典型压力容器用钢在湿硫化氢环境中的应力腐蚀开裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力容器在湿硫化氢环境中的应力腐蚀开裂(SSCC)是一种发生频率较高,后果较为严重的破坏现象,特别是近年来随着我国原油深度开采和中东进口原油数量的增加,石油炼制业原料油中硫元素含量越来越高,使得湿硫化氢环境引起的应力腐蚀问题日益突出。国内外许多学者对硫化氢环境中的应力腐蚀问题已进行了大量研究工作,取得了一定的研究成果,但由于应力腐蚀影响因素众多,各种试验技术和对应力腐蚀机理的认识均带有一定的局限性,所以还存在许多问题值得深入研究和探讨。
     本文选择了三种比较典型的压力容器用钢:低合金钢16MnR、低碳钢20g和奥氏体不锈钢316L作为研究对象,采用慢应变速率拉伸腐蚀试验和恒位移预裂纹断裂力学试验方法,研究了这几种钢材的在湿硫化氢环境中的应力腐蚀敏感性。在环境因素中,主要考虑了H_2S浓度、CI~-浓度、温度和PH值等介质参数单独或交互作用对应力腐蚀敏感性的影响。试验方案设计采用了均匀设计方法,将试验介质参数在各自取值范围内进行均匀散布组合,确定试验条件。材料因素方面主要分析了三种不同种类的钢以及同一钢种母材和焊缝的应力腐蚀敏感性的差异。通过试验数据的逐步回归分析,进一步揭示试验介质参数对应力腐蚀敏感性指数影响的显著性。在试验研究基础上,从微观角度提出了压力容器用钢在湿硫化氢环境中应力腐蚀的理论模型。综合上述试验和理论研究工作,本文得出下列几条主要结论:
     1.16MnR钢慢应变速率拉伸腐蚀试验(SSRT)和应力腐蚀敏感性指数F(A)的回归分析表明,在湿硫化氢环境中,H_2S浓度(x_1)对16MnR应力腐蚀敏感性指数F(A)影响最为显著,其次是PH值(x_4),CI~-浓度(x_2)与F(A)之间没有显著的相关关系,温度(x_3)和H_2S浓度(x_1)将对F(A)产生交互作用。随着H_2S浓度的升高,16MnR应力腐蚀敏感性指数增大。表示16MnR母材应力腐蚀敏感性指数F(A)与试验介质参数之间关系的交互型数学模型为:
     F(A)=-14.5048+3.01×10~(-2)x_1+7.99x_4-2.51×10~(-5)x_1~2+5.0×10~(-4)x_x_3
    
     有萝
    2.比较16MnR母材和焊缝的慢应变速率拉伸腐蚀试验结果发现,16MnR焊
     缝的应力腐蚀敏感性高于母材。其主要原因是:焊缝的强度和硬度高于母
     材;焊缝的金相组织均匀程度比母材差,且晶粒比较粗大;同时焊缝区域
     的存在的较高焊接残余应力也会促进应力腐蚀裂纹的产生和扩展。
    3.恒位移预裂纹试样应力腐蚀试验显示,16MnR钢在炼制高硫原油常减压装
     置的硫化氢环境中,应力腐蚀临界应力强度因子KlscC不大于 32MPa石,
     此时应力腐蚀裂纹扩展速率约为10一4mm/h。
    4.209钢母材和焊缝在脱硫系统贫液、富液环境中应力腐蚀敏感性指数均较
     低,试样断口上存在大量韧窝,应力腐蚀特征不明显。温度对209材料的
     应力腐蚀敏感性影响相对较大,且随着温度升高,敏感性指数有所增大;
     而贫液和富液中HZS浓度对应力腐蚀敏感性影响不大。
    5.316L钢的慢应变速率拉伸腐蚀试验和应力腐蚀敏感性指数F(A)回归分
     析表明,在湿硫化氢环境中,Cl.浓度(xZ)和温度(x3)对316L的应力腐
     蚀敏感性指数F(A)影响均较显著,PH值(x4)与F(A)没有显著的相
     关关系,HZS浓度(xl)和温度(x3)对F(A)将产生交互作用。随着CI-
     浓度和温度的升高,316L钢应力腐蚀敏感性指数F(A)增大。表示316L
     应力腐蚀敏感性指数F(A)与试验介质参数之间关系的交互型数学模型为:
     F(刁)=一22.34+l.92x一。一2x2+5.8lx10一,x,+1.oxlo一x,x3
    6.从微观的角度提出了钢材在湿硫化氢环境中的腐蚀导致局部塑性变形
     (e000Sion Enhan。ed Plastieity Model,即eEPM)的应力腐蚀理论模型。
     阴极反应产生氢原子通过渗透进入金属,并和位错发生交互作用,作用的
     结果削弱了位错之间的相互作用力,促进了位错发射、增殖和运动,从而
     加剧了局部塑性变形,导致微裂纹的形核和扩展。并提出了由初始氢浓度
     和温度计算弱化指数的定量关系式。
Stress corrosion cracking of pressure vessel in wet hydrogen sulfide service is a more often occurred damage phenomenon, which will lead to serious consequence. Especially for recent years, with the deeply oil exploiting in our country and increasing of the import oil from Middle-East area, there are more and more sulfide element in crude oil in refining industry, and it make the stress corrosion cracking in wet hydrogen sulfide service increasingly outstanding. A lot of researches on tress corrosion cracking in wet hydrogen sulfide service have been made all over the world, and some useful results are obtained, however, because of lots of factors which will effect stress corrosion cracking susceptibility, and with some limitations for all kinds of test technologies and understanding of stress corrosion cracking mechanism, there are many problems left need to be resolved and discussed.
