家蚕细胞色素P450和羧酸酯酶家族基因的鉴定与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鳞翅目昆虫的许多成员是重要的农林害虫,每年给全世界农林业造成难于估量的损失。由于杀虫剂的广泛使用,许多害虫都产生了不同程度的抗药性,给防治工作带来了极大的困难。
     细胞色素P450是血红蛋白的超家族,对多样的外源化合物和内源化合物的氧化代谢起作用。在昆虫中,已有大量研究表明细胞色素P450酶系对菊酯类杀虫剂以及植物毒素的解毒代谢方面起着非常重要的作用。羧酸酯酶属于α/β水解酶折叠蛋白,组成一个多基因超家族。它能有效催化含羧基酯键,酰胺键和硫酯键的内源性与外源性多种化合物的水解。在昆虫中,关于羧酸酯酶的研究主要是集中于其在杀虫剂抗性中的作用。此外,已有许多研究表明许多代谢酶类如细胞色素P450和羧酸酯酶都参与了对气味信号分子的降解作用。
     家蚕是继果蝇和冈比亚按蚊等昆虫之后又一个全基因组测序昆虫,是国际鳞翅目基因组协会确定的鳞翅目昆虫的模式昆虫,而且也是目前唯一的全序列测序鳞翅目昆虫。大量的基因组信息和EST数据库为利用生物信息学方法研究新基因及其功能提供了非常大的便利。家蚕和野桑蚕具有共同的起源,同鳞翅目蚕蛾科昆虫。由于农药对其选择压力的不同,家蚕和野桑蚕对农药的抗性存在差异。对与解毒代谢和嗅觉检测相关的细胞色素P450和羧酸酯酶家族基因的研究,可以为鳞翅目等害虫的防治提供借鉴,同时也为研究这两大家族基因在昆虫中所起的生理功能,以及驯化条件下物种进化差异研究提供参考。
     本研究利用生物信息学和分子生物学技术从家蚕中鉴定了多个细胞色素P450和羧酸酯酶基因,从分子水平上分析了这些基因的进化关系,研究了基因组织表达特性和发育特性,以及外源毒素对这些基因的诱导表达作用;利用昆虫杆状病毒表达系统表达了部分基因,并对1个羧酸酯酶基因进行了活性鉴定;首次研究比较了家蚕和野桑蚕酯酶在生化和分子水平上的差异,并从农业害虫棉铃虫中克隆了第一个羧酸酯酶基因。
     1.家蚕细胞色素P450基因的研究
     本文利用生物信息学和RT-PCR方法从家蚕中克隆了2个CYP4和4个CYP6家族基因序列。序列分析表明这些基因都具有P450基因保守特征位点,而且都在相同位置含有一个保守的内含子/外显子结合位点。CYP4M5和CYP4M9在基因组上以head-to-tail的方式成簇排列,可能是通过基因复制产生的。BLAST结果表明这些P450s与主要参与外源物代谢解毒作用的其他昆虫CYP4和CYP6家族成员同源性较高。RT-PCR分析表明这6个P450基因都在中肠或脂肪体中高表达,基因不同发育阶段表达分析表明它们具有类似或完全不同的表达调控模式。在人工饲料中添加1.75×10-5 %和3.5×10-6 %的氯氰菊酯(cypermethrin),以及0.1%芸香苷(rutin)后,CYP6AB5表达量分别升高了2.3倍,2.2倍和1.9倍;而添食0.1%(槲皮素)quercetin后CYP6AB5表达量基本不变。与此相反,其他5个基因的表达反而都受到不同程度的抑制。我们利用昆虫Bac-to-Bac杆状病毒表达系统表达了CYP6AB5基因。该基因的表达为进一步构建体外代谢酶系,检测该基因的底物特异性打下了基础。
     信号失活是嗅觉动态过程的一个重要步骤,这一过程包括多样的气味降解酶类。本文利用RT-PCR方法从家蚕蛾的触角中克隆了另一个新的细胞色素P450基因CYP6AE21。该基因含有一个1 572 bp的ORF,编码一个推定的523个氨基酸的蛋白质。CYP6AE21推定的分子量为60.5 kD,等电点为8.4,含有一个细胞色素P450的特征序列血红素结合位点区域。CYP6AE21和家蚕CYP6AE2基因一样在相同位置含有1个内含子序列,且相应的2个外显子大小完全一致。它们之间的核苷酸序列相似性达到94.5%,且在基因组上以head-to-tail的方式成簇排列,中间由约7.6 kb核苷酸序列隔开,推测它们是由其中一个基因加倍复制形成的。CYP6AE21在幼虫的头部和脂肪体,以及蛾的触角中表达量非常高;在幼虫和蛾的多个其他组织中也都有表达。P450酶系的重要组分之一细胞色素P450还原酶基因(CPR)也在雌蛾和雄蛾触角中高表达,在其它组织中都有表达,但表达量相对较低。亚细胞定位分析表明CYP6AE21表达产物定位于细胞质中,与微粒体P450经典的定位一致。推测此P450基因可能主要参与内化进细胞后的气味分子的降解清除作用。
     2.家蚕和野桑蚕羧酸酯酶家族基因的研究
