超声速燃烧中湍流模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声速燃烧冲压发动机(Scramjet)的研究近年来备受关注。由于实验方面投资较大以及测试手段的限制,数值模拟成为重要的研究工具。本文针对数值模拟中湍流模型这一重要因素进行研究,主要做了以下几个方面的工作:发展了四个具有更高计算精度的广义可压缩性修正k-ε湍流模型;研究并发展了联合RANS/LES方法用来模拟非稳态湍流流动;对多种复杂的超声速流动、超声速燃烧问题进行了深入研究;提出了利用分流技术强化超声速燃烧的技术。
     以往RANS湍流模型可压缩性修正研究集中在膨胀可压缩性修正的模化这一部分。在国外基础研究方面取得的最新初步研究成果基础上,本文引进并发展了其它部分的广义上的可压缩性修正,即结构可压缩性修正及激波不稳定性修正。在标准k-ε湍流模型基础上,耦合以往的膨胀可压缩性修正,发展了四个广义可压缩性修正的k-ε湍流模型。以可压缩混合层为基础,前两个模型中发展了结构可压缩性修正模型,用来抑制过大的湍流动能增长,能够很好地预测到混合层受抑制的发展趋势。后两个修正模型除了耦合研究已经较成熟的膨胀可压缩性模型,又从另外的角度出发,发展了激波不稳定性修正模型,用来抑制激波区域内过大的湍流动能产生。由于后面这两个修正模型综合考虑了自由发展的混合层中的可压缩性效应以及强间断激波的不稳定性脉动两部分效应,计算精度得到了进一步提高,尤其是显著提高了对高速流动中流体分离现象的模拟精度。结果初步表明,其中一个修正模型对流体分离的预测优于工程中广泛使用的k-ωSST湍流模型
     联合RANS/LES方法既能保证明显改善RANS方法的计算精度,又能明显降低LES方法的计算量,是很有潜力的一种方法。针对由模型参数控制计算分区的这一类RANS/LES方法,本文研究了多种不同形式的联合方法。理论上推导出参考长度尺度为湍流积分长度尺度的联合方法本质上是一致的,与LES方法中应用很广的Smagorinsky亚网格尺度模型本质上相同。而以Kolmogorov长度尺度为参考尺度的联合方法,依据计算条件不同,可从RANS模拟直接过渡到DNS模拟。提出了一个采用指数形式构造的联合RANS/LES方法。应用联合RANS/LES方法研究了经典的方柱绕流流动以及超声速混合层流动。
     对发展的四个可压缩性修正的k-ε湍流模型进行了验证,并应用这些模型研究了一些复杂的超声速流动、燃烧现象。计算了超声速混合层、超声速后台阶、跨声速凸包流动、超声速横侧射流等复杂流动,以及超声速受壁面限制混合层燃烧、超声速横侧射流燃烧等工况。验证了四个修正模型的计算精度并对比分析了四个修正模型的优缺点。研究了可压缩性(包括膨胀可压缩性、结构可压缩性以及激波不稳定性)对混合层发展的抑制和对流体分离的强化,以及这些效应在燃烧工况下对超声速燃烧特性的影响。
     壁面入射是燃料进入超声速燃烧室最基本的一种入射方式。研究了这种方式下形成的超声速横侧射流流场。根据流场特性,提出了利用分流强化超声速燃烧的技术,即利用一个通道连通燃料入射孔的上下游,将上游高压流体部分分流到下游低压区,通过改变流场结构,达到强化燃烧的目的。研究内流及外流两种情况下,燃料具有不同入射压力时分流强化超声速燃烧的规律及机理。
The research on Supersonic Combustion Ramjet(Scramjet) has been widely concerned in recent years.As the vast investment requirement of experimental research as well as the restrictions on the measuring and testing technique,numerical simulation method has become an important research tool. In this paper,turbulence modeling,one of the key issues in numerical simulations,has been deeply studied.The major research works and progresses are:developed several compressibility modification RANS turbulence models with a higher simulation accuracy;research and development of hybrid RANS/LES model to simulate complex unsteady turbulent flows;deeply research on a variety of complex supersonic flows and supersonic combustion problems relevant;proposed a technology to enhance supersonic combustion utilizing shunting.
     Traditional compressibility modification for RANS turbulence models generally focus on the dilatational compressibility modifications.Based on the latest primary research findings abroad,other parts of the generalized compressibility modifications were introduced and developed,viz.structure compressibility modification and shock unsteadiness modification.In the framework of standard k-εturbulence model,four generalized compressibility modified k-εturbulence models were proposed coupling with the traditional dilatational compressibility modifications.On the basis of compressible mixing layers,structure compressibility modeling was developed in the two first models.It can depress the overlarge turbulent kinetic energy,and can predict the depressed spreading rate of mixing layers very well.From a different point of view,shock unsteadiness modeling was developed in the other two models coupled with well developed dilatational compressibility models.The excessively production of turbulent kinetic energy can be depressed in the shock regions.As these two factors were considered together in the later two models,viz.the compressibility effect in free developed mixing layers and the unsteadiness effect of strong shocks,the numerical accuracies were further improved,especially for the prediction of fluid flow separation in high speed flows.Primary results show that one of them performs better than the widely used k-ωSST model in engineering applications for the flow separation prediction.