    In this paper, the stress corrosion cracking susceptibilities of three typical types of pressure vessel steels: low alloy steel 16MnR, low carbon steel 20g and austenitic stainless steel 316L in wet hydrogen sulfide service are investigated, by slow strain rate test and constant strain pre-cracked specimen test. Among the environments factors, the separate and interaction effects of H2S concentration, CI-concentration, temperature and PH values on stress corrosion cracking susceptibilities are considered. The tests are designed by even design method, all parameters of medium are divided into several grade within its ranges and combined evenly. The discrepancies of stress corrosion cracking susceptibility between different types of steel, base matal and welds are analyzed. By stepwise regression analysis of test results, the notabilities of effect on stress corrosion cracking susceptive indexes of medium parameters are revealed. Based on experiment research, a micro stress corrosion cracking model of pressure
     vessel steel in wet hydrogen sulfide has been developed. The main conclusions of this paper are as follows: 1. The slow strain rate tests(SSRT) and the stepwise regression analysis of stress
    
    
    corrosion cracking susceptibility indexes F(A) of 16MnR indicate that, in wet hydrogen sulfide service, the effect of H2S concentrations(x1) is most notable, PH value(x4) comes second, there is no notable correlativity between CF concentration(X2) and F(A), temperature(x3) and FbS(x1) play interaction role on the indexes F(A). With increasing of HS concentrations(x1), stress corrosion cracking susceptibility indexes of 16MnR steel increase. The interaction fitting equation of stress corrosion cracking susceptibility indexes F(A) of 16MnR base metal can be expressed:
    2. By comparing the slow strain rate test datum of 16MnR base metals with that of welds, it is found that the welds of 16MnR is more susceptible to stress corrosion cracking than the base metals. The main reasons are: the strength and rigidity of welds are higher than those of the base metals; the metallographic structures uniformities of welds are not good as the base metals, the crystals of welds are bulky; and the higher residual stress of welds region would also accelerate process of origin and propagation of stress corrosion crack.
    3. Constant strain pre-cracked stress corrosion tests of 16MnR steel in refining high sulfide content oil service are carried out, and it indicated that, the
    threshold stress intensity factors KISCC are not higher than 32 MPa, and under
    this load condition, the stress corrosion crack propagation rate is about 10-4mm/h.
    4. The stress corrosion cracking susceptive indexes of 20g base metal and welds in the saturated H2S solution and less saturated H2S solution of desulfuration system are low. There are lots of cavity on surface of microstructure fracture of specimen, stress corrosion cracking features are not obvious. The temperatures are more aggressive to stress corrosion cracking susceptibility than the other parameters, with the temperature increasing, susceptive indexes increase; however, the H2S concentrations of satu
引文
[1] Kurth, R.E., Leis, B.N., Probabilistic modeling of stress-corrosion cracking: Part one-model development, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP 386, (1999), Sponsored by: ASME, 3-12.
    [2] Leis, B.N., Kurth, R.E., Probabilistic modeling of stress-corrosion cracking: Part two-validation and implications for control, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP 386, (1999), Sponsored by: ASME, 13-23.
