番茄抗青枯病自交系选育及其杂交配组试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄是我国种植规模最大的蔬菜种类之一,以其漂亮的外观,较高的营养价值而深受人民群众喜爱。但是在番茄生产中,存在的最大问题就是病害严重,据调查番茄在生长期间病害种类多达40多种,以烟草花叶病毒病、枯萎病、青枯病等发病严重,在长江流域及华南地区,青枯病已经对番茄的生产造成了巨大的破坏,产量下降甚至绝收,商品性状降低,严重制约了番茄产业的发展。由于物理防治、化学防治等效果差,对环境破坏严重,且成本较高,而培育优良的抗病品种是防止番茄各种病害最有效的方法。
     本实验采用传统的人工接种和分子标记检测技术,对相关材料进行筛选,以期得到包含抗青枯病在内的多抗性番茄优良自交系,为抗青枯病的育种打下基础。利用选育的多抗自交系与经济性状优良的品系配制杂交组合,并进行比较,得到若干优良杂交组合。主要研究结果如下:
     1.以番茄抗青枯病的商业品种金钻、粤星、东方红、0495、0496的F4代为材料,进行了三代自交,经过对其F4、F5、F6代植株进行人工接种鉴定、Tm-2α、I-2基因标记的辅助选择,并结合田间经济性状,采用单株选择法,选育出经济性状较优良并且含有三抗和双抗基因的自交系,得到三抗的番茄自交系12份,双抗自交系100份,为抗青枯病的下一步的育种创造了材料。
     2.从上述选育的F4代抗青枯病的株系中,选取性状有差异的优良自交系为母本,以经济性状优良的自交系为父本,配制了10个杂交组合。通过组合的比较试验,筛选出2个抗青枯病,在产量、果实风味、早熟性以及耐贮性方面都表现较好的杂交组合。
     3.从上述选育的F5代抗青枯病中的株系中,选取抗青枯病的自交系和经济性状优良的自交系为亲本,配制了15个杂交组合。通过组合的比较试验,筛选出3个抗青枯病、枯萎病、烟草花叶病毒病,在产量、果实风味、早熟性都表现较好的杂交组合。
Tomato is one of the most widely cultivated crops in China, it is deeply loved by people because of its beautiful appearance and high nutritional value. But diseases hamper tomato production. There are more than 40 kinds of diseases affecting tomato production, such as TMV, fusarium wilt, and bacterial wilt. Especially, the bacterial wilt in the Yangtze River basin and Southern China, decreases production and lowers commodity characters. Chemical and physical controls to bacterial wilt have a side effect on environment, high-cost and poor-efficiency. The most effective method is to cultivate the good disease-resistance variety.
     In this study, the traditional artificial inoculation combination with molecular marker detection were used to select relevant materials, we aimed to get multi-resistant plants include selections of resistant to bacterial inbred lines, and lay the foundation for breeding resistance to bacterial wilt. Based on the multi-resistant inbred lines and good economic character lines, we got the fine hybrid combinations, the main results are as follows:
     1. Tomato F4 generations of the bacterial wilt-resistant commercial varieties such as Diamond, Guangdong star, oriental red,0495,0496, we made them selfing for three generations, inoculated their F4, F5 and F6 generations, then based on the individual plant selection method, we got the 12 inbred lines with good economic characters and resistance to three diseases,100 inbred lines resistance to two diseases, which was the foundation for breeding to resistance bacterial wilt in the future.
     2. We selected the good economic characters inbred lines as male parent, different characters of inbred lines as female parent from the F4 generation of inbred lines which resistance to bacterial wilt, and got 10 hybrid combinations, then we obtained 2 hybrid combinations with good characteres such as resistant to bacterial wilt, the yield, fruit flavor, early maturity and storability.
     3. We selected inbred line with resistance to bacterial wilt as one of the parent from the F5 generation of breeding lines, the other parent is the inbred line with good economic characters, made up 15 hybrids. Then we got 3 hybrid combinations with good economic characters and resistances to bacterial wilt, fusarium wilt, tobacco mosaic virus.