     The hybrid RANS/LES method demonstrates advantages in more accurate predictions than RANS method and much fewer computation costs than LES,and thus a very potential methodology.Focus on the kind of hybrid method in which the zonal computations are controlled by the model parameters, various hybrid methods were studied with different form.The theoretical deduction shows that these models utilizing the turbulence integral length scale as the reference length scale are essentially the same,and is also the same with the most popular Smagorinsky Subgird-Scale model in LES.But those utilizing the Kolmogorov length scale as reference length scale,can evolve from the RANS calculation directly to DNS simulation dependent on the simulation conditions.A new hybrid method was proposed applying an exponential form.The classic bluff body stabilized flows and supersonic mixing layers flows were studied accordingly.
     The four modified k-εturbulence models were evaluated,and applied in the studies on complex supersonic flows and supersonic combustion problems.The supersonic flow cases are supersonic mixing layers,the supersonic backward facing flows,the transonic flow over an arc bump,supersonic flow interacted with transverse injection etc.The supersonic combustion problems concerned here are supersonic wall-bounded reactive mixing layers,supersonic combustion with transverse fuel injection etc.The four modified models were validated and compared.The compressibility effects(including the dilatational compressibility,structure compressibility and shock unsteadiness effect) were studied on the depression of the mixing layers and enhancement of fluid flow separation,and these effects on the supersonic combustion performance were also investigated.
     The wall injector is the most basic fuel injector in supersonic combustor.The relevant flow field was studied.Based on the flow structure,a supersonic combustion enhancement technology was proposed utilizing shunting that is to connect the upstream region and the downstream region of fuel injection slot through a channel.Higher pressure fluid upstream partly shunts into downstream region and the flow field was changed correspondingly,hence the combustion was enhanced.The mechanics and discipline of shunting effects on combustion enhancement were investigated under different injection pressures both in the external and internal supersonic flows.
引文
[1]Eric Prisell.Hypersonic weapon propulsion by Scramjet,2~(nd) international conference on Military Technology.FMV Sweden,Oct 26~(th),2005.
    [2]http://en.wikipedia.org/wiki/Scramjet_Programs
    [3]C.R.McClinton et al.Hyper-X program status.AIAA-2001-0828.
    [4]A.S.Roudakov,Y.Schickhman,V.Semenov,et al.Flight testing an axisymmetric Scramjet:Russian recent advances.In:proceedings of 44~(th) congress of the international astronautical federation,Oct.16-22,1993,Graz,Austria.
    [5]A.Paull,H.Alesi,S.Anderson.The HyShot flight program and how it was developed.AIAA-2002-4939.
    [6]R.B.Russell,G.Sullivan,P.Allan.The HyShot Scramjet flight experiment flight data and CFD calculations compared.AIAA-2003-7029.
    [7]刘兴洲,中国超燃冲压发动机研究回顾,推进技术,29(4),pp.385-395,2008.
    [8]Masatoshi Kodera,Kazuhiro Nakahashi.Extension of unstructured hybrid grid method to supersonic combustion flows.AIAA 99-0486.
    [9]R.A.Lee,A.Hosangadi,P.A.Cavallo,S.M.Dash.Application of Unstructured Grid Methodology to Scramjet Combustor Flowfields.AIAA 99-0087.
    [10]A.G.Peter.Computational Fluid Dynamics Technology for Hypersonic applications.AIAA 2003-2829.
    [11]Dieter Schwamborn,Thomas Gerhold and Ralf Heinrich.The DLR TAU-code:Recent Applications in Research and Industry.ECCOMAS CFD 2006.
    [12]赵慧勇,超燃冲压整体发动机并行数值模拟,博士学位论文,中国空气动力研究与发展中心,2005年7月
    [13]杨顺华,碳氢燃料超燃冲压发动机数值研究,博士学位论文,中国空气动力研究与发展中心,2006年5月
    [14]http://www.dlr.de/as/
    [15]Cord-Christian Rossow,Norbert Kroll.High performance computing serves aerospace engineering:opportunities for next generation product development.AIAA-2008-0712
    [16]Fujii Kozo.Progress and future prospects of CFD in aerospace-wind tunnel and beyond.Progress in Aerospace Science,41(6):455-470,2005.
    [17]Kazuyasu Matsuo,Yoshiaki Miyazato,Heuy-Dong Kim.Shock train and pseudo shock phenomena in internal gas flows.Progress in Aerospace Sciences,35:33-100,1999.
    [18]J.O.Hinze.Turbulence.Mc Graw-Hill Book Company,New York,1975.
    [19]S.B.Pope.Turbulent flows.Cambridge University Press,2000.
    [20]O.Reynolds.On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion.Phil.Trans.R.Soc.London,A186:123-161,1894.
    [21]P.Y.Zhou.On an extension of Reynolds' method of finding apparent stress and the nature of turbulence.Chin.J.Phys.4(1):1-53,1940.
    [22]Pierre Sagaut.Large Eddy Simulation for incompressible flows:An introduction.2~(nd) Edition,Springer,2002.
    [23]S.A.Orszag,G.S.Patterson.Numerical simulation of three-dimensional homogenous isotropic turbulence.Physical Review Letters,28(2):76-79,1972.
    [24]J.Kim,P.Moin,R.Moser.Turbulent statistics in fully developed channel flow at low Reynolds number.Journal of Fluid Mechanics,177:133-166,1987.
    [25]Haechon Choi,P.Moin,J.Kim,Direct numerical simulation of turbulent flow over riblets.Journal of Fluid Mechanics,255:503-539,1993.
    [26]C.D.Dimitropoulos,Yves Dubieffiric,S.G.Shaqfeh.Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow.Physics of Fluids,17,011705,2005.
    [27]P.Moin,K.Mahesh.Direct numerical simulation:a tool in turbulence research.Ann.Review of Fluid Mechanics,30(1):539-578,1998.