    [3] Rhodes, P.R., Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: A review, Corrosion, (2001), Vol. 57, No.11, 923-966.
    [4] Pargeter, Richard, J., Review of the concept of mildly sour environments, Proceedings of the International Pipeline Conference, IPC Vol.1, (1998), Sponsored by: ASME, 447-457.
    [5] Juncai FAN, Computer Modeling of SCC in Gas Pipe Steel and Hydraulic Fracture in Stratified Polo-elastic Media, Ph.D. dissertation, University of Illinois at Chicago, (2001).
    [6] Bing ZHANG, Understanding and Modeling of Stress Corrosion Cracking in High Pressure Piping Steel, Ph.D. dissertation, University of Illinois of Chicago, (2001).
    [7] Rhodes, P.R., Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: A review, Corrosion, (2001), Vol. 57, No. 11, 923-966.
    [8] El-Yazgi, A.A., Hardie,D., Stress corrosion cracking of duplex and super duplex stainless steels in sour environments, Corrosion Science, (1998), Vol.40, No.6, 909-930.
    
    
    [9] Claek, T., Inglis,W., Yellow metal for sour service, Materials Performance, (1996), Vol.35, No.4, 60-64.
    [10] Prakash,T. L., Malik, A.U., Studies on the stress corrosion cracking behavior of some alloys used in desalination plants, Desalination, (1999), Vol. 123, No. 2, 215-221.
    [11] Hibner, Edward L., Fende, Debbie S., Conquer chlorides and alloy costs, Chemical Engineering Progress, (1999), Vol.95, No.4, 63-68.
    [12] Schillmoller, C.M., Selection of corrosion-resistant alloy tubulars for offshore applications, CEW, Chemical Engineering World, (1998), Vol.33, No.3, 59-64.
    [13] 姚京,楮武扬,肖纪美,压应力导致不锈钢的应力腐蚀,金属学报, (1983),Vol.19,No.5,A445-449.
    [14] Albarran,J.L., Lopez,H.F., Martinez,L., Crack growth in a welded microalloyed steel under sulfide stress cracking conditions, Journal of Materials Engineering and Performance, (1998), Vol.7, No.6, ASM International, 777-783.
    [15] Chu,Wuyang, Qiao Lijie, Wang Yanbin, Relationship among parameters evaluating stress corrosion cracking, Journal of Materials Science and Technology, (2000), Vol.16, No.5, 504-508.
    [16] 方智,张琳,吴荫顺,朱曰彰,304不锈钢在室温HCI+NaCI溶液中的应力腐蚀机理,腐蚀科学与防护技术,(1995),Vol.7,No.1,p42-46
    [17] 左禹,张树霞,1Cr18Ni9Ti不锈钢在硫化氢溶液中的台阶状应力腐蚀,北京化工学院学报(自然科学版),(1994),Vol.21,No.4,p59-64.
    [18] L. W. Tsay, Y. C. Chen, S. L. I. Chan, Sulfide stress corrosion cracking and fatigue crack growth of welded TMCP API 5L X65 pipe-line steel, International Journal of Fatigue, (2001), Vol.23, p103-113.
    [19] R.N.Parkins, Slow strain rate testing-25 years experince, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, Philadephia, (1993), p7-21.
    [20] R.N.Parkins, Development of slow strain rate testing and its implications, Stress corrosion cracking: slow strain rate technique, ASTM STP665,
    
    G.M.Ugiansky and J.H.Payer, Eds., American Society for Testing and Materials, Philadephia, (1979), p5-25.
    [21] J.H.Payer, W.E.Berry, W.K.Boyd, Evaluation of slow strain-rate stress corrosion tests results, Stress corrosion cracking: slow strain rate technique, ASTM STP665, G.M.Ugiansky and J.H.Payer, Eds., American Society for Testing and Materials, Philadephia, (1979), p61-77.
    [22] Schofied,Michael J., Bradshaw, Roy, Cottis,R.A., Stress corrosion cracking of duplex stainless steel weldments in sour conditions, Materials Performance, (1996), Vol.35, No.4, p 65-70.
    [23] D.A.Meyn, RS.Pao, Slow strain rate testing ofprecacked titanium alloys in salt water and inert environment, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP 1210, Russell D.Kane, Editor, Philadephia, (1993), p158-169.
    [24] Erilsson,H., Berhandsson, S., Applicability of duplex stainless steels in sour environments, Corrosion, (1991), Vol.47, No.9, p 719-727.
