基于SSR、ISSR和RAPD对大豆疫霉菌的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆疫霉根腐病是由大豆疫霉引起的一种重要的大豆病害,在大豆主产区造成严重的经济损失。由于大豆疫霉菌毒力变异快,给抗病品种的选育和布局带来困难。
     本研究主要包括以下方面:
     1.对来源于6个不同地区的30株大豆疫霉菌进行毒力分析,将结果与目前已经报道的生理小种的反应型进行比较,30个菌株产生30个新的毒力型。供试菌株的地理来源与毒力类型的相关性不明显,不同地区间、同一地区内不同的大豆疫霉毒力分化显著,不同地区的优势毒力类型存在差异。大豆疫霉菌的毒力结构非常复杂。
     2.用18对SSR引物对30个大豆疫霉菌株进行遗传分析。18对引物在30个大豆疫霉菌菌株中一共扩增得到85个等位变异,平均为4.27个。各不同地区Shannon's多样性指数各组大小顺序为:黑龙江>安徽>新疆>河南>福建>美国。安徽和黑龙江的菌株遗传距离最近,美国与福建的菌株遗传距离最远。引物PSG113、PSG133、PSG125多态性较好,可以将30个菌株完全区分开,对这3个引物的扩增条带进行统计分析,其聚类结果与毒力聚类结果具有较大的一致性。
     3.采用13个ISSR引物对30株大豆疫霉菌进行遗传多样性分析。13个ISSR引物在30份菌株中总共扩增出79个等位变异,平均为6.08个。Shannon's多样性指数各组大小顺序为:河南>黑龙江>新疆>福建>安徽>美国。新疆和黑龙江的菌株遗传距离最近,美国与福建的菌株遗传距离最远。美国的菌株与其他地区的菌株遗传距离较远。
     4.21个RAPD引物在30份菌株中总共扩增出78个等位变异,平均为3.71个。6个不同地理来源供试群体遗传多样性比较丰富,Shannon's多样性指数各组大小顺序为:黑龙江>河南>新疆>安徽>福建>美国。河南和新疆遗传距离最近,美国与新疆、美国与福建的菌株遗传距离较远。美国的菌株与其他地区的菌株遗传距离较远。
     5.对这3种分子标记技术所得的遗传相似系数矩阵的相关性进行分析,2种显性标记ISSR与RAPD的相关性系数为0.543,呈相关;SSR与ISSR的相关性系数为0.243,不相关;SSR与RAPD的相关性系数为0.393,呈弱相关。3种分子标记揭示的遗传多样性水平存在差异,两两之间的相关性不同,可能与不同的分子标记揭示不同的遗传位点、选用的引物有关。
Soybean Phytophthora root rot(PRR) caused by Phytophthora sojae is a devastating diseases of soybean.PRR causes serious losses in soybean production areas.Because of the rapid pathogenic variability of Phytophthora sojae,control this diseases through breeding and make good use of resistant cultivaters has become difficult Five main aspects of this study as followed:
     1. The virulence types of 30 P. sojae isolates from 6 different areas were identified,the results were compared with the virulence types of reported races,the virulence type of thses 30 isolates are all new types.there is no obvious correlation between the origion of the isolates and the virulence type.Isolates from different areas and different isolates from the same area show great virulence difference.Main virulence types varies in different areas. Virulence composition of P. sojae population is complex.
     2.18 SSR markers were used to assess the genetic diversity of 30 P. sojae isolates.85 alleles were detected in 30 P. sojae isolates by 18 SSR primers, with an average of 4.27. The order of Shannon's Information index of different areas is:Heilongjiang> Anhui> Xinjiang> Henan> Fujian> America. The populations from Anhui and Heilongjiang are closer than others, and the population from America and Fujian are moer distant than others.The 30 isolates can be efficiently distinguished by primer PSG113、PSG133、PSG125. The data were analyzed by NTSYS-PC 2.1 software and the result is quite similar to virulence analyze.
     3.13 SSR markers were used to assess the genetic diversity of 30 P. sojae isolates.79 alleles were detected in 30 P. sojae isolates by 18 SSR primers, with an average of 6.08. The order of Shannon's Information index of different areas is: Henan>Heilongjian>Xinjiang>Fujian>Anhui>America. The populations from Xinjian and Heilongjiang are closer than others, and the population from America and Fujian are moer distant than others.Population from America show less similarity to other groups.
     4.21 RAPD markers were used to assess the genetic diversity of 30 P. sojae isolates.78 alleles were detected in 30 P. sojae isolates by 21 RAPD primers, with an average of 3.71. Populations from 6 areas show high levels of polymorphism.The order of Shannon's Information index of different areas is:Heilongjiang>Henan>Xinjiang>Anhui>Fujian>America.The populations from Xinjian and Henan are closer than others, and the population from America and Fujian、America and Xinjian are moer distant than others.Population from America show less similarity to other groups. The genetic diversity levels of populations from Beijing and Shandong were higher than those of other regions.