    [28]J.Smagorinsky.General circulation experiments with the primitive equations.Monthly Weather Review,91(3):99-164,1963.
    [29]J.W.Deardorff.A numerical study of three-dimensional turbulent channel flow at large eddy Reynolds numbers.J.Fluid Mech.,41:453-480,1970.
    [30]J.L.Lumley,A.M.Yaglom.A century of turbulence.Flow,Turbulence and Combustion,66(3):241-286,2001.
    [31]L.C.Berselli,T.Lliescu,W.J.Layton.Mathematics of large eddy simulation of turbulent flows,Springer,2006.
    [32]Marcel Lesieur,Olivier Metais,Pierre Comte.Large-eddy simulation of turbulence.Cambridge University Press,2005.
    [33]S.B.Pope.Turbulent flows.5th Edition,Cambridge University Press,2008.
    [34]A.G.Kravchenko,P.Moin,R.Moser.Zonal embedded grids for numerical simulations of wall bounded turbulent flows,J.of Computational Physics,127:412-423,1996.
    [35]J.Boussinesq.Essai sur la theorie des eaux courantes.Imprimerie Nationale,1877.
    [36]L.Prandtl.Bcricht uber Untersuchungen zur ausgebildeten Turbulenz.ZAMM,5:136,1925.
    [37]G.I.Taylor.Diffusion by continuous movements.Proc.London Math.Soc,20:196,1921.
    [38]Von Karman T.Mechanische Anlichkeit und Turbulenz.Nachr Ges Wiss Gttingen Math-Phys.KI.51-76,1930.
    [39]B.Baldwin,H.Lomax.Thin layer approximation and algebraic model for separated turbulent flow.AIAA 78-257,1978.
    [40]B.F.Carroll,P.A.Lopez-Fernandez.Computations and experiments for a multiple normal shock/boundary layer interaction.Journal of Propulsion and Power,9(3):405-411,1993.
    [41]L.Q.Sun,H.Sugiyama,K.Mizobata,etc.Numerical and experimental investigations on the Mach 2 pseudo shock wave in a square duct.Journal of Visualization,6(4):363-370,2003.
    [42]B.Baldwin,T.Barth.A one-equation turbulent transport model for high Reynolds number wall-bounded flows.NASA TM-102847,1990.
    [43]P.Spalart,S.Allmaras.A one-equation turbulence model for aerodynamics flows.AIAA 92-0439,1992.
    [44]W.O.Valarezo.Navier-Stokes applications to high-lift airfoil analysis.Journal of Aircraft,32(3):618-624,1995.
    [45]R.Paciorri,W.Dieudonnand,G.Degrez,et al.,Exploring the validity of the Spalart-Allmaras turbulence model for hypersonic flows.Journal of Spacecraft and Rockets,35(2):121-126,1998.
    [46]B.E.Launder and D.B.Spalding.Lectures in Mathematical Models of Turbulence.Academic Press,London,England,1972.
    [47]Wako Takanashi.Renormalization group analyses of k-epsilon model and LES model of turbulence problem.JSME International Journal,Series Ⅱ,35(2):186-188,1992.
    [48]T.H.Shih,W.W.Liou,A.Shabbir,Z.Yang,and J.Zhu.A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows- Model Development and Validation.Computers Fluids,24(3):227-238,1995.
    [49]D.C.Wilcox.Reassessment of the scale determining equation for advanced turbulence models.AIAA Journal,26:1299-1310,1988.
    [50]F.R.Menter.Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications.AIAA Journal,32(8):1598-1605,1994.
    [51]F.R.Menter,M.Kuntz,R.Langtry.Ten years of industrial experience with the SST turbulence model.Turbulence,Heat and Mass Transfer 4,K.Hanjalic,Y.Nagano and M.Tummers(Editors),Begell House,Inc.2003.
    [52]J.C.Rotta.Statisticche theorie nichteomogener turbulenz.Z.Phys.,129:547-572,1951.
    [53]B.E.Launder,G.J.Reece,W.Rodi.Progress in the development of a Reynolds stress turbulence closure.Journal of Fluid Mechanics,68:537-566,1975.
    [54]Sharath S.Girimaji.Pressure-strain correlation modeling of complex turbulent flows.J.Fluid Mech.,422:91-123,2000.
    [55]W.Rodi.The prediction of free turbulent boundary layers by use of a two-equation model of turbulence.University of London,1972.
    [56]S.B.Pope.A more general effective-viscosity hypothesis for turbulent flow.Journal of Fluid Mechanics,72:331-340,1975.
    [57]J.L.Lumley.Computational modeling of turbulent flows.Advances in Applied Mechanics,18:123-176,1978.
    [58]童秉纲,孔祥言,邓国华,气体动力学,高等教育出版社,1996.
    [59]Yiannis Andreopoulos,J.H.Agui,George Briassulis.Shock wave-turbulence interactions.Armu.Rev.Fluid Mech.,32:309-345,2000.
    [60]M.V.Morkovin.Effects of compressibility on turbulent flows.In mecanique de la turbulence(Ed.A.Favre),CNRS,Paris,1962.
    [61]G.N.Coleman,J.Kim,R.D.Moser.A numerical study of turbulent supersonic isothermal wall channel flow.Journal of Fluid Mechanics,305:159-183,1995.
    [62]黄章峰,周恒,罗纪生,超音速平板边界层湍流的直接数值模拟及分析,中国科学G辑,36(1):46-58,2006.