    [25] J.A.Beavers, G.H.Koch, Limitations of slow strain rate testing technique, slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP1210, Russell D. Kane, Editor, Philadephia, (1993), p22-39.
    [26] R.D.Kane, S.M.Wilhelm, Status of standardization activities on slow strain rate testing techniques, slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP 1210, Russell D.Kane, Editor, Philadephia, (1993), p40-47.
    [27] Zhang Xueyuan, Duyuanlong, Relationship between susceptibility to embrittlement and hydrogen permeation current for UNS G10190 steel in 5%NaCl solution containing H_2S, British Corrosion Journal, (1998), Vol.33, No.4, p292-296.
    [28] Ahluwalia, Harkirat S., Problems associated with slow strain rate quality assurance testing of nickel-base corrosion resistant alloy tubulars in hydrogen sulfide environments, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP 1210, Russell D.Kane, Editor, Philadephia, (1993), p225-239.
    
    
    [29] Ikeda,Akio, Ueda,Masakatsu, Okamoto,Hiroshi, Role of slow strain rate testing on evaluation of corrosion resistant alloys for hostile hot sour gas production, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, Philadephia, (1993), p240-262.
    [30] Muizhnek,I.A., Accelerated corrosion cracking tests of steels in active-passive loading, Soviet Materials Science (English Translation of Fiziko-Khimicheskaya Mekhanika Materiatov), (1990), Vol.26, No.2, p 168-171.
    [31] J.H.Payer, W.E.Berry, R.N.Parkins, Application of slow strain-rate technique to stress corrosion cracking of piping steel, Stress corrosion cracking: slow strain rate technique, ASTM STP665, G.M.Ugiansky and J.H.Payer, Eds., American Society for Testing and Materials, Philadephia, (1979), p222-234.
    [31] 吴荫顺,金属腐蚀研究方法,冶金工业出版社,北京,(1993).
    [32] John A.Beavers, Gerhardus H.Koch, Limitations of the slow strain rate test technique, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP 1210, Russell D. Kane, Editor, Philadephia, (1993), p22-39.
    [33] 黄嘉琥,恒应变速度应力腐蚀试验综述,化工与通用机械,(1979),Vol.18.,p41-56。
    [34] 薛锦,应力腐蚀与环境氢脆,西安交通大学出版社,(1991).
    [35] 楮武扬,乔利杰,高克玮,阳极溶解型应力腐蚀,科学通报,(2000),Vol, 45,No.24,p2581-2588.
    [36] D.Delafosse, T. Magnin, Hydrogen induced plasticity in stress corrosion cracking of engineering systems, Engineering Fracture Mechanics, (2001), Vol. 68, p693-729.
    [37] 乔利杰,王燕斌,楮武扬,应力腐蚀机理,科学出版社,(1993).
    [38] Weng Chengchiang, Chen Ronting, Acoustic emission characterization of steel in H_2S solution subjected to tensile load, Zhongguo Gongchen Xuekan/Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A, (1993), Vol. 16, No.4, p 489-498.
    
    
    [39] Jonas, Otakar,Molecular modeling of corrosive environments in cracks, ASTM Special Technical Publication, (1997), Vol. 12, No. 98, Sponsored by: ASTM, p 182-196.
    [40] 王燕斌,楮武扬,肖纪美,氢致解理断裂机理,中国科学A辑,(1989),No.10.,p1065-1073.
    [41] 肖纪美,应力作用下的金属腐蚀,化学工业出版社,(1990).
    [42] Cheldi, T., Ghielmetti, A., Dieumegard, C., Laboratory testing on flexible pipe in harsh environment, Metallurgia Italiana, (1999), Vol. 91, No.5, p 61-64.
    [43] Vehovar, L., Tandler, M., Vehovar, A., Research into the resistance to hydrogen embrittlement of structural steel welds using the NACE-test and corrosion elongation curves, Metalurgija/Metallurgy, (2000), Vol. 39, No.2, p 77-81.
    [44] 楮武扬,肖纪美,李世琼,钢中氢致裂纹机构研究,金属学报,(1981),Vol.17,No.1,p10-16.
    [45] R. B. Rebak, Z.Szklarska-smilalowska, The mechanism of stress corrosion cracking of alloy 600 in high temperature water, Corrosion Science, (1996), Vol. 38, No.6, p971-988.