引文
1 陈卫东.番茄枯萎病研究初报.华中农学院学报,1982,3:81-83
    2 杜永臣,王孝宣,朱德蔚等.保护地番茄新品种中杂11号的选育.中国蔬菜,2001,4:20-21
    3 郭彩颖,张敏,梁超峰,郭英耀,胡作栋.番茄病毒病发生规律及防治技术. 西北园艺,2009,5:35-36
    4 韩文华,许文奎,张英杰,李春福,张国良.番茄叶霉病菌形态特征鉴定及生物学特性研究.辽宁农业科学,1997,5:16-17
    5 乐素菊,吴定华.番茄青枯病的抗性遗传研究.华南农业大学学报.1995,16:91-95
    6 雷彩燕,王振跃,张振臣.烟草花叶病毒株系研究进展.河南农业科学,2005,12:14-16
    7 李海涛,邹庆道,吕书文,穆欣,许文奎.番茄抗青枯病的最适鉴定方法研究.辽宁农业科学,2001,4:1-7
    8 李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因—多基因混合遗传分析.遗传,2006,28:458-462
    9 李加纳主编.数量遗传学概论.1995:164-198
    10李乃坚,黄爱兴,袁四清,王德元.茄科作物抗青枯病水培法鉴定研究液休憩培养青枯菌的致病力.广东农业科学,2000,3:36-40
    11李树德主编.中国主要蔬菜抗病育种进展.科学出版社,1995:267-271
    12李自娟.番茄无果梗节串性品种选育及自交系配合力分析.[硕士学位论文].武汉:华中农业大学,2009
    13林明宝,汪国平.番茄抗青枯病材料及抗病基因SSR标记的初步筛选.安徽农业科学,2008,36:3538-3539
    14刘晖,郑是琳,黄艳萍.番茄枯萎病生理小种及其生物学研究初报.山东农业大学学报,1991,22:356-360
    15马育华编著.植物育种的数量遗传学基础.江苏科学技术出版社,1982,376-383
    16孙亚林.番茄四个抗病基因的基因标记的创建与辅助选择.[硕士学位论文].武汉:华中农业大学,2008
    17寿森炎,冯壮志,苗立祥,廖芳滨.番茄抗青枯病基因的AFLP分子标记.遗传,2006,28:195.199
    18田苗英,玛兰香,杨翠荣.应用RAPD方法获得与番茄TMV抗性基因Tm-22连锁的分子标记.植物病理学报,2000,30:158-161
    19王全华,李景富,李永镐,王富.黑龙江省番茄枯萎病菌生理小种鉴定.东北农 业大学学报,1996,27:354-357
    20汪国平,袁四清,熊正葵等.广东省番茄青枯病研究概况.广东农业科学,2003,3:32-34
    21徐艳辉,李烨,许向阳.番茄枯萎病研究进展.东北农业大学学报,2008,39:129-134
    22薛朝阳,周雪平,李凡等.烟草花叶病毒属研究进展忉.农业生物技术学报,2000,8:54-58.
    23杨永政,梁燕.樱桃番茄主要农艺性状与产量的相关及通经分析.北方园艺,2006,3:1-2
    24于拴仓,邹艳敏,番茄枯萎病抗性基I-2的显性分子标记及其应用.分子植物育种,2007,5:806-810
    25张战泓,刘虎,丁茁荑等.番茄新品种湘番茄3号的选育与栽培技术.湖南农业科学,2003,6:15-17
    26郑莎.番茄多抗品系的选育及杂种优势利用.[硕士学位论文].武汉:华中农业大学,2009
    27 Amakawa K. Cultivar resistance to Pseudomonas solanacea rum in tomato and eggplant. Shokubutsu Boeki(Plant Protection).1978,32:197-200
    28 Alexander L, Tucker C. Physiologic specialization in the tomato wiltfungus Fusarium oxysporum f.sp lycopersici. Jour Agric Res.1945,70:303-313
    29 Bohn Q Tucker C. Immunity to Fusarium wilt in the tomato. Science.1939,89: 603-609
    30 Beckman C. Elgerma D, Machardy W. The localization of fusarial infection in the vascular tissue of single-dominant-gene resistant to tomato. Phytopothology.1972,62: 1256-1260
    31 Benhamou N, Rey P, Che M, Hocke J, Tirilly Y Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology. 1997,87:108-122
    32 Bournival B, Scott J, Vallejos C. An isozyme marker for resistance to race 3 of Fusarium oxysporum f.sp lycopersici in tomato. Theor Appl Genet.1989,78:489-494.