    [63]T.Maeder,N.A.Adams,L.Kleiser.Direct numerical simulation of turbulent supersonic boundary layers by an extended temporal approach.Journal of Fluid Mechanics,429:187-216,2001.
    [64]T.B.Gatski,G.Erlebacher.Numerical simulation of a spatially evolving supersonic turbulent boundary layer,NASA Tech.Memo.2002-211934,2002.
    [65]S.Pirozzoli,F.Grasso,T.B.Gatski.Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25.Physics of Fluids,16(3):530-545,2004.
    [66]H.Gao,D.X.Fu,Y.W.Ma,etc.Direct numerical simulation of supersonic turbulent boundary layer flow.Chinese Physics Letters,22(7):1709-1712,2005.
    [67]Stanislav G.Borodai.Modeling of compressibility effects in turbulent boundary layers.PhD thesis,University of Illinois at Urbana-Champaign,2001.
    [68]P.Bradshaw.Turbulence modeling with application to turbomachinery.Progress inAerospace Sciences,32(6):575-624,1996.
    [69]刘陵,刘敬华,张榛等,超音速燃烧与超音速燃烧冲压发动机,西安:西北工业大学出版社,1993.
    [70]S.F.Birch,J.M.Eggers.A critical review of the experimental data for developed free turbulent shear layers.NASA SP-321,1972.
    [71]G.L.Brown,A.Roshko.On density effects and large structure in turbulent mixing layers.Journal of Fluid Mechanics,64:775-816,1974.
    [72]D.W.Bogdanoff.Compressibility effects in turbulent shear layers.AIAA Journal,21:926-927,1983.
    [73]D.Papamoschou,A.Roshko.The compressible turbulent shear layer-an experimental study.Journal of Fluid Mechanics,197:453-477,1988.
    [74]W.Shyy,V.S.Krishnamurty.Compressibility effects in modeling complex turbulent flows.Prog.Aerospace Sci.,33:587-645,1997.
    [75]L.D.Krai.Recent experience with different turbulence models applied to the calculation of flow over aircraft components.Progress in Aerospace Sciences,34(7-8):481-541,1998.
    [76]H.Ikawa,T.Kubota.Investigation of supersonic turbulent mixing layer with zeropressure gradient.AIAA J.,13(5):566-572,1975.
    [77]M.Samimy,M.F.Reeder,G.S.Elliott.Compressibility effects on large structures in free shear layers.Physics of Fluids A:Fluid Dynamics,4:1251-1258,1992.
    [78]P.J.Morris,M.G.Giridharan,G.M.Lilley.On the turbulent mixing of compressible free shear layers.Proceedings of mathematical and physical sciences,431:219-243,1990.
    [79]S.A.Ragab,J.L.Wu.Linear instabilities in two-dimensional compressible mixing layers.Physics of Fluids A:Fluid Dynamics,1:957-966,1989.
    [80]N.D.Sandham,W.C.Reynolds.Compressible mixing layer-linear theory and direct simulation.AIAA Journal,28(4):618-624,1990.
    [81]N.T.Clements,M.G.Mungal.Large-scale structure and entrainment in supersonic mixing layer.Journal of Fluid Mechanics,284:171-216,1995.
    [82]J.B.Freund,S.K.Lele,P.Moin.Compressibilty effects in a turbulent annular mixing layer.Part 1.Turbulence and growth rate.Journal of Fluid Mechanics,421:229-267,2000.
    [83]C.Lui,S.K.Lele.Direct numerical simulation of spatially developing,compressible,turbulent mixing layers,AIAA-2001-0291.
    [84]C.Pantano,S.Sarkar.A study of compressibility effects in the high-speed turbulent shear layer using direct simulation.J.Fluid Mech.,451:329-371,2002.
    [85]倪慧,罗纪生,何立忠,三维可压缩混合层中扰动演化的研究,空气动力学学报,22(4):416-421,2004.
    [86]P.Chassaing,R.A.Antonia,F.Anselmet,L.Joly and S.Sarkar.Variable density fluid turbulence.Springer,2002.
    [87]V.S.Krishnamurty,W.Shyy.Study of compressibility modification to the k-ε turbulence model.Phys.Fluids,9(9):2769-2788,1997.
    [88]O.Zeman.Dilatation dissipation:The concept and application in modeling compressible mixing layers.Physics of Fluids A,2:178-188,1990.
    [89]S.Sarkar,G.Erlebacher,M.Y.Hussaini,etc.The analysis and modeling of dilatational terms in compressible turbulence.Journal of Fluid Mechanics,227:473-493,1991.
    [90]A.M.El Baz,B.E.Launder.Second moment modeling of compressible mixing layers.Engineering Turbulence Modeling and Experiments,2:63-72,1993.
    [91]D.C.Wilcox.Turbulence modeling for CFD.2~(nd) Edition,DWC Industries,Inc.1994.
    [92]G.A.Blaisdell,N.N.Mansour,W.C.Reynolds.Compressibility effects on the growth and structure of homogeneous turbulent shear flow.Journal of Fluid Mechanics,256:443-485,1993.
    [93]S.Sarkar.The pressure-dilation correlation in compressible flows.Physics of Fluids A,4:2674-2682,1992.
    [94]O.Zeman.A new model for super/hypersonic turbulent boundary layers.AIAA Paper 93-0897,1993.
    [95]M.W.Rubesin.Exact compressibility terms for Favre-average two-quation models for inhomogeneous turbulent flows.NASA CR-177556,1990.
    [96]J.R.Ristorcelli.A representation for the turbulent mass flux contribution to Reynolds stress and two-equation closures for compressible turbulence.NASA CR-191569,1993.