    [46] 乔利杰,徐荣杰,刘辉,氢对黄铜应力腐蚀开裂敏感性的影响,中国腐蚀与防护学报,(1995),V01..15,P61.
    [47] 楮武扬,谷飚,高克玮,应力腐蚀机理研究的新进展,腐蚀科学与防护技术,(1995),Vol.7,No.2,p97-101.
    [48] Shibuya, Teruo, Misawa, Toshihei, Transition from HIC to SSCC type cracking of carbon steel with increase of applied stresses in hydrogen sulfide solutions, Corrosion Engineering, (1996), Vol. 45, No. 11, p 654-661.
    [49] American Society of Mechanical Engineers, eviceability of Petroleum, Process, and Power Equipment, Pressure Vessels and Piping Division (Publication) PVP, (1992), Vol.239, Sponsored by: ASME, Pressure Vessels & Piping Div; Materials Properties Council Publ by ASME 285, p 0277-027X.
    [50] Cole,I.S., Andenna, C., Assessment of a micro-mechanic model of hydrogen-induced stress corrosion cracking, based on a study of an X65
    
    line pipe steel, Fatigue and Fracture of Engineering Materials & Structures, Vol. 17, No.3, (1994), p 265-275.
    [51] Ravi, K., Ramaswamy, V., Namboodhiri, T.K.G., Effect of molybdenum on the resistance to H_2S of high sulphur microalloyed steels, Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A169, No.1-2, (1993), p 111-118.
    [52] Burk, J. D., Hydrogen-induced cracking in surface production systems: mechanism, inspection, repair, and prevention, SPE Production & Facilities, Vol. 11, No, 1, (1996), Society of Petroleum Engineers (SPE), p 49-53.
    [53] Asahi, H., Ueno, M., Yonezawa, T., Prediction of sulfide stress cracking in high-strength tubulars, Corrosion, Vol.50, No.7, (1994), Natl Assoc of Corrosion Engineers, p 537-545.
    [54] Smith, L.M., Crolet, J.L., Eliassen, S., Kermani, B., Nisbets, W., Technical forum: Review of Sour Service Definitions, Part 1, Materials Performance & Design, Vol. 36, No.4, (1997), p 66-67.
    [55] 兰州石油机械研究所,防止湿硫化氢环境中压力容器失效的推荐方法,石油化工设备,(1986),Vol.15,No.1.
    [56] Dale R.Mclntyre, Technical forum: Review of Sour Service Definitions, Part 2, Materials Performance & Design, Vol.36, No.4, (1997), p 68-70.
    [57] Mclntyre, Dale R., Boah,Johm K., Review of sour service definitions, Materials Performance, Vol.35, No.8, (1996), p 54-58.
    [58] Craig, B.D., Thompson,R.S., Expert advisor program for SSC and NACE MR-01-75, Proceedings of the SPE Production Operations Symposium Apr 7-9, (1991),Publ by Soc of Petroleum Engineers of AIME, p 971-973
    [59] Polyakov, V.N., Demushin,N.N., Protective coatings for gas processing plant equipment, Protection of Metals (English translation of Zaschita Metallov), Vol.27, No.3, (1992). p 398-401.
    [60] Zhengze, Wang, Corrosion caused by wet H_2S in refining equipment, Lianyou Sheji/Petroleum Refinery Engineering, Vol.25, No. 1, (1995).
    [61] 马继国,压力容器抗应力腐蚀设计的讨论,化工设备与管道,(2000),Vol.37,No.6,p48-53.
    
    
    [62] Qiao, Guiying, Influence of heat treatment on stress corrosion resistance in H_2S medium of Fv520(B) steel, Iron and Steel, Vol. 34, No.11, (1999), p48-50.
    [63] Ravi,K., Ramaswang, V., Namboodhing,T.K.G., Role of non-metallic inclusions in heat-treated steels for sour environment, Steel Research, Vol. 65, No.2, (1994), p 71-75.
    [64] 张勇,王家辉,石化设备湿硫化氢应力腐蚀失效及其防护,石油工程建设,(1995),No.6,p11-14.
    [65] 赵明纯,单以银,李玉海,杨柯,显微组织对管线钢硫化物应力腐蚀开裂的影响,金属学报,(2001),Vol.37,No.1,p1087.1092.