     5. The genetic similarity coefficient obtained by 3 approaches was analyzed,two dominate makers system(ISSR and RAPD)show the best correspondence(0.543);There is weak correspondence between SSR and RAPD(0.393);Maker system (SSR and ISSR)show no correspondence(0.243).The genetic diversity levels obtained by 3 approches differs,may be different maker system revals different genetic site、and the use of different maker is the reason.
引文
1. 陈庆河,翁启勇,王源超等.福建省大豆疫病病原鉴定及其核糖体DNA-ITS序列分析
    2. 董立明.大豆疫霉菌毒力及遗传多样性分析.[硕士学位论文].新疆:新疆农业大学图书馆,2008
    3. 窦坦德,李宝笃,沈崇尧.快速检测大豆疫霉菌的酶联免疫吸附技术研究.植物检疫,1997,11(3):138-142
    4. 段会军张彩英,李喜焕,郭小敏,马峙英.基于RAPD、ISSR和AFLP对西瓜枯萎病菌遗传多样性的评价.菌物学报,2008,27(2):267-276
    5. 范勇.大豆疫霉菌群体遗传结构研究.[硕士学位论文].福建:福建师范大学图书馆,2009
    6. 方宜钧,吴为人,唐纪良编著.作物DNA标记辅助育种(M).北京:科学出版社,2001
    7. 韩双艳,郭勇.AFLP在分子生物学研究中的应用.生物技术,2001,2:22-24
    8. 韩晓增,何志鸿,张增敏.大豆主要病虫害防治技术.大豆通报,1998,7(6):5-6
    9. 胡珍娣,陈瑾,王玲,等.稻瘟病菌群体的分子遗传学研究[J].菌物系统,2002,21(2):203-209
    10.姜占发,刘大群.棉花黄萎病菌鉴定技术现状及展望.河北农业大学学报.2002,25(1):95-99.
    11.李宝英,马淑梅,大豆疫霉病研究初报.大豆科学.1996,15(2):164~165.
    12.吕振岳,黄东东,周达民AFLP标记及在植物中的应用.生物技术,2001,12:40-43
    13.沈崇尧,苏彦纯.中国大豆疫病的发现及初步研究.植物病理学报,1991,21(4):298
    14.沈瑛,Frouin J,何月秋等.湖南烟溪病圃稻瘟病菌的有性态及微卫星标记的遗传多样性分析.中国水稻科学,2004,18:262-268
    15.石磊研,王丽梅.北方棉区棉花黄萎病菌RAPD分析[J].植物保护,1997,(5):3-7
    16.王化波,王晓鸣,朱振东.中国大豆疫霉菌遗传多样性的RAPD分析.菌物系统,2003,22(2):219-227
    17.王立安,张文利,王源超,王良华,郑小波.大豆疫霉的ITS分子检测.南京农业大学学报,2004,27(3):38-41
    18.王良华.大豆疫霉的检测及其卵孢子致死温度测定.[硕士学位论文].南京:南京农业大学图书馆,2005
    19.王晓鸣,A. F. Schmitthenner,马书君.黑龙江省大豆疫霉根腐病调查与病原分离.植物保护,1998,24(3):9-11
    20.王晓鸣.玉米弯抱菌叶斑病原菌遗传多样性和玉米种质抗病性鉴定.[硕士学位论文].北京:中国农业科学院图书馆,2000
    21.王子迎,王源超,张正光,郑小波.中国和美国大豆疫霉群体遗传结构的ISSR分析.生物多样性,2007,15(3):215-223
    22.王子迎.卵菌基因组学研究进展[J].合肥师范学院学报,2008,26(3)96-98
    23.文景芝,李兆林,周艳玲.大豆疫霉根腐病传播途径研究.大豆科学,2000,19(3):223-228
    24.吴浩,王良华,吴新华,郑小波.大豆疫霉在江苏省适生性的初步研究.南京农业大学学报,2002,25(1):39-42
    25.徐静静.大豆疫霉分子检测及SSR标记的开发.[硕士学位论文].北京:中国农业科学院图书馆,2008
    26.郑服丛,Elaine Ward.利用RAPD对中国热带地区疫霉菌分类的初步研究.热带作物学报,1998,19(2):32-36
    27.郑敏,罗玉萍.真核生物基因组多态性分析的DNA指纹技术.生物技术.1999,9(3):35-38
    28.周明华,杜国兴,陈正桥等.进口大豆中大豆疫霉的检测及检疫监管.植物检疫.2000,14(6):374-374
    29.周肇蕙,严进.大豆疫病的检疫研究—病原菌的分离鉴定.植物检疫,1995,9(4):257~261
    30.朱振东,王化波,王晓鸣.一种土壤中大豆疫霉菌分离新方法.菌物系统,2003,22(1):142-147
    31.祝静静.几个玉米耐旱数量性状(QTLS)的定位与分析.[硕士学位论文].山东:山东农业大学图书馆,2008
    32.左豫虎.大豆疫霉菌遗传特性及侵染过程研究.[博士论文].西安:西北农林大学图书馆,2005
    33. [Schmitthenner A F. Problems and Progress in control of Phytophthora root rot of soybean.Plant Disease,1985,69(4):362-368
    34. [Shuovecky A J, Schmitthenner A F. Soybeans affected by early root rot. Ohio Farm Home Res, 1955,40:85-86
    35. Averre,C.W.et.al.. Host-parasite interaction between Glycine max and Phytophthora megasperma var. sojae. Phytopathology,1964,54,886
    36. Bhattacharvya M K, Ward E W B. Temperature-induced Susceptibility of soybeans to Phytophthora megasperma f.sp. glycinea:Phenylalanine ammonia-lyase and glyceollin in the host; growth and glyceollin I sensitivity of the pathogen. Physiological and Molecular Plant Pathology,1987,31:407-419
    37. Buzzell R I and Anderson T R. Another major gene for resistance to Phytophthora megasperma var. sojae in soybean. Soybean Genet Newslett,1981,18:30-33
    38. Canady C H,Schmitthenner A F.Isolating Phytophthora megasperma f.sp.glycinea from soil with a baiting method that minimize Pythium contamination.Soil Biol.Biochem,1982,14:67-68