     羧酸酯酶属于α/β水解酶折叠蛋白,它能有效催化含羧基酯键,酰胺键和硫酯键的内源性与外源性多种化合物的水解。关于昆虫羧酸酯酶的研究主要集中于与杀虫剂抗性的关系,而与其生理功能相关的研究比较少。本文用生物信息学方法筛选家蚕基因组数据,并通过分子手段从家蚕中鉴定了12个候选的羧酸酯酶基因序列。其中2个羧酸酯酶基因能通过选择性剪切产生多个不同的剪切变体。部分羧酸酯酶基因在同一染色体上成簇排列,其他多数基因都分散分布在不同的染色体上。根据内含子数目可以将这些基因分成两类,其中I类基因相应的内含子位点非常保守,II类基因则差异较大。同源比较和进化分析表明家蚕的羧酸酯酶之间总体差异较大,家族基因内部可能经历了较大的进化分歧。表达分析表明这些羧酸酯酶基因具有多样的组织表达特性,其中一些基因在幼虫的中肠或丝腺中高表达,一些在蛾触角中高表达。此外,2个基因BmCarE-12和BmCarE-15在幼虫脂肪体中能被脂多糖(LPS)诱导后表达升高。本研究根据这些羧酸酯酶基因相应的表达图谱和进化关系对它们可能参与的功能作用进行了探讨。
     家蚕BmCarE-5基因在幼虫的中肠,以及在成虫的触角等组织中都高表达。启动子分析表明该基因可能受内源激素的调控。为了进一步研究此基因的功能特性,我们利用昆虫杆状病毒表达系统分别表达了这两个基因。SDS-PAGE分析表明经BmCarE-5基因重组bacmid感染后的BmN细胞与对照组相比在预期的76 kD左右大小位置有一条特异条带。Western blot分析表明在预期的同样大小位置有一条特异条带,进一步表明BmCarE-5得到了成功表达。此基因表达产物经纯化后,进行了酶活性检测。结果表明此酶的最适温度为40℃,Km和Vmax大小分别为2.653 mM和178 OD/ min·mg protein。本研究为进一步阐明羧酸酯酶基因可能参与的生理功能提供了借鉴。
     为了研究酯酶与野桑蚕Bombyx mandarina和家蚕对杀虫剂抗性差异的关系,以及家蚕和野桑蚕酯酶家族基因的进化差异,采用动力学方法检测了家蚕和野桑蚕幼虫不同发育阶段,以及5龄第3 d幼虫不同组织的酯酶活性。家蚕和野桑蚕酯酶活性都在幼虫末期较高,且都具有类似的组织分布模式,在中肠中活性最高,丝腺次之,表明家蚕和野桑蚕的酯酶在进化上是相对较保守的。家蚕中肠酯酶活性是野桑蚕的1.97倍,根据“脂族酯酶突变假说”,推测野桑蚕杀虫剂抗性不是由于酯酶基因过量表达,而是由于点突变或者是由其他解毒酶系差异造成的。BmmCarE-4和BmmCarE-5共含有7个不同的选择性剪切变体,选择性剪切发生在5′端。这2个基因都存在于同一个转录单元上,且推定的氨基酸序列同源性达52%以上。其中BmmCarE-4和BmmCarE-5与家蚕相应的同源基因一样是由其中一个基因通过3′端基因序列加倍复制形成的,进一步表明家蚕和野桑蚕酯酶在分子水平上是相当保守的。丝腺酯酶活性是野桑蚕的4.49倍,其中CarE-9基因在家蚕和野桑蚕丝腺中表达量基本无差异,而CarE-7在家蚕丝腺中高表达,在野桑蚕中则几乎不表达。表明CarE-7基因在家蚕和野桑蚕丝腺中的差异表达是丝腺组织活性差异的主要原因之一,初步推测其可能在丝腺的生长发育或蚕丝合成等方面起着重要的作用。此外,野桑蚕羧酸酯酶基因BmmCarE-2与家蚕羧酸酯酶基因BmCarE-2(GenBank登录号:DQ311250)的氨基酸序列相似性最高,达98.9%。组织表达分析表明BmmCarE-2在头部和脂肪体表达量较高,在丝腺和中肠稍低,而在血液中表达量最低。
     3.棉铃虫羧酸酯酶基因的研究
     为了从分子水平上研究棉铃虫Helicoverpa armigera对杀虫剂抗性的产生机理,本文通过RT-PCR和RACE方法首次从棉铃虫中肠中克隆了一个羧酸酯酶全长cDNA序列。序列分析表明,该基因包含一个1 794 bp的开放读码框,129 bp的5′UTR和139 bp的3′UTR区域。该基因编码597个氨基酸,推测编码蛋白质的等电点PI为4.92,分子量为67.1 kD,GenBank登录号为EF547544。通过对氨基酸的同源性分析表明,该羧酸酯酶与斜纹夜蛾Spodoptera litura羧酸酯酶的同源性最高,达60﹪。半定量RT-PCR分析表明,该基因在中肠组织中表达量最高,在脂肪体和生殖腺中表达量较低,在头部则不表达。推测该羧酸酯酶基因可能主要参与棉铃虫对外源物质的解毒代谢。
Many members of lepidopteran insects are agricultural and forest pests, which cause immeasurable losses every year all over the world. Wide use of insecticides has resulted in increased insecticide resistance in many pests, and has then caused great difficulties to control these pests.