    [66] 陈锡祚译,NACE标准RP0296-96,检查、修复和减轻炼油厂在用压力容器在湿H_2S环境中的开裂的指导准则,石油化工腐蚀与防护,(1997),Vol.14,No,2,p50-60.
    [67] 合肥通用机械研究所,华东理工大学,“九五”国家重点科技攻关课题96-918-01-04专题,在役重要压力容器使用情况调查分析,(2001).
    [68] 张亦良,姚希梦,压力容器用钢的硫化氢应力腐蚀,压力容器,(1998),No.1,p30-35.
    [69] 姜放,饶威,酸性环境中压力容器用钢及腐蚀防护新进展,天然气工业,(1999),No.1,p94-97.
    [70] 王维宗,贾鹏林,许适群,湿硫化氢环境中腐蚀失效实例及对策,石油化工腐蚀与防护,(1999),Vol.18,No.2,p7-13.
    [71] H.I.Mchenry, Failure analysis of an amin-absorbed pressure vessel, Materials Performance, (1987). Vol. 26, No.8, p18-24.
    [72] 催新安,宁朝辉,石油加工中的硫腐蚀与防护,炼油设计,(1999),Vol.29,No.8,p61-67。
    [73] 董超芳,李晓刚,许适群,石油化工设备基本腐蚀系统分析,腐蚀与防护,(2001),Vol.22,No.2,p49-53.
    [74] 刘巍,球罐应力腐蚀的分析与防范,四川化工与腐蚀控制,(1999),Vol.2,No.6.p50-53.
    [75] Efremov, A.P., Composite coating for protecting carbon steel from stress corrosion failure, Protection of Metals, Vol.25, No2, (1989), p 176-180.
    [76] Tsay, L.W., Chen,Y.C., Sulfide stress corrosion cracking and fatigue crack
    
    growth of welded TMCP API 5L X65 pipe-line steel, International Journal of Fatigue, Vol.23, No.2, (2001), p 103-113.
    [77] Kane,R.D., Srinivasan, S., Reliability assessment of wet H_2S refinery and pipeline equipment. A knowledge based systems approach, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, Vol. 239, (1992), Sponsored by: ASME, Pressure Vessels & Piping Div; Materials Properties Council Publ by ASME p 163-172.
    [78] Alekseev, V.I., Kiselev, O.A., Levshina, I.V., Role of the high pressure of hydrogen in the phenomenon of hydrogen sulfide corrosion cracking of steel, Soviet Materials Science, Vol. 26, No.2, (1990), p149-152.
    [79] 张学元,杜元龙,许适群,16Mn钢在H_2S溶液中的脆断敏感性,材料保护,(1998),Vol.31,No.1,p3-7.
    [80] 张晓东,液化石油气储罐的H_2S应力腐蚀,石油化工腐蚀与防护,(2001),Vol.18,No.1,p28-30.
    [81] 高惠临,油气管道的应力腐蚀,油气田地面工程,Vol.15,No,2,p43-46.
    [82] 张亦良,李林生,王慕,姚希梦,防止硫化氢应力腐蚀失效的EFC准则的应用及验证,中国腐蚀与防护学报,(2002),Vol.22,No.3,p138-142.
    [83] 王正则,炼油设备中的湿硫化氢腐蚀,石油设计,(1994),Vol.24,No.6,p47-53.
    [84] 柳曾典,湿硫化氢环境用低合金高强度钢,石油化工设备技术,(1998),Vol.19,No.5,p57-61.
    [85] 蔡业彬,含硫原油加工装备的腐蚀与防护,压力容器,(1999),No.2,p51-55.
    [86] 白金亮,王春燕,周建军,郭志军,LPG球罐腐蚀开裂失效分析,石油化工设备技术,(2001),Vol.22,No.3,p15-17.
    [87] 彭世宏,2000m~3液化石油气球罐选材评述,化工装备技术,(2001),Vol.22,No.3,p27-29.
    [88] 卢志明,童水光,方德明,高增梁,16MnR钢在含H_2S介质中慢拉伸应力腐蚀试验研究,化工机械,(2001),Vol.28,No.3,p138-140.
    [89] 方开泰,均匀设计与均匀设计表,科学出版社,北京,1994.
    [90] Du Yunglong, Li Ming, Zhou Chunxian, Proceeding of International Workshop on Marine Electrochemistry, Tuticorin, India, 1987.
    
    
    [91] NACE. MR0175-97, Sulfide Stress Cracking Resistant Metallic Materials for Oilfield Equipment, 1997.