    33 Benhamou N, Rey P, Picard K, Tirilly Y Ultrastructural and cytochemical aspects of the interaction between the mycopara-site Pythium oligandrum and soilborne plant pathogens. Phyto pathology.1999,89:506-517
    34 Balatero C, Hautea D, Narciso J, et al. Genetic of resistance and host pathogen interaction in tomato Psolanacearum system implications in breeding for tomato. Philippine Journal of Crop Science.2000,25:8-10
    35 Conway W, Hardy W. Distribution and growth of Fusarium oxysporum f.sp lycopersici race 1 or race 2 within tomato plants resistant or susceptible to wilt. Phytopathology. 1978,68:938-942
    36 Danesh, D, Aarons S, McGill G, Young, N. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol. Plant-Microbe Interact.1994,7:464-471
    37 Dax E, Livneh O, Aliskekvicius E, Edelbaum O, Kekar N, Gavish N, Milo J,Geffen F, Blumenthal A, Rabinowitch H and Sela I. A SCAR marker linked to the ToMV resistance gene Tm22 in tomato. Euphytica,1998,101:73-77
    38 Dax E, Livneh O, Edelbaun O, Kedar N, Cavish N,Karchi H, Milo J, Sela I and Rabinowitch H. D. A random amplified polymorphic DNA (RAPD) molecular marker for the Tm-2a gene in tomato. Euphytica,1994,74:159-163
    39 Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol.2000,3:278-284
    40 Gerdemann-Knorck M, Nielen S, Tzscheetzsch C. Transfer of disease resistance within the genus Brassica through asymmetric somatic hybridization. Euphytica, 1995,85:247-253
    41 Gabe H. Standardization of nomendature for pathogenic races of Fusarium oxysporum f.sp.lycopersici. Trans Br My col Soc,1975, (64):156-159
    42 Gerdemann W, Finley A. The pathogenicity of race 1and 2 of Fusarium oxysporm f.sp.lycopersici. phytopathology,1951,41:238-244
    43 Grattidge R, Bnen G. Occurence of third race of fusarium wilt of tomato in Queensland. Plant Disease.1982,66(2):165-168
    44 Grimault V, Prior P. Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathol.1993,42:589-594
    45 Grimault V, Prior P, Anals G, A monogenic dominant resistance of tomato to bacterial wilt in Hawaii 7996 is associated with plant colonization by Psedomonas solanacearum. J Phytopathol.2008,143:349-352.
    46 Griffing B. Concepts of general and specic combining ability in relation to diallel crossing systems. Austral J Biol Sci.1956,9:463-493
    47 Hase S, Shimizu A, Nakaho K, Takenaka S, Takahashi H. Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol.2006,55:537-543
    48 Hemming M, Basuki S, Mcgrath D, Carroll B, Jones D. Fine mapping of the tomato Ⅰ-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet.2004,109(2):409-418.
    49 Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H. Involvement of jasmonic acid signalingin bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol.2008,57:870-876
    50 Hayward ACBiology and epidemiology of bacterial wil caused by Pseudomonas solanacearum. Annu Rev Phytopatho.1991,29:65-87
    51 Kelman A. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium.Phytopathology,1954,44:693-695
    52 Kelman A, Hartman G, Hayward A. Bacterial wilt:The disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford.1994,1-7
    53 Lee J. Cultivation of grafted vegetables Current status, grafting methods, and benefits. HortScience.1994,29:235-239
    54 Laterrot H. A new race of Cladosporium folvum(Fulvia fulva) and sources of resistance in tomato. Neth JPlanPath,1986,92:305-307
    55 Lewis K, Whipps M, Cooke R. Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist. In:Whipps JM, Lumdsen RD (eds) Biotechnology of fungi for improving plant growth. Cambridge University Press.1989,6:191-217
    56 Laterrot H, Gerlagh M, Ester A, Stamova L. A new race of Cladosporium fulvum(Fulvia fulva) on tomato. Neth J Plant Patho.1985,191:45-47
    57 Miao L, Shou S, Zhu Z. Identification of AFLP marker linked to bacterial wilt resistance in tomato and conversion to SCAR marker. Mol Biol.2009,36:479-486
    58 Mangin B, Thoquet P, Olivier J. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics, 1999,151:1165-1172
    59 Motoyoshi F, Ohmori T and Murata M. Molecular characterization of heterochromatic region around the Tm-2a locus in chromosome 9 of tomato. Symp Soc Exp Biol.1996, 50:65-70
    60 Murakoshi S, Takahashi M. Trials of some control of tomato wilt caused by Pseudomonas solanacearum. Bull Kanagawa Hortic Expt Stn.1984,31:50-56
    61 Ohmori T, Murata M, and Motoyoshi F. Identification of RAPD markers linked to the TMV resistance genes Tm-2 and Tm-2a in tomato locus in tomato. Theor Appl Genet. 1995,90:307-311
    62 Pillen K, Canal M and Tanksley S D. Construction of a higlrresolution genetic map and YAC contigs in the tomato Tm-2α region. Theor Appl Genet.1996,93:228-233
    63 Pieer J, Mde W, Aas F, Grardy C, Velthui S, Ingrid M,Tonia T. Specifity of active defense responses in plant-fungus:Cladosporium fulvum, a case study. Plant Physiol Biochem.1987,25(3):345-351
    64 Paddock E. A tentative assignment of the Fusarium-immunity locus to linkage group 5 in tomato.Genetics.1950,35:683-684
    65 Rojas B, and Sprague G. A comparison of variance components in corn yield traits. General and Speific combining ability and their interaction with locations and years. Agron J.1952,44:462-466
    66 Singh K. Inheritance of North Carolina type of bacterial wilt resistance in tomato Lycopersion esculentum L(Master Thesis). University of Hawaii, Honolulu.1961.