     Cytochrome P450 is a superfamily of heme proteins, which partipicates in oxidative metabolism of endogenous and exogenous compounds. In insects, a substantial amount of research has indicated that cytochrome P450 enzyme system plays pretty important roles in detoxifying metabolism of pyrethroid insecticides and plant toxins. Carboxylesterase belongs toα/βhydrolase fold protein family, which comprise of a multigene family and can effectively hydrolyze the endogenous and exogenous compounds containing carboxylester, amide, and thioester bonds. In insects, the research about carboxylesterase is mainly focused on its involvement in insecticide resistance. Moreover, many studies have demonstrated that many metabolic enzymes such as cytothrome P450 and carboxylesterase are involved in the degradation of odorants.
     Bombyx mori is another insect whose whole genome sequences have been fully completed after Drosophila melanogaster and Anopheles gambiae. It has been considered as the lepidopteran model insect and is also the only whole genome sequence available lepidopteran insect. A great number of genome sequences and EST data have provided great convenience to study new genes and their corresponding functions. Bombyx mori and Bombyx mandarina originated from the same ancestor, and belong to family Bombycidae, order Lepidoptera. There have been great differences in insecticide resistance between the two species due to different selective pressures of insecticides. To research detoxifying metabolism and olfactory detection related cytochrome P450 and carboxylesterase family genes will provide clues to the control of pests such as lepidopteran insects, and facilitate the research about the physiological functions of the two family genes and evolutionary differences of species under domestication.
     In this research, multiple cytochrome P450 and carboxylesterase genes were identified by using bioinformatic and molecular approaches. The evolutionary relationships between these genes were analyzed at the molecular level. Tissue expression and developmental expression profiles were studied, as well as the inductive effects of xenobiotics on these genes. Some genes were expressed by using insect baculovirus express system, and the enzymatic activity of a carboxylesterase gene product was further assayed. We first compared the differences of esterases between Bombyx mori and Bombyx mandarina at the biochemical and molecular levels. A first carboxylesterase gene was also cloned from the agricultural pest, Helicoverpa armigera.
     1. The research of cytochrome P450 genes from Bombyx mori
     In this study, we cloned two CYP4 and four CYP6 genes using bioinformatics and RT-PCR approaches. Sequence analysis showed that these genes contained conserved P450 gene sequence regions and one conserved intron. CYP4M5 and CYP4M9 were clustered together in a head-to-tail arrangement possibly due to gene duplication. Blast analysis showed that these P450 genes shared significant similarity with CYP4 and CYP6 families involved in the metabolism and detoxification of xenobiotics in other insects. RT-PCR analysis showed that these P450 genes were all highly expressed in the midgut or fat body of silkworms. Some of the P450 gene expression was increased while expression of other P450 genes was decreased as the instar age increased. When the larvae were exposed to 1.75×10-5 % of cypermethrin, 3.5×10-6 % of cypermethrin and 0.1 % of rutin, expression of CYP6AB5 was increased by 2.3-fold, 2.2-fold and 1.9-fold, respectively, while exposure to 0.1 % quercetin did not influence the expression of CYP6AB5. In contrast, expression of the other five P450 genes was suppressed after exposure to these compounds.CYP6AB5 gene was expressed by using insect Bac-to-Bac baculovirus expression system. The expression of this gene lay the foundation for characterization of substrate specificity of this enzyme by further constructing in vitro metabolizing enzymatic system.
     Signal inactivation is a critical step in the olfactory dynamic process, which involves various odorant-degrading enzymes. In this study, a cytochrome P450 cDNA CYP6AE21 was cloned from the moth antenna of Bombyx mori by RT-PCR method. CYP6AE21 contains a 1 572 bp ORF, which encodes a putative protein of 523 amino acids. This putative protein have a calculated molecular mass of 60.5 kD, pI of 8.4, and a P450 characteristic structure heme-binding region. CYP6AE21 and Bombyx mori CYP6AE2 both contain only one intron which exists at the same site, and their relative two exons have exactly the same size. The two genes share 94.5% nucleotide similarity, and cluster together on the same chromosome in a head-to-tail arrangement separated by a approx. 7.6 kb intergenic region. CYP6AE21 was highly expressed in larval head and fat body, and moth antenna. It was also detected in many other larval and moth tissues. NADPH P450 reductase (CPR), a very important component of monooxygenase system, was also highly expressed in the moth antenna, and detected in other moth tissues with low levels. Subcellular localization analysis showed that the expression product of CYP6AE21 is localized in cytoplasm, which is consistent with the classical localization of microsomal P450s. It was postulated that this P450 gene might participate in the degradation of odorants after their internalization into cells.