    [92] 国家质量技术监督局,GB12445-90,《高强度合金楔形张开加载(WOL)预裂纹试样应力腐蚀试验方法》,中国标准出版社,1990.
    [93] Obemdorfer, M., Kaestenbauer, M., Thayer, K., Application limits of stainless steels in the petroleum industry, Proceedings-SPE Annual Technical Conference and Exhibition 2, Oct 3-Oct 6, (1999), Soc Pet Eng (SPE), p 395-403.
    [94] Hibner, Edward L., Fende,Debbie S., Conquer chlorides and alloy costs, Chemical Engineering Progress, Vol. 95, No. 4, (1999), p 63-68.
    [95] Kane, R. D., Joia, C. J.. B. M., Small, A. L. L. T., Poncinao, J. A. C., Rapid screening of stainless steels for environmental cracking, Materials Performance, Vol. 36, No. 9, (1997), p 71-74.
    [96] Tsay, L.W., Lin, W.L., Hydrogen sulphide stress corrosion cracking of weld overlays for desulfurization reactors, Corrosion Science, Vol.40, No. 4-5, (1998), p 577-591.
    [97] Tsay, L.W., Lin, W.L., Cheng,S.W., Leu,G.S., Hydrogen sulphide stress corrosion cracking of 2.25Cr-Mo steel weldments, Corrosion Science, Vol. 39, No.7, (1997), p 1165-1176.
    [98] Barker, J.C., Yu.J., Brook, R., Kermani, M.B., Some environmental aspects of sulphide stress corrosion cracking stainless steels, Proceedings of the Third (1993) International Offshore and Polar Engineering Conference, Jun 6-11, (1993), Publ by Int Soc of Offshore and Polar Engineerns (ISOPE) p 273-278.
    [99] Chen,S.H., Yeh, R.T., Cheng, T.P., Yang,I.J., Hydrogen sulphide stress corrosion cracking of TIG and laser welded 304 stainless steel, Corrosion Science, Vol. 36, No.12, (1994), p 2029-2041.
    [100] 李夏喜,王光雍,万发荣,沈桌身,肖纪美,奥氏体不锈钢应力腐蚀断裂专家诊断系统案例库,北京科技大学学报,Vol.16,(1994),p73-76.
    [101] Deming Fang, Zhiming Lu, Zengliang Gao, Stress corrosion crack study of 316L stainless steel in H_2S and Cl~- aqueous solution, Proceedings of the 15th International Corrosion Congress, Frontiers in Corrosion Science
    
    and Technology, Sept.22-27, Granada(Spain), (2002). P166.
    [102] 方开泰,金辉,陈庆云,实用回归分析,科学技术出版社,北京,(1988).
    [103] 上海师范大学数学系概率统计教研组编,回归分析及试验设计,上海教育出版社,上海,(1978).
    [104] L. W. Tsay, W. C. Lee, R. K.Shiue, J. K.Wu, Notch tensile properties of laser-surface-annealed 17-4PH stainless steel in hydrogen-related environments, Corrosion Science, (2002), 44, 2101-2118.
    [105] H. Asahi,M.Ueno, and T.Yonezawa, Prediction of sulfide stress cracking in high-strength tubulars, Corrosion Science, (1994), Vol.50, No.7, 537-545.
    [106] T. D. Burleigh, The postulated mechanisms for stress corrosion cracking of aluminum alloys, Corrosion, (1991), Vol. 47, No.2, 89-98.
    [107] Cole I.S., Andenna C., Assenment of a micromechanics model of hydrogen-induced stress corrosion cracking, Fatigue and Fracture of Engineering Materials & Structures, (1994), Vol. 17, No. 3, p265-275.
    [108] Savchekov E. A., Critical hydrogen concentrations and stress of hydrogen sulfide cracking of steel, Soviet Materials Science, (1988), Vol.24, No.2, 157-159.
    [109] Jonnas, Otakar, Molecular modeling of corrosive environments in cracks, ASTM Special Technical Publication, (1997), Apr.,Vol. 1298, 182-196.
    [110] Weng Cheng-Chiang, Chen Ron-Ting, Acoustic emission characterization of steel in H_2S solution subjected to tensile load, Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A, (1993), Vol. 16,No.4, 489-498.
    [111] Huang H., Shaw W.I.D., Cold work effects on sulfide stress cracking of pipeline steel exposed to sour environments, Corrosion Science, (1993), Vol.34, No.1, 61-78.