    67 Shull G. The composition of a field of maize. Am Breed Assoc Rep.1908,4:296-301
    68 Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, Van der Lee T, Bleeker M, Onstenk J, Both M. Dissection of the Fusarium 12 gene cluster in tomato reveals six homologs and one active gene copy. The Plant Cell Online.1998, 10:1055-1059
    69 Sato R, Araki T. On the tomato root-rot disease occurring under viny 1 house conditions in southern Hokkaido. Ann Rep Soc Plant Prot North Jpn,1974,25:5-13.
    70 Sarfatti M, Abu Abied M, Katan J, Zamir D. RFLP mapping of I1 a new locus in tomato conferring resistance against Fusarium oxysporum f.sp. 1ycopersici race 1. Theo Appl Genet,1991,82:22-26
    71 Sarfatti M, Katan J, Fluhr R, Zamir D. An RFLP marke in tomato linked to the Fusarium oxysporum resistance gene Ⅰ2. Theor Appl Genet.1989,78:755-759
    72 Stall R, Walter J. Selection and inheritance of resistance in tomato toisolates of races 1 and 2of the Fusariton wilt organism. Phytopathology.1965,55:1213-1215
    73 Sobir R, Ohmori T, Murata M and Motoyoshi F. Molecular characterization of the SCAR markers tightly linked to the Tm-22 locus of the genus lycopersicon. Theor Appl Genet,2000,101:64-69
    74 Sprague G, Tatum L. Specific combining ability in single crosses of corn. Agron J, 1942,34:923-934
    75 Takenaka S, Nishio Z, Nakamura Y. Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum.Phtophathology.2003,93:1228-1232
    76 Tanksley S, Ganal M, Prince J, De-Vicente M, Bonierbal M, Broun P, Fulton T, Giovannoni J, Grandillo S, Martin G. High density molecular linkage maps of the tomato and potato genomes. Genetics.1992,132(4):11-41
    77 Takenaka S, Sekiguchi H, Nakaho K, Tojo M, Masu A. Takahashi H. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology.2008,98:187-195
    78 Takenaka S, Nakamura Y, Kono T, Sekiguchi H, Masunaka A,Takahashi H. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Mol Plant Pathol.2006,7: 325-339
    79 Thoquet P, Olivier J, Sperisen C. Quantitative trait determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol Plant Microbe Interact.1996,9:826-836
    80 Van D, Hoorn R, Dewit P, Joosten M. Balancing selection favors guarding resistance proteins. Trends in plant science.2002,7(2):67-71
    81 Wellman F, Blaisdell D. Difference in growth characters and pathogenicity of Fusorium wilt isolations tested on three tomato varieties. Tech Bull US Dep Agric, 1940,705:28-30
    82 Young N, Tanksley S. RFLP analysis of the size of chromosomal segements retained retained around the Tm-2 locus of tomato during backeross breeding. Theor Appl Genet.1989,77:353-359
    83 Yui M, Monma S, Hiral M. Random amplified polymorphic DNA (RAPD) markers for the selection of tomatoes (Lycopersicon) resistant to bacterial wilt Bull Natl Res Veg. 1999,14:189-198
    84 Wang J, Olivier J, Thoquet P. Resistance of tomato line Hawaii 7996 to Ralstonia solanacearum Pss 4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact,2000,13(1):6-13
    85 Young D, Zamir D, Ganal M and Tankley S. Use of isogenic lines and Simultaneousprobing to identify DNA markers tightly linked to the TM-2a gene in tomato. Genetics,1988,120:579-585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700