    39. Charters Y M, WIIkinson M J. The use of self-Pollinated progenies as " in-groups" for the genetic characterization of cocoa gemrplasm[J].Thero Appl Genet,2000,100:160-166
    40. Douglas-fir and Sugi [J].Theor Appl Genet,1996,92:40-45
    41. Drenth A, Whisson S C, MacLean D J et al.,The evolution of races of Phytophthora sojae in Australia. Phytopathology,1996,86(2):163-169
    42. Fnag DQ,Roose ML. Inheritance of inter simple sequence repeat markers in citrus [J].J Heredityt,1999,90:247-249
    43. Forster H,Tyler B M,Coffey M D.Phytophthora sojae have arisen by clone evolution & rare out cross.Molecular Plant-M icrobe Interactions,1994,71:780-791
    44. Gijzen M, Macgregor T.1996. Temperature induced susceptibility to Phytophthora sojae in soybean isolines carrying different Rps genes, PMPP 48:209-215
    45. Haas J H. New race 5 and 6 of Phytopathora megasperma var.sojae and differential reactions to soybean cultivars for race 1 to 6.Phytopathology,1976.66:1361-1362
    46. Hansen E M,and D P Maxwell. Species of the Phytophthora megaspera complex.Mycologia,1991,83:376~381
    47. Henry R N, Kirkpatrick. Two new races of Phytophthora sojae, Causal agent of Phytophthora Root and Stem Rot of soybean, Identified from Arkansas soybean fields. Plant Dis,1995,79:1074.
    48. Hildebrand.A root and stalk rot of soybean caused by Phytophthora megasperma Drechsler var. sojae var.nov.Can.J.Bot,1959,37:927-957
    49. Hilty, J. W. et. al. Phytopathogenic and cultural variability of single zoospore isolate of Phytophthora megasperma var. sojae. Phytopathology.,1962,52:859-862
    50. Hohh,C J Hickman. Asexual reproduction and behavior of zoopores of Phytophthora megasperma var.sojae.Can. J.Bot,1967,45:1963-1981
    51. Joe Win, Thirumala-Devi Kanneganti, Trudy Torto-Alalibo and Sophien Kamoun, Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. ungal Genetics and Biology,2006,43(1):20-33
    52. Kaufmann M J, Gerdemann J W. Root and stem rot of soybeans caused by Phytophthora sojae n.sp.Phytopathology,1958,48:201-208
    53. Keeling B L..Four new Physiologic races of Phyrtopathora megasperma f.sp.glycinea.Plant Dis,19825,68:34-35
    54. Keeling, B. L. Researeh on Phytophthora root and stem rot. Plant Disease,1999,63:367-370
    55. Kuan T L, Erwin D C. Formae speciales differentiation of Phytophthora megasperma isolates from soybean and alfalfa.Phytopathology,1980,70:333-338
    56. Laviolette,F.A.,et al.Two new physiologic races of Phytopathora megasperma var.f.sp.glycine.Plant Disease,1983,67:497-498
    57. Layton A C,Athow B C,Laviolette F A. New physiologic race of Phytopathora megasperma f.sp.glycinea.Plant Dis,1986,70:500-501
    58. Lees A K,Wattier R,Shaw D S,et al.Novel microsatellite markers for the analysis of Phytophthora infestans population.Plant Pathology,2006,55:311-319
    59. Marker CL,Moller F. Multiple forms of enzymes:tissues, ontogenetic, and species-specific patterns. Proc. Natal. Acad. Sci. USA,1959,45:753-763
    60. Mckee GW..Chemical and biochemical techniques for varietal identification.seed Sci.Technol,1973,1:181-199
    61. Meng X Q, Shoemarker R C, Yang X B. Aanalysis of pathogenicity and genetic variation among Phytophthora sojae isolates using RAPD. Mycology Research,1999,103(2):173-178
    62. Morgan F L, New physiologic race of Phytophthora megasperma var.sojae.Phytopathology,1965 55:1277-1279