    [97]S.Sarkar.The stabilizing effect of compressibility in turbulent shear flows.J.Fluid Mech.,282:163-186,1995.
    [98]S.Heinz.A model for the reduction of the turbulent energy redistribution by compressibility.Physics of Fluids,15(1):3580-3583,2003.
    [99]D.S.Tandra,A.Kaliazine,D.E.Cormack,et al.Numerical simulation of supersonic jet flow using a modified k-e model.Int.J.of Computational Fluid Dynamics,20(1):19-27,2006.
    [100]K.Mahesh,S.K.Lele,P.Moin.The influence of entropy fluctuation on the interaction of turbulence with a shock wave.J.Fluid Mech.,334:353-379,1997.
    [101]S.Lee,S.K.Lele,P.Moin.Interaction of isotropic turbulence with shock wave:Effect of shock strength.J.Fluid Mech.,340:225-247,1999.
    [102]S.Jamme,J.B.Cazalbou,F.Torres,etc.Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence.Flow,Turbulence and Combustion,68:227-268,2002.
    [103]D.R.Buttsworth.Interaction of oblique shock waves and planar mixing regions.J.Fluid Mech.,306:43-57,1996.
    [104]S.Obata,J.C.Hermanson.Numerical simulation of shock enhanced mixing in axisymmetric turbulent jets.AIAA-2001-0149.
    [105]D.Brasoveanu,A.K.Gupta.Enhancement of methane-air mixing using shock and expansion waves.AIAA-2001-0203.
    [106]Kim Ji-Ho,Y.Yoon,Jeung In-Seuck,etc.Numerical study of mixing enhancement by shock waves in model Scramjet engine.AIAA Journal,41(6):1074-1080,2003.
    [107]G.S.Settles,L.J.Dodson.Hypersonic shock/boundary layer interaction database:new and corrected data.NASA CR 177638,1994.
    [108]Sergio Pirozzoli,Francesco Grasso.Direct numerical simualtion of impinging shock wave/turbulent boundary layer interaction at M=2.25.Physics of Fluids,18,065113(1-17),2006.
    [109]MinWei Wu.Direct numerical simulation of Shockwave and turbulent boundary layer interactions.PhD thesis,Princeton University,2007.
    [110]M.S.Loginov,N.S.Adams,A.A.Zheltovodov.Large-eddy simulation of shock wave turbulent boundary layer interaction,J.Fluid Mech.,565:135-169,2006.
    [111]A.L.Kistler.Fluctuation measurements in a supersonic turbulent mixing layer.Phys.Fluids,2:290-296,1959.
    [112]D.S.Dolling,M.Murphy.Wall pressure fluctuations in a supersonic separated compression ramp flow field.AIAA and ASME Joint Thermophy.Fluids,Plasma Heat Transfer Conf.,3~(rd),St Louis,MO,82-0986,1982.
    [113]K.C.Muck,J.P.Dussuage,S.M.Bogdonoff.Structure of the wall pressure fluctuations in a shock-induced separated turbulent flow.AIAA 85-0179,1985.
    [114]M.S.Selig,J.Andreopoulos,K.C.Muck,etc.Turbulence structure in shock wave boundary layer interaction.AIAA J.,27:862-869,1989.
    [115]J.Andreopoulos,K.C.Muck.Some new aspects of the shock wave boundary layer interaction in compression ramp corner.J.Fluid Mech.,180:405-428,1987.
    [116]M.E.Erengil,D.S.Dolling.Correlation of separation shock motion with pressure fluctuation in the incoming boundary layer.AIAA J.,29(11):1868-1877,1991.
    [117]S.J.Beresh,N.T.Clemens,D.S.Dolling.The relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness.AIAA paper,99-0295,1999.
    [118]J.P.Dussauge,P.Dupont,J.F.Debieve.Unsteadiness in shock wave boundary layer interactions with separation.Aerospace Science and Technology,10:85-91,2006.
    [119]D.Knight,H.Yan,A.Panaras,etc.RTO WG 10:CFD Validation for Shock Wave Turbulent Boundary Layer Interactions.AIAA-2002-0437,2002.
    [120]W.W.Liou,G.Huang,T.H.Shih.Turbulence Model Assessment for Shock Wave/Turbulent Boundary Layer Interaction in Transonic and Supersonic Flows.Computers and Fluids,29:275,2000.
    [121]J.Forsythe,K.Hoffmann,H.M.Damevin.An Assessment of Several Turbulence Models for Supersonic Compression Ramp Flow,AIAA Paper 98-2648,1998.
    [122]T.J.Coakley and P.G.Huang.Turbulence modeling for high speed flows,AIAA Paper 92-0436,1992.
    [123]K.Sinha,K.Mahesh,G..V.Candler.Modeling shock unsteadiness in shock/turbulence interaction,Physics of Fluids,15:2290-2297,2003.
    [124]K.Sinha,K.Mahesh,G.V.Candler.Modeling the Effect of Shock Unsteadiness in Shock/Turbulent Boundary Layer Interaction,AIAA J.,43:586,2005.
    [125]G.Barakos,D.Drikakis.Assessment of various low-Reynolds number turbulence models in shock -boundary layer interaction.Comput.Methods Appl.Mech.Engrg.,160:155-174,1998.
    [126]M.Franke,S.Wallin,F.Thiele.Assessment of explicit algebraic Reynolds-stress turbulence models in aerodynamics computations.Aerospace Sciences and Technology,9:573-581,2005.
