central and Southern Africa.University of Stellenbosch,South Africa.14-18 Sep.,1998.P372-375. International Maize and Wheat Improvement Centre (CIMMYT), Addis Ababa, Ethiopia,1999.
    [55]贾璇,杨文香,刘大群.小麦抗叶锈基因Lr38的AFLP分子标记[J].植物病理学报,2004,34(4):380-382.
    [56]杨文香,贾璇,闫红飞等.小麦抗叶锈基因Lr44的AFLP分子标记[J].河北农业大学学报,2005,28(2):67-70.
    [57]张娜,杨文香,闫红飞等.小麦抗叶锈病基因Lr45的AFLP分子标记[J].中国农业科学,2005,38(7):1364-1368.
    [58]Cadalen T, Sourdlle P, Charmet G,et al.Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population.Theor Appl Genet,1998,96:933-940.
    [59]Korzum V, Roder, M S, Canal M W,et al. Genetic analysis of the dwarfing gene(Rht8)in wheat.Part 1. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.,)Theor Appl Genet,1998,96:1104-1109.
    [60]Harjit S, Prasad M, Varshney R K, et al. STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat.Plant Breeding,2001,120:273-278.
    [61]Varshney R Y, Prasad M, Roy J K, et al Integrated physical maps of 2DL,6BS and 7DE carrying loci for grain protein contented pre-harvest sprouting tolerance in bread wheat. Cereal Research Communications 2001,29:33-40.
    [62]Shariflou M R, Hassani M E, Sharp P J. A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-Dl gene of wheat.Plant Breeding,2001,120:121-124.
    [63]Sourdille P, Snape J W, Cadalen T, et al. Detection of QTLS for heading time and photoperiod response in wheat using a doubled-haploid population.Genome,2000,43:487-494.
    [64]Tixier M H,Sourdille O, Charmet G, et al.Detection of QTLS for cross ability in wheat using a double-haploid population. Theor Appl Genet,1998,97:1076-1082.
    [65]Parker G D, Chalmers K J, Rathjen A J,et al.Mapping loci associated with milling yield m wheat (Triticum aestivum L.) [J]. Molecular Breeding,1999,5:581-568.
    [66]Parker G D, Chalmers K J, Rathjen A J, et al. Mapping loci associated with flour colour in wheat (Triticum aestivum L.) [J]. Theor Appl Genet,1998,97:238-245.
    [67]Khan I A, Procunier J D, Humphreys D G, et al. Development PCR-based markers for a high grain protein content gene from Triticum turgidum asp. dicoccoides tranferred to bread wheat[J].Crop Sci., 2000,40:518-523.
    [68]Torp A M, Hansen A L, Holme I B, et al. Genetic markers for haploid formation wheat anther culture [A].In:A E.Slinkard (Ed.) proc 9th, Int. Wheat Genet, Symp.[C] Vol 3,1998. P159-161.Univ, Extension Press, Univ of Saskatchewan, Saskatoon 1998.
    [69]Bai G H,Kolb F L, Shaner G, et al. Amplified fragment Length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat [J].Phytopathology.1998,89(4): 343-348.
    [70]Anderson J A, Waldron B L, Moreno-Sevilla B, et al. Detection of fusarium head blight resistance QTL in wheat using AFLPs and RFLPs [A].In:A E. Slinkard (Ed.) proc 9th, Int. Wheat Genet, Symp. [C] Vol 1,1998, P135-137.Univ, Extension Press, Univ of Saskatchewan, Saskatoon 1998.
    [71]邵映田,牛永春,朱立煌,等.小麦抗条锈病基因Yr10的AFLP标记[J].科学通报,2001,46(8):669-672.
    [72]白建荣,刘润堂,郭秀荣,等.用AFLP标记鉴定带有簇毛麦抗白粉病基因的小麦属位系[J].华北农学报,2000,15(4):29-34.
    [73]Kojima T, HabuY, Iida S, et al Diret isolation of differentially expressed genesfrom a specific chromosome region of common wheat aplacation of the amplified fragment length polymotphism-based mRNA fingerprinting(AMF)method in combination with a deletion line of wheat[J].Mol, Gen Gent.,2000,263(4):635-641.
    [74]种康,谭克辉,黄华粱,等.冬小麦春化作用相关基因的cDNA分子克隆研究[J].中国科学(B辑),1994,24:964-970.
    [75]周建明,朱群,白永延,等.水分胁迫诱导表达的小麦基因的cDNA片段克隆和序列分析[J].科学通报,1998,43:2419-2422.
    [76]Rainer, B., H. Karin, P.Ralph. The barly Mlo gene:a novel control element of plant pathogen resistance.Cell,1997,88 (7):695-705.
    [77]Nabila, Y., P Srichumpa, R.Dudler, B.Keller. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene pm3b from hexaploid wheat. The plant journa, 2004,37:528-538.
    [78]李万隆,李振声,穆素梅.小偃6号小麦旗叶直立基因的染色体定位[J].遗传学报,1992,19(1):71-75.
    [79]Gill K S, Lubbers E L, Raupp W J, et al.A genetic linkage map of Triticum tauschii (D D) and its relationship to the D genome of bread wheat(AABBDD)[J].Genome,1991,34:362-374.
    [80]贾璇,杨文香,刘大群.小麦基因组AFLP反应体系的建立[J].河北农业大学学报,2003,26(2):55-59.
    [81]李跃建,朱华忠.不同小麦品种千粒重对源库变化的影响[J].麦类作物学报,2002,22(3):38-41.
    [82]曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265-272.
    [83]马冬云,郭天财.源库调节对小麦籽粒灌浆及光合特性的影响[J].麦类作物学报,2006,26(4):74-78.
    [84]慕美财,温金祥.超高产麦田的源流库理论分析[J].莱阳农学院报,2004,21(1):49-52.
    [85]彭永欣.小麦栽培与生理[M].南京:东南大学出版社,1992,1-14.
    [86]李金才.播种密度对小麦茎杆大维管束系统和穗部发育影响的研究[M].南京:东南大学出版社,1996.
    [87]Yoshida S.Physiological aspects of gain yield [J].Ann Rev Plant Physiol.1972,23:437-464.
    [88]左宝玉,段续川.冬小麦不同层次叶片中叶绿体超微结构及其功能的研究[J].植物学报,1978,20:223-228.
    [89]Araus JI, Tapia L. Photosynthetic gas exchange characteristics of wheat flag leaf blades and sheaths during gain filling stage[J].Plant Physiol.1987,85:667-673.
    [90]王斌,翁曼丽.AFLP的原理及应用[J].杂交水稻,1996,5:27-30.
    [91]Barrett B.A., K.K. Kidwell, PN. Fox. Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the pacific Northwest. Crop Sci,1998,38:1271-1278.
    [92]朱婕.普通小麦Brock中一个抗白粉病新基因AFLP分子标记研究[D].2006,38.
    [93]刘丹.小麦光腥黑粉菌(Tilletia foetida) AFLP分析及其种的特异性SCAR标记的发掘[D].2005,32
    [94]高亮亮.小麦抗白粉病基因PmWE75的AFLP及SCAR标记建立[D].2007,1-50.
    [95]王晓维,王立新等.小麦AFLP—SCAR标记的开发及应用[J].麦类作物学,2008,28(5):738-744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700