     2. The research of carboxylesterase genes from Bombyx mori and Bombyx mandarina
     Carboxylesterase belongs toα/βhydrolase fold protein family, which can effectively catalyze the hydrolysis of endogenous and exogenous compounds containing carboxylester, amide and thioester bonds. In insects, the research of carboxylesterase is mainly focused on its involvement in insecticide resistance. Whereas, there is few study related to its physiological functions. Bioinformatics method was used to screen the genome sequence of Bombyx mori, and 12 candidate carboxylesterase genes were identified through molecular approaches. Two of the 12 candidate genes can generate various variants through alternative splicing. Some of these identified genes are clustered together on the chromosomes, while others are distributed among different chromosomes. These carboxylesterase genes can be divided into two groups according to the number of their introns. The 1 group contains conservative corresponding intron sites; the 2 group contains introns with great varieties. Homology comparison and phylogenetic analysis showed that there are great differences among these sequences, suggesting that they must have undergone great evolutionary divergences. Expression analysis indicated that some of these carboxylesterase genes were dominantly expressed in midgut or silk gland, while some others were detected at high levels in moth antenna. Moreover, BmCarE-12 and BmCarE-15 transcripts were increased in fat body after the induction by lipopolysaccharide (LPS). The putative functions of these carboxylesterase genes were discussed with regard to their respective expression patterns and phylogenetic relationships.
     BmCarE-5 was expressed at high levels in larval midgut, and moth antenna. Promoter analysis showed that the expression of this gene might be regulated by endogenous hormones. In order to research its potential function, we expressed this gene by using insect baculovirus expression system. SDS-PAGE analysis showed that there is a specific band of about 76 kD at the lane of BmCarE-5 recombinant bacmid infected BmN cells compared with control group. Western blot analysis showed that there is also a specific band at the same position, indicating that BmCarE-5 was successfully expressed. Enzymatic activity of this enzyme was assayed after purification of its expression product. The results showed that the optimum temperature for BmCarE-5 is 40℃, and Km and Vmax for this enzyme are 2.653 mM and 178 OD/min·mg protein, respectively. This research will facilitate the characterization of the physiological function of carboxylesterase genes.
     In order to research the realtionship between esterases and the insecticide resistance differences between Bombyx mandarina M. and Bombyx mori L., and the evolutionary difference between esterases from the two species, esterase activities at different larval stage and different tissues of day 3 fifth-instar larvae of Bombyx mori and Bombyx mandarina were detected using the kinetic method. The esterase activities of Bombyx mori and Bombyx mandarina were both higher at late larval stage and had similar tissue distributions with highest values in midguts and less in silk glands, suggesting that the esterases of Bombyx mori and Bombyx mandarina were relatively conserved during the course of evolution. The esterase activity in the midgut of Bombyx mori was 1.9-fold higher than that in Bombyx mandarina. According to the mutant ali-esterase hypothesis, the insecticide resistance of Bombyx mandarina was possibly not caused by overexpression of esterases, but probably through point mutations or other detoxifying enzymes. BmmCarE-4 and BmmCarE-5 had 7 variants caused by splicing differently at 5′terminal. The two genes were located on the same transcription unit, and shared over 52% amino acid identity. BmmCarE-4 and BmmCarE-5 originated from the duplication of 3′terminal sequence of one of the two genes in a pattern similar to the two orthologous genes in Bombyx mori, which further demonstrates the high conservation of esterases at the molecular level between the two species. The esterase activity in the silk gland of Bombyx mori was 4.49-fold higher than that in Bombyx mandarina. The expression level of CarE-9 in silk gland was nearly identical between Bombyx mori and Bombyx mandarina. Whereas, CarE-7 was expressed highly in silk gland of Bombyx mori, but nearly not detected in Bombyx mandarina. The expression variance of CarE-7 in silk glands of Bombyx mori and Bombyx mandarina was one of the main reasons for the difference in enzymatic activities in these tissues, and this gene might play a role in the growth and development of silk gland or the synthesis of silk protein. Moreover, BmmCarE-2 shared highest amino acid similarity (98.9%) with BmCarE-2 from Bombyx mori (Genbank accession number: DQ311250). Tissue expression analysis demonstrated that BmmCarE-2 was expressed highly in head and fat body, slightly lower in silk gland and midgut, and extremely low in hemolymph.
     3. The research of carboxylesterase gene from Helicoverpa armigera
     In order to study the molecular mechanisms of insecticide resistance in Helicoverpa armigera, a first full-length carboxylesterase cDNA was cloned from Helicoverpa armigera through RT-PCR and rapid amplification of cDNA ends (RACE) strategies. Sequence analysis revealed that this gene contains a 1 794 bp ORF, a 129 bp 5′UTR and 139 bp 3′UTR, which encodes a 597 amino acid protein. The predicted molecular weight and isoelectric point of this carboxylesterase were 67.1 kD and 4.92, respectively. This gene was deposited in GenBank under the accession number EF547544. Homology analysis showed that this carboxylesterase is most similar to the carboxylesterase from Spodoptera litura with 60﹪amino acid identity. Semi-quantitative RT-PCR showed that this gene was highly expressed in midgut, low-expressed in fat body and gonad, and not expressed in head. It was postulated that this carboxylesterase gene may be involved in the detoxification of xenobiotics.