    [127]S.D.Kim,D.J.Song.Modified shear-stress transport turbulence model for supersonic flows.Journal of Aircraft,42(5):1118-1125,2005.
    [128]Chang Hwan Park,Seung O.Park.On the limiters of two-equation turbulence models.Int.J.of Computational Fluid Dynamics,19(1):79-86,2005.
    [129]P.A.Durbin.On the stagnation point anomaly.Int.J.Heat Fluid Flow,17(1):89-90,1996.
    [130]D.R.Laurence,J.C.Uribe,S.V.Utyuzhnikov.A robust formulation of the v2-f model.Flow,Turbulence and Combustion,73(3-4):169-185,2005.
    [131]F.S.Lien,G.Kalitzin.Computations of transonic flow with v2-f turbulence model.Int.J.of Heat and Fluid Flow,22(1):53-61,2001.
    [132]F.Thivet.Lessons learned from RANS simulations of shock-wave/boundary layer interactions.AIAA paper 2002-0583,2002.
    [133]F.Thivet,D.D.Zheltovodov,A.I.Maksimov.Insights in turbulence modeling for crossing shock-wave/boundary layer interactions.AIAA J.,39(6):985-995,2001.
    [134]许丁,可压缩湍流模式研究,中国科学院研究生院博士学位论文,北京,2008
    [135]徐晶磊,湍流模型的理论与应用研究,中国科学院研究生院博士学位论文,北京,2008.
    [136]杨晓东,马晖扬,应用于激波/边界层相互作用的非线性湍流模式,力学学报,35(1):57-62,2003.
    [137]Yang Xiao-dong,Ma Hui-yang,Investigation of nonlinear turbulence models for separated supersonic flows.Acta Aerodynamics Sinica,20(4):458-464,2002.
    [138]梁德旺,黄国平,B/L湍流模型在强压力梯度流场计算中的应用,南京航空航天大学学报,Vol.31,No.1,1999.
    [139]马威,王丹华,陆利蓬,提高Spalart-Allmaras湍流模型对分离模拟能力的研究,航空动力学报,23(8):1474-1479,2008.
    [140]伏晓艳,高歌,运用Gao-Yong湍流模型对扩压器内跨声速流动的数值模拟,推进技术,Vol.29,No.2,2008.
    [141]任鑫,高歌,管道凸起激波/湍流边界层干扰的数值模拟,应用力学学报,Vol.25,No.1.2008.
    [142]R.Franke,W.Rodi.Calculation of vortex shedding past a square cylinder with various turbulence models.In Pro.8~(th) Symp.Turbulent Shear Flows,9-11 September,Tech.Univ.Munich,Springer Berlin,pp.189-204,1991.
    [143]Jochen Frohlich,Dominic Von Terzi.Hybrid LES/RANS methods for the simulation of turbulent flows.Progress in Aerospace Sciences,44:349-377,2008.
    [144]http://lesaid.math.utwente.nl/Les_aid
    [145]http://www.hrlm-3rd.gda.pl/
    [146]P.R.Spalart,W.H.Jou,M.Strelets,etc.Comments on the feasibility of LES for wings,and on a hybrid RANS/LES approach.In advances in DNS/LES,ed.C.Liu,Z.Liu,pp.137-147.Columbus,OH:Greyden Press,1997.
    [147]P.R.Spalart.Detached-Eddy simulation.Ann.Rev.Fluid Mech.,41:181-202,2009.
    [148]P.R.Spalart,S.Deck,M.L.Shur,et al.A new version of detached eddy simulation,resistant to ambiguous grid densities.Theor.Comp.Fluid Dyn.,20:181-195,2006.
    [149]A.Hamed,D.Basu,K.Das.Detached eddy simulations of supersonic flow over cavity.AIAA 2003-0549,2003.
    [150]A.K.Viswanathan,D.K.Tafti.A comparative study of DES and URANS for flow prediction in a two-pass internal cooling duct.Journal of Fluids Engineering,128:1336-1345,2006.
    [151]J.Yan,C.Mockett,F.Thiele.Investigation of alternative length scale substitutions in detached-eddy simulation.Flow,Turbulence and Combustion,74:85-102,2005.
    [152]T.H.Shih,N.S.Liu,C.L.Chen,A strategy for Very Large Eddy Simulation of complex turbulent flows,AIAA-2006-175,2006.
    [153]T.H.Shih,N.S.Liu.Modeling of internal reacting flows and external static stall flows using RANS and PRNS.Flow,Turbulence and Combustion,81(1-2):279-299,2008.
    [154]Paul Batten.LNS-An approach towards embedded LES.AIAA-2002-0427,2002.
    [155]P.Batten,U.Goldberg,S.Chakravarthy.Interfacing statistical turbulence closures with large-eddy simulation.AIAA J.,42(3):485-492,2004.
    [156]S.S.Girimaji.Partially-Averaged Navier-Stokes model for turbulence:A Reynolds-Averaged Navier-Stokes to direct numerical simulation bridging method.Journal of Applied Mechanics,73:413-421,2006.
    [157]S.S.Girimaji.E.Jeong,R.Srinivasan.Partially-Averaged Navier-Stokes model for turbulence:fixed point analysis and comparison with unsteady partially averaged Navier-Stokes.Journal of Applied Mechanics,73:422-429,2006.
    [158]S.T.Johansen,J.Y.Wu,W.Shyy,Filter-based unsteady RANS computations,Int.J.of Heat and Fluid Flow.25(1):10-21,2004.