    63. Moy, P.Qutob,D,ChaPma, B.p, Atkinson,I,Gijzen,M,Pattems of gene expression upon infection of soybean Plants by phytophthoar sojae,Mol,Plant-Micorbe Internet.,2004.17,1051-1062
    64. Mueiler E H,Athow K L,Laviolette F A.Inheritance of resistance to four physiologic races of phytophthora megasperma var,soiae[J],Phytopathology,1978,68:1328-1322
    65. Newton, A.C. and Reglinski, T. An ELISA for quantifying mildew biomass. Journal of Plant Disease and Protection,1993,100:176-179
    66. Olah A F,Schmitthenner A F. A growth chamerber test for mesuring phytophthora root rot tolerance in soybean seedlings.Phytopathology,1985,75:546-548
    67. QutobD.,Hraber,p.T., Sobral,B.W,Gijzen,M.,Comparative analysis of expressed Sequences in Phytophthpra sojae. Plant Physiol,2000,123:243-254
    68. Ross J L. Reaction of soybean cultivals to races of P. me. f.sp. glycinea present in Queensland. Aust.[J].Agric Res,1982,33:763-771
    69. Schmitthenner A F, Hobe M,Bhat R G. Phytophthora sojae races in Ohio over a 10-year interval.Plant Disease,1994,78:269-276
    70. Schmitthenner AFetal.Phytophthora Rot of Soybean. Plant Health Management,2000,69:213-217.
    71. Schmitthenner,A.F.Evidence for a new race of Phytopathora megesperma var.sojae pathogenic to soybean.Plant Disease,1972 56:536-539
    72. Schwenk,F.W.et al.Race 4 of Phytopathora megasperma var.sojae from soybean proposed.Plant Disease Reporter,1974,58:352-354
    73. Skotland C.B.A phytophthora damping-off disease of soybean. Plant Disease Reporter,955,39:682-683
    74. Torto-Alalibo T, Tripathy S, Smith BM, Arredondo F D, Zhou L, Li H, Chibucos MC, Qutob D, Gijzen M, Mao C, Sobral B W S, Waugh M E, Mitchell TK, Dean RA, Tyler BM (2007) Expressed sequence tags from Phytophthora sojae reveal genes specific to development and infection. Mol Plant Microbe Interact,2007,7:781-793
    75. Tsumuar Y, Ohba K, Srtauss S. Divesity and inheritance of ISSR polymorphism in Wachira F N,Waugh R,Hackett C A,et al.Detection of genetic diversity intea(Camelliasinensis)using RAPD markers.Genome,1995,38:201-210
    76. Walker A K,Schmitthenner A.F.Comparion of field and greeenhuose evaluations for tolerance to Phytophthora megasperma f.sp.glycin.Phytopahology,1984,72:826-830
    77. Ward E W B. Biologi control of soilborne plant pathogens. England:D. Homby,1990,311-327
    78. Welsh-J, M-McClelland. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids-Res,1990,18:7213-7218
    79. Whisson S C,Maclean D J,Manners J M,Irwin J A G.Genetic relationships among Australian and NorthAmerican isolates of Phtophthora megasperma f.sp.glycinea assessed by multicopy DNA probes.Phytopathology,1992,82:863-868
    80. White D.M.et al..Race of Phytophthora megasperma f.sp.glycinea on soybean in eastern Nebraska.Plant Disease,1983,67:1281-1284
    81. Williams J G K et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc Aci Res,1990,18:6531-6535
    82. Wrather J A,Anderson T R,Arsyad D M,et al.Soybean disease loss estimates for the top ten soybean-producing countries in 1998.Canadian Journal of Plant Pathology,2001,23:115-121
    83. Wrather.J.A.et al.79.Soybean disease loss estimates of the sourthen United States.1974-1994.Plnat Dis,1995,1076-1079
    84. Zietkiewicz,E.,RafhIski,A.,and Labuda,D. Genome fingerprinting by simple sequence repeat(SSR) anchored polymerase chain reaction amplification.Genome,1994,20.176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700