引文
[1]冷欣夫,邱星辉, 2001.细胞色素P450酶系的结构、功能与应用前景.科学出版社.
    [2] Omura T, 1999. Forty years of cytochrome P450. Biochem Biophys Res Commun. 266(3):690-698.
    [3]邱星辉,冷欣夫, 1999.昆虫细胞色素P450基因的表达与调控及P450介导抗性的分子机制.农药学学报. 1(1): 5-14.
    [4]邱星辉,冷欣夫, 1998.昆虫细胞色素P450研究:P450基因.昆虫知识. 35(1): 48-51.
    [5] Jeffrey G. Scott, 1999. Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology. 29, 757-777.
    [6] Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, Levin W, 1987. The P450 gene superfamily: recommended nomenclature. DNA. 6(1): 1-11.
    [7] Nebert DW, Nelson DR, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, et al, 1989. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA. 8(1):1-13.
    [8] Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, et al, 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12(1):1-51.
    [9] Wen ZM, Pan LP, May R. Berenbaum, Mary A. Schuler, 2003. Metabolism of linear and angular furanocouarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochemistry and Molecular Biology. 33, 937-947.
    [10] Rebecca A. Petersen, Arthur R. Zangerl, May R. Berenbaum, Mary A, 2001. Schuler. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae). Insect Biochemistry and Molecular Biology. 31, 679-690.
    [11] Sun YP, Johnson ER, 1960. Analysis of joint action of insecticides against houseflies.J.Econ.Entomol. 53:887-891.
    [12]周国理,黄炯烈, 2002.昆虫CYP6家族多样性与进化.昆虫知识. 39(4): 246-251.
    [13] Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG, 2006. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 15(5):615-636.
    [14] Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R, 2002. Evolution of Supergene Families Associated with Insecticide Resistance. Science. 298(5591):179-181.
    [15] Tijet N, Helvig C, Feyereisen R, 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene. 262(1-2): 189-198.
    [16] Li X, Schuler M A, Berenbaum M R, 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology. 52: 231-253.
    [17] Cari?o FA, Koener JF, Plapp FW Jr, Feyereisen R, 1994.Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol. 24(4): 411-418.
    [18] Liu N, Scott JG, 1996. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies,Musca domestica. Biochem Genet. 34(3-4):133-148.
    [19] Maitra S, Dombrowski SM, Basu M, Raustol O, Waters LC, Ganguly R, 2000. Factors on the third chromosome affect the level of cyp6a2 and cyp6a8 expression in Drosophila melanogaster. Gene. 248(1-2):147-156.
    [20] Maitra S, Price C, Ganguly R, 2002. Cyp6a8 of Drosophila melanogaster: gene structure, and sequence and functional analysis of the upstream DNA. Insect Biochem Mol Biol. 32(8):859-870.
    [21] Dombrowski SM, Krishnan R, Witte M, Maitra S, Diesing C, Waters LC, Ganguly R, 1998. Constitutive and barbital-induced expression of the Cyp6a2 allele of a high producer strain of CYP6A2 in the genetic background of a low producer strain. Gene. 221(1):69-77.
    [22] Spiegelman VS, Fuchs SY, Belitsky GA, 1997. The expression of insecticideresistance-related cytochrome P450 forms is regulated by molting hormone in Drosophila melanogaster. Biochem Biophys Res Commun. 232(2):304-307.
    [23] Feyereisen R. Insect cytochrome P450, 2005. Comprehensive Molecular Insect Science. Vol.4, ed. LI Gilbert, K Latrou, SS Gill, pp.1-77. Oxford, UK: Elsevier.
    [24] Kasai, S. and Scott, JG, 2001. Expression and regulation of CYP6D3 in the house fly, Musca domestica (L.). Insect Biochem Mol Biol. 32(1): 1– 8.
    [25] Zhu YC, Snodgrass GL, 2003. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol Biol. 12(1): 39-49.
    [26] Amichot M, Tarès S, Brun-Barale A, Arthaud L, Bride JM, BergéJB, 2004. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur J Biochem. 271(7): 1250-1257.
    [27] Scott JG, Georghiou GP, 1986. The biochemical genetics of permethrin resistance in the Learn-PyR strain of house fly. Biochem Genet. 24(1-2):25-37.
    [28] Wheelock, G.D., Scott, J.G, 1989. Simultaneous purification of a cytochrome P450 and cytochrome b5 from the house fly, Musca domestica L. Insect biochemistry. 19(5): 481-488.
    [29] Takashi Tomita, Jefferey G. Scott, 1995. cDNA and Deduced Protein Sequence of CYP6D1: the putative gene for a Cytochrome P450 Responsible for Pyrethroid Resistance in House Fly. Insect Biochem.Molec.Biol. 25, 275-283.