    [159]A,Ruprecht,T.Helmrich,I.Buntic,Very Large Eddy Simulation for the prediction of unsteady cortex motion.In the Symposium of the 12th International Conference on Fluid Flow Technologies,Budapest,Hungary,September 3-6,2003
    [160]C.G.Speziale.Computing non-equilibrium turbulent flows with time-dependent RANS and VLES.15~(th) International conference on numerical methods in fluid dynamics,Monterrey,CA,1996.
    [161]C.G.Speziale.Turbulence modeling for time-dependent RANS and VLES:a review.AIAA J.,36(2):173-184,1998.
    [162]P.R.Spalart.Strategies for turbulence modeling and simulations.Int.J.Heat Fluid Flow,21:252-263,2000.
    [163]C.Fureby,F.Grinstein.Monotonically integrated large eddy simulation of free shear flows.AIAA J.,37(5):544-556,1999.
    [164]H.F.Fasel,J.Seidel,S.Wernz.A methodology for simulating complex turbulent flows,J.Fluids Engineering,124:933-942,2002.
    [165]H.F.Fasel,D.A.V.Terzi,R.D.Sandberg,A methodology for simulating compressible turbulent flows,J.Applied Mech.,73(3):405-412,2006.
    [166]刘学强,伍贻兆,用DES数值模拟具有横向喷流的湍流流场,航空学报,Vol.25,No.3,2004.
    [167]孙明波,梁剑寒,王振国,超声速来流横向狭缝喷流标量输运的混合RANS/LES 模拟,力学季刊,Vol.28,No.3,2007.
    [168]孙明波,粱剑寒,王振国,二维凹腔超声速流动的混合RANS/LES模拟,推进技术,No.2,2006.
    [169]R.A.Baurle,C.J.Tam.Hybrid simulation approach for cavity flows:blending,algorithm,and boundary treatment issues.AIAA J.,41(8):1463-1480,2003.
    [170]刘陵,刘敬华,张榛等.超音速燃烧与超音速燃烧冲压发动机,西安:西北工业大学出版社,1993.
    [171]Peter G,Peter S,Markus K,etc.Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity.Aerosp.Sci.Technol.,12(2):159-168,2008.
    [172]Jeung I S,Choi J Y.Numerical simulation of supersonic combustion for hypersonic propulsion.5th Asia-Pacific Conference on Combustion,2005
    [173]Aso,S.,Okuyama,S.,Kawai,M.,et al.,Experimental study on mixing phenomena in supersonic flows with slot injection,AIAA-91-0016.
    [174]Rogers,R.,C.,A.,Study of the mixing of Hydrogen injected normal to a supersonic airstream,NASA TN D-6114,1973
    [175]Spaid,F.,W.,Zukoski,E.,E.,A study of the interaction of gaseous jets from transverse slots with supersonic external flows,AIAA Journal,6(2):205-212,1968.
    [176]Sriram,A.,T.,Mathew,J.,Improved prediction of plane transverse jets in supersonic crossflows,AIAA Journal,Vol.44,No.2,pp.405-407,2006.
    [177]M.Kodera,S.Tomioka,T.Kanda,et al..Mach 6 test of a scramjet engine with boundary layer bleeding and two staged fuel injection,AIAA-2003-7049,2003.
    [178]T.Kouchi,T.Mitani,M.Kodera,etc.Numerical experiments of scramjet combustion with boundary layer bleeding,AIAA 12th International Space Planes and Hypersonic Systems and Technologies Conference,2003.
    [179]崔玉峰,徐纲,黄伟光.后台阶喷氢加喷空气超音速燃烧数值模拟,航空学报,25(2):pp.113-116,2004.
    [180]Yu,K.,K.J.Wilson,K.C.Schadow,Effect of Flame-Holding Cavities on Supetysonic Combustion Performance.AIAA-99-2638,1999.
    [181]Kim,K.M.,S.W.Baek,C.Y.Han,Numerical study on supersonic combustion with cavity-based fuel injection.International Journal of Heat and Mass Transfer,47:p.271-286,2004.
    [182]Ebrahimi,H.B.,D.V.Gaitonde,F.J.Malo-Molina,Numerical Investigation of Hypersonic and Scramjet Combustor Phenomenology.AIAA-2008-2627,2008.
    [183]杜炜强,吴宝元,带不同长度凹腔超声速燃烧数值研究.火箭推进,31(4):26-29,2005.
    [184]周松柏,刘君,郭正等。超燃冲压发动机燃烧室燃料喷注及其内流场的数值模拟.国防科技大学学报,29(2):24-28,2007.
    [185]王卫东,氢冲压发动机中用流向涡强化气氢与空气混合的研究,清华大学博士学位论文,北京,1997年5月.
    [186]王永寿,超燃冲压发动机燃烧室内的超声速纵涡流效应,飞航导弹,12:45-49,2003.
    [187]余勇,丁猛,刘卫东等,煤油超音速燃烧的试验研究,国防科技大学学报,26(1):1-4,2004.
    [188]梁德旺,王国庆,两方程湍流模型的可压缩性修正及其应用,空气动力学学报,Vol.18,No.1,2000.
    [189]Keuk,J.V,J.Ballmannt,A.Schneider,etc.Numerical simulation of hypersonic inlet flows,AIAA-98-1526,1998.
    [190]Zhang,H.L.,Bachman,C.R.,Fasel,H.F.,2000.Application of a new methodology for simulations of complex turbulent flows.AIAA-2000-2535.
    [191]Rogers,M.M.,Moin,P.,Reynolds,W.C.The structure and modeling of the hydrodynamics and passive scalar fields in homogeneous turbulent shear flows.Report No.TF-25,University of California,Stanford,1986.