    [112] Shibuya Teruo, Misawa Toshihei, Transition from HIC to SSCC type cracking of carbon steel with increase of applied stresses in hydrogen sulfide solutions, Corrosion Engineering, (1996), Vol.45, No,11, 654-661.
    [113] Tsai S.Y., Shih H.C., Statistical failure distribution and lifetime
    
    assessment of the HSLA steel plates in H2S containing environments, Corrosion Science, (1996), Vol.38, No.5,705-719.
    [114] 王晓燕,CF-62钢在硫化氢环境中的电化学行为和应力腐蚀研究,博士学位论文,华东理工大学,(1999).
    [115] Vehovar L., Tandler M., Research into the resistance to hydrogen embrittlement of structural steel welds using the NACE-test and corrosion elongation curves, Metallurgy, (2000), Vol.39, No.2, 77-81.
    [116] 蒋生芯,权宏顺,弹性连续介质中氢致裂纹传播理论,物理学报,(1992),Vol.41,No.1,46-55.
    [117] 楮武扬,氢损伤和滞后断裂,冶金工业出版社,北京,(1988).
    [118] 王燕斌,王胜,颜练武,楮武扬,塑性变形在氢致断裂中的作用,中国腐蚀与防护学报,(2000),Vol.20,No.4,248-252.
    [119] 李密丹,张天成,吕宏,楮武扬,氢促进位错发射和运动导致裂纹形核的研究,中国科学(E辑),(1997),Vol.27,No.6,481.487.
    [120] 高克玮,楮武扬,环境断裂的位错层次研究,材料研究学报,(1999),Vol.13,No.4,337-342.
    [121] 陈奇志,黄一中,王燕斌,楮武扬,不锈钢中氢致纳米空洞导致断裂的机理,中国科学,(1998),Vol.28,No.4,295-303。
    [122] D. Delafosse, T.Magnin, Hydrogen induced plasticity in stress coorosion cracking of engineering systems, Engineering Fracture Mechanics, (2001), Vol. 68, 693-729.
    [123] 楮武扬,断裂力学基础,科学出版社,北京,(1979).
    [124] 张柏玉,刁凤琼,塘祥云,20钢氢致开裂临界浓度与应力的关系,金属学报,(1990),Vol.26,No.6,A454-460.
    [125] 张租权,位错应力场的连续介质模型,西南民族学院学报,自然科学版,(1995),Vol.21,No.2,121-126.
    [126] 蒋生芯,彭栋梁,氢致Ⅰ型裂纹扩展的位错塞积群模型,强度与环境,(1994),No.3,8-15.
    [127] 赖祖涵,金属的晶体缺陷与力学性质,冶金工业出版社,北京,(1988).
    [128] P.Sofronis, H.K.Birnbaum, Mechanics of the hydrogen-dislocation-impurity interactions-Ⅰ. Increasing shear modulus, Jounal of the Mechanics and Physics of Solids, (1995),
    
    Vol. 43, No.1, 49-90.
    [129] H. K. Bimbaum, I. M. Robertson, P. Sofronis, D.Teter, Mechanisms of the hydrogen related fracture=areview, Second Int. Conf. Corrosion-Deformation Interactions CDI'96, The Institute Materials, Nice, France, (1996), 72-95.
    [130] H. K. Birnbaum, P.Sofronis, Hydrogen enhanced localized plasticity-a mechanism fro hydrogen related fracture, Mater. Sci. Engng, (1994) Vol. 176, 191-202.
    [131] 李晓泉,晶体缺陷与扩散氢的弹性交互作用,华东船舶工业学院学报,(1997),Vol.11,No.3,38-42.
    [132] P. J. Ferreira, I. M. Robertson, H. K. Birnbaum, Hydrogen effects on the interaction between dislocations, Acta Materialia, (1998), Vol.46, No.5, 1949-1957.
    [133] 刘白,氢对位错运动的影响,材料科学与工程,(2001),Vol.19,No.1,63-66。
    [134] B. Devincre, S. G. Roberts, Three-dimensional simulation of dislocation-crack interaction in b.c.c metals at the mesoscopic scale, Acta Mater, (1996), Vol. 44, No.7, 891-900.
    [135] P. Sofronis, J. Lufrano, Interaction of local elastoplastisity with hydrogen embrittlement effects, Materials Science and Engineering, (1999), A260, 41-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700