    [30] Wheelock, G.D., Scott, J.G, 1992. The role of cytochrome P450lpr in deltamethrin metabolism by pyrethroid resistant and susceptible strains of house flies. Pest. Biochem. Phys. 43: 67-77.
    [31] Zhang M, Scott JG, 1994. Cytochrome b5 involvement in cytochrome P450 monooxygenase activities in house fly microsomes. Arch Insect Biochem Physiol. 27(3): 205-216.
    [32] Liu N, Scott JG, 1998. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem Mol Biol. 28(8): 531-535.
    [33] Scott JG, Liu N, Wen Z, Smith FF, Kasai S, Horak CE, 1999. House-fly cytochrome P450 CYP6D1: 5' flanking sequences and comparison of alleles. Gene. 226(2):347-353.
    [34] W. Li, M.R. Berenbaum, M.A. Schuler, 2001. Molecular analysis of multiple CYP6B genes from polyphagous Papilio species. Insect Biochemistry and Molecular Biology. 31, 999-1011.
    [35] Snyder, M.J., Stevens, J.L., Andersen, J.F., Feyereisen, R, 1995. Expression of cytochrome P450 genes of the CYP4 family in midgut and fat body of the tobacco hornworm, Manduca sexta. Arch Biochem Biophys. 321(1): 13-20.
    [36] Li X, Baudry J, Berenbaum MR, Schuler MA, 2004. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc Natl Acad Sci USA. 101(9): 2939-2944.
    [37] Vogt RG, 2005. Molecular basis of pheromone detection in insects.In:Gilbert LI,latro K,Gill S eds.Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology.Elsevier,London UK. 3:753-804.
    [38] Peng HM, Ding X, Coon MJ, 1993. Isolation and heterologous expression of cloned cDNAs for two rabbit nasal microsomal proteins, CYP2A10 and CYP2A11, that are related to nasal microsomal cytochrome P450 form a. J Biol Chem. 268(23):17253-17260.
    [39] Ding X, Kaminsky LS, 2003. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 43: 149-173.
    [40] Lazard D, Tal N, Rubinstein M, Khen M, Lancet D, Zupko K, 1990. Identification and biochemical analysis of novel olfactory-specific cytochrome P-450IIA and UDP-glucuronosyl transferase. Biochemistry. 29(32): 7433-7440.
    [41] Wang Q, Hasan G, Pikielny CW, 1999. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J Biol Chem. 274(15): 10309-10315.
    [42] Wojtasek H, Leal WS, 1999. Degradation of an alkaloid pheromone from the pale-brown chafer, Phyllopertha diversa (Coleoptera: Scarabaeidae), by an insect olfactory cytochrome P450. FEBS Lett. 458(3): 333-336.
    [43] Ma?bèche-Coisne M, Nikonov AA, Ishida Y, Jacquin-Joly E, Leal WS, 2004. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci U S A. 101(31): 11459-11464.
    [44] Maibèche-Coisne M, Jacquin-Joly E, Fran?ois MC, Nagnan-Le Meillour P, 2002. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol Biol. 11(3):273-281.
    [45] Maibèche-Coisne M, Merlin C, Fran?ois MC, Porcheron P, Jacquin-Joly E, 2005. P450 and P450 reductase cDNAs from the moth Mamestra brassicae: cloning and expression patterns in male antennae. Gene. 346: 195-203.
    [46]滕霞,孙曼霁, 2003.羧酸酯酶研究进展.生命科学. 15(1): 31-35.
    [47] Satoh T, Hosokawa M, 2006. Structure, function and regulation of carboxylesterases [J].Chem Biol Interact. 162(3): 195-211.
    [48] Aldridge W.N, 1953. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem J. 53(1):110-117.
    [49]孙中涛,闫艳春, 2001.蚊虫抗药性及酯酶基因扩增研究进展.山东农业大学学报(自然科学版). 32 (3): 381-385.
    [50]张柯,叶镇清,乔传令, 2002.库蚊羧酸酯酶研究进展.生命的化学. 22(1): 65-66.
    [51] Oppenoorth FJOPPENOORTH FJ, van ASPEREN, 1960. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science. 132: 298-299.
    [52] Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG, 1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci USA. 94(14): 7464-7468.
    [53] Claudianos C, Russell RJ, Oakeshott JG, 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol. 29(8): 675-686.
    [54]孙鲁娟,高希武,郑炳宗, 2002.棉蚜抗氧化乐果品系及敏感品系羧酸酯酶性质的比较.昆虫学报. 45 (6): 724-727.
    [55]郭惠琳,高希武, 2005.棉蚜抗氧化乐果品系的羧酸酯酶基因突变.昆虫学报. 48(2): 194-202.
    [56] Mouchès C, Pasteur N, BergéJB, Hyrien O, Raymond M, de Saint Vincent BR, deSilvestri M, Georghiou GP, 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science. 233(4765): 778-780.
    [57] Guillemaud T, Rooker S, Pasteur N, Raymond M, 1996. Testing the unique amplification event and the worldwide migration hypothesis of insecticide resistance genes with sequence data. Heredity. 77 ( Pt 5): 535-543.