    [192]Grigoriadis D G E,Bartzis J G,Goulas A,LES of the flow past a rectangular cylinder using the immersed boundary concept,Int.J.Numer.Meth.Fluids,41(6):615-632,2003.
    [193]Lakehal D,Thiele F,Duchamp D L,et al.,Computation of vortex shedding flows past a square cylinder employing LES and RANS,Hirschel E H,editor,Notes on numerical fluid mechanics,vol.66,Braunschweig,Vieweg Verlag,1998.
    [194]Lyn D A,Einav S,Rodi W,et al.,A laser Doppler velocimetry study of ensemble-averaged characteristic of the turbulent flow near wake of a square cylinder,J.Fluid Mech.,1995,304:285-319.
    [195]Durao D,Heitor M V,Pereira J,Measurements of turbulent and periodic flows around a square cross-section cylinder,Experiments in Fluids,1988,6(5):298-304.
    [196]FLUENT,Commercial software package,FLUENT Inc.
    [197]G.Bosch,W.Rodi,Simulation of vortex shedding past a square cylinder with different turbulence models,Int.J.Numer.Meth.Fluids 28(4)(1998) 601-616
    [198]S.Murakami,A.Mochida,On turbulent vortex shedding flow past 2D square cylinder predicted by CFD,J.Wind Eng.Ind.Aerodyn.54-55(1995) 191-211
    [199]A.Sohankar,C.Norberg,L.Davidson,Simulation.of three-dimensional flow around a square cylinder at moderate Reynolds number,Phys.Fluids 11(2)(1999) 288-306
    [200]R.D.Henderson,Nonlinear dynamics and pattern formation in turbulent wake transition,J.of Fluids Mech.352(1997) 65-112
    [201]A.Sohankar,C.Norberg,L.Davidson,Numerical simulation of flow past a square cylinder,ASME-JSME Fluid Engineering Division Summer Meeting Paper FEDSM 99-7172,San Francisco,1999.
    [202]N.D.Sandham,W.C.Reynolds,Three-Dimensional Simulations of Large Eddies in the Compressible Mixing Layer,J.Fluid Mech.,Vol.224,p 133-158,1991
    [203]S.G.Goebel,J.C.Dutton,An Experimental Study of Turbulent Compressible Mixing Layers,AIAA Journal,29(4):538-546,1991
    [204]Nicholas J.Georgiadis,J.Iwan D.Alexander and Eli Reshotko,Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations,AIAA 2001-0289
    [205]Mohammad Ali,A.K.M.Sadrul Islam.Study on main flow and fuel injector configurations for scramjet applications,International Journal of Heat and Mass Transfer,2006,Vol.49,pp.3634-3644.
    [206]M.S.Liou.A sequel to AUSM:AUSM+.Journal of Computational Physics,1996,129:364-382
    [207]J.P.Sislian,J.Schumacher.Fuel/Air mixing enhancement by cantilevered ramp injectors in hypersonic flows,1999,ISABE 99-7155
    [208]Kline S J,Cantwell B J,Lilley G M.1980-81 AFOSR-HTTM-Stanford Conf.on Complex Turbulent Flows.CA:Stanford University,1981.
    [209]Elliott G S and Samimy M.Compressibility effects in free shear layers.Phys.Fluids,Part A 1990,2(7):1231-1240
    [210]D.R.Eklund,D.G.Eletcher,R.J.Hartfield JR.et al.A comparative computational experimental investigation of mach 2 flow over a rearward-facing step,Computers and Fluids,24(5):593-608,1995.
    [211]Yulia Halupovich,Benveniste Natan,Josef Rom.Numerical solution of the turbulent supersonic flow over a backward facing step.Fluid Dynamics Research,24:251-273,1999.
    [212]Bachalo,W.D.and Johnson,D.A.,An investigation of transonic turbulent boundary layer separation generated on an axisymmetric flow model,AIAA Paper 1979-1479
    [213]Kline S.J.,Cantwell B.J.,et al.,editors,The 1980-81 AFSOR-HTTM-Stanford Conference on complex turbulent flows:comparison of computation and experiment,1981
    [214]G.S.Settles,L.J.Dodson,Supersonic and hypersonic shock boundary layer interaction database,AIAA Journal,Vol.32,No.7,1994,pp.1377-1383
    [215]段毅,杨永,张强.二维超声速横侧射流喷流湍流数值模拟.空气动力学学报,2005,23(4):506-510
    [216]Weidner E H and Drummond J P.A parametric study of staged fuel injector configurations for scramjet applications.AIAA-1981-1468
    [217]Michael Oevemann,Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling,Aerosp.Sci.Technol,2000,4(7):463-480.
    [218]Marshall C.B.and Kurkov A.P..Analytical and experimental study of supersonic combustion of Hydrogen in a vitiated air stream.NASA TM X 2828,Sept.1973
    [219]Parent B.,Sislian J.P..Validation of Wilcox k-ω model for flow characteristic to hypersonic airbreathing propulsion.AIAA Journal,2004,42(2).
    [220]王元光,徐旭,蔡国飙.超燃冲压发动机缩比燃烧室流场数值模拟.航空动力学 报,2006,21(1):56-60
    [221]K.H.Luo.Combustion effects on turbulence in a partially premixed supersonic diffusion flame.Combustion and Flame,1999,119(4)
    [222]Han Xingsi,Ye Taohong,Zhu Minming,et al.A new compressibility modification k-ε turbulence model with shock unsteadiness effect.Chinese Science Bulletin,53(24):3798-3807,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700