    [58] Blackman RL, Spence JM, Field LM, Devonshire AL, 1999. Variation in the chromosomal distribution of amplified esterase (FE4) genes in Greek field populations of Myzus persicae (Sulzer). Heredity. 82:180–186.
    [59] Rooker S, Guillemaud T, BergéJ, Pasteur N, Raymond M, 1996. Coamplification of esterase A and B genes as a single unit in Culex pipiens mosquitoes. Heredity. 77 ( Pt 5): 555-561.
    [60] Severini C, Romi R, Marinucci M, Guillemaud T, Raymond M, 1997. Esterases A5-B5 in organophosphate-resistant Culex pipiens from Italy. Med Vet Entomol. 11(2): 123-126.
    [61] Gullemaud T, Makate N, Raymond M, Hirst B, Callaghan A, 1997. Esterase gene amplification in Culex pipiens. Insect Mol Biol. 6(4): 319-327.
    [62] Hemingway J, Karunaratne SH, 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol. 12(1): 1-12.
    [63] Raymond M, Callaghan A, Fort P, Pasteur N, 1991. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 350(6314): 151-153.
    [64] Guillemaud T, Rooker S, Pasteur N, Raymond M, 1996. Testing the unique amplification event and the worldwide migration hypothesis of insecticide resistance genes with sequence data. Heredity. 77 ( Pt 5): 535-543.
    [65] Vogt RG, Riddiford LM, 1981. Pheromone binding and inactivation by moth antennae. Nature. 293, 161-163.
    [66] Klein U, 1987. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem. 17, 1193-1204.
    [67] Kochansky J, Tette J, Taschenberg EF, Carde RT, Kaissling KE, Roelofs WL, 1975. Sex pheromone of the moth Antheraea polyphemus. J. Insect Physiol. 21, 1977-1983.
    [68] Vogt RG, Riddiford LM, Prestwich GD, 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc.Natl. Acad. Sci. USA. 82, 8827-8831.
    [69] Ishida Y, Leal WS, 2002. Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyphemus. Insect Biochem Mol Biol. 32(12): 1775-1780.
    [70] Ishida Y and Leal WS, 2005. Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA, 102: 14075–14079.
    [71] Merlin C, Rosell G, Carot-Sans G, Francois MC, Bozzolan F, Pelletier J, Jacquin-Joly E, Guerrero A, Ma?bèche-Coisne M, 2007. Antennal esterase cDNAs from two pest moths, Spodoptera littoralis and Sesamia nonagrioides, potentially involved in odourant degradation. Insect Mol Biol. 16(1): 73-81.
    [72] Kamikouchi A, Morioka M and Kubo T, 2004. Identification of honeybee antennal proteins/genes expressed in a sex- and/or caste selective manner. Zool Sci. 21: 53–62.
    [73] Ferkovich S, van Essen F and Taylor TR, 1980. Hydrolysis of sex pheromone by antennal esterases of the cabbage looper Trichoplusia ni. Chem. Senses. 5, 33–46.
    [74] Prestwich G, Graham S, Handley M, Latli B, Streinz L and Tasayco M, 1989. Enzymatic processing of pheromones and pheromone analogs. Experientia. 45, 263–270.
    [75]Farine JP, Frérot B and Isart J, 1981. Facteurs d’isolement chimique dans la sécrétion phéromonale de deux noctuelles Hadeninae: Mamestra brassicae (L.) et Pseudatellia unipuncta (Haw.). C. R. Acad. Sci. III, 292, 101–104.
    [76] Ma?bèche-Coisne M, Merlin C, Fran?ois MC, Queguiner I, Porcheron P, Jacquin-Joly E, 2004. Putative odorant-degrading esterase cDNA from the moth Mamestra brassicae: cloning and expression patterns in male and female antennae. Chem Senses. 29(5): 381-390.
    [1] Scott, J.G., 1999. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol. 29(9): 757-777.
    [2] Nebert, D.W., Adesnik, M., Coon, M.J., Estabrook, R.W., Gonzalez, F.J., Guengerich, F.P., Gunsalus, I.C., Johnson, E.F., Kemper, B., Levin, W., 1987. The P450 gene superfamily: recommended nomenclature. DNA. 6(1): 1-11.
    [3] Omura, T., 1999. Forty years of cytochrome P450. Biochem Biophys Res Commun. 266(3): 690-698.
    [4] Feyereisen, R., 1999. Insect P450 enzymes. Annu Rev Entomol. 44: 507-533.
    [5] Nikou, D., Ranson, H., Hemingway, J., 2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene. 318: 91-102.
    [6] Liu, N., Scott, J.G., 1996. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochem Genet. 34(3-4): 133-148.
    [7] Tomita, T., Liu, N., Smith, F.F., Sridhar, P., Scott, J.G., 1995. Molecular mechanisms involved in increased expression of a cytochrome P450 responsible for pyrethroid resistance in the housefly, Musca domestica. Insect Mol Biol. 4(3): 135-140.
    [8] Rongnoparut, P., Boonsuepsakul, S., Chareonviriyaphap, T., Thanomsing, N., 2003. Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin. J Vector Ecol. 28(2): 150-158.
    [9] Amenya, D.A., Naguran, R., Lo, T.C., Ranson, H., Spillings, B.L., Wood, O.R., Brooke, B.D., Coetzee, M., Koekemoer, L.L., 2008. Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles Funestus, resistant to pyrethroids. Insect Mol Biol. 17(1): 19-25.
    [10] Brattsten, L.B., Wilkinson, C.F., 1973. Induction of microsomal enzymes in the southern armyworm (Prodenia eridania). Pest. Biochem. Phys. 393-407.
    [11] Whitlock, Jr., J.P., 1986. The regulation of cytochrome P-450 gene expression. Annu Rev Pharmacol Toxicol. 26: 333-369.
    [12] Scott, J.G., Sridhar, P., Liu, N., 1996. Adult specific expression and induction of cytochrome P450lpr in house flies. Arch Insect Biochem Physiol. 31(3): 313-323.
    [13] Hung, C.F., Berenbaum, M.R., Schuler, M.A., 1997. Isolation and characterization of CYP6B4, a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera:papilionidae).Insect Biochem Mol Biol. 27(5): 377-385.
    [14] Li, X., Berenbaum, M.R., Schuler, M.A., 2000. Molecular cloning and expression of CYP6B8: a xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem Mol Biol. 30(1): 75-84.
    [15] Li, X., Baudry, J., Berenbaum, M.R., Schuler, M.A., 2004. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc Natl Acad Sci U S A. 101(9): 2939-2944.
    [16] Petersen, R.A., Zangerl, A.R., Berenbaum, M.R., Schuler, M.A., 2001. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae). Insect Biochem Mol Biol. 31(6-7): 679-690.
    [17] Wen, Z., Pan, L., Berenbaum, M.R., Schuler, M.A., 2003. Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochem Mol Biol. 33(9): 937-947.
    [18] Xia, Q., Zhou, Z., Lu, C., Cheng, D., Dai, F., Li, B., Zhao, P., Zha, X., Cheng, T., Chai, C., Pan, G., Xu, J., Liu, C., Lin, Y., Qian, J., Hou, Y., Wu, Z., Li, G., Pan, M., Li, C., Shen, Y., Lan, X., Yuan, L., Li, T., Xu, H., Yang, G., Wan, Y., Zhu, Y., Yu, M., Shen, W., Wu, D., Xiang, Z., Yu, J., Wang, J., Li, R., Shi, J., Li, H., Li, G., Su, J., Wang, X., Li, G., Zhang, Z., Wu, Q., Li, J., Zhang, Q., Wei, N., Xu, J., Sun, H., Dong, L., Liu, D., Zhao, S., Zhao, X., Meng, Q., Lan, F., Huang, X., Li, Y., Fang, L., Li, C., Li, D., Sun, Y., Zhang, Z., Yang, Z., Huang, Y., Xi, Y., Qi, Q., He, D., Huang, H., Zhang, X., Wang, Z., Li, W., Cao, Y., Yu, Y., Yu, H., Li, J., Ye, J., Chen, H., Zhou, Y., Liu, B., Wang, J., Ye, J., Ji, H., Li, S., Ni, P., Zhang, J., Zhang, Y., Zheng, H., Mao, B., Wang, W., Ye, C., Li, S., Wang, J., Wong, G.K., Yang, H.; Biology Analysis Group., 2004. A draftsequence for the genome of the domesticated silkworm (Bombyx mori). Science. 306(5703): 1937-1940.
    [19] Mita, K., Morimyo, M., Okano, K., Koike, Y., Nohata, J., Kawasaki, H., Kadono-Okuda, K., Yamamoto, K., Suzuki, M.G., Shimada, T., Goldsmith, M.R., Maeda, S., 2003. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci USA. 100(24): 14121-14126.
    [20] Li, B., Xia, Q., Lu, C., Zhou, Z., Xiang, Z., 2005. Analysis of cytochrome P450 genes in silkworm genome (Bombyx mori). Sci China C Life Sci. 48(4): 414-418.
    [21] Maeda, S., Nakashima, A., Yamada, R., Hara, N., Fujimoto, Y., Ito, Y., Sonobe, H., 2008. Molecular cloning of ecdysone 20-hydroxylase and expression pattern of the enzyme during embryonic development of silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol. 149(3): 507-516.
    [22] Namiki, T., Niwa, R., Sakudoh, T., Shirai, K., Takeuchi, H., Kataoka, H., 2005. Cytochrome P450 CYP307A1/Spook: a regulator for ecdysone synthesis in insects. Biochem Biophys Res Commun. 337(1): 367-374.
    [23] Niwa, R., Matsuda, T., Yoshiyama, T., Namiki, T., Mita, K., Fujimoto, Y., Kataoka, H., 2004. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem. 279(34): 35942-35949
    [24] Niwa, R., Sakudoh, T., Namiki, T., Saida, K., Fujimoto, Y., Kataoka, H., 2005. The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol Biol. 14(5): 563-571.
    [25] Warren, J.T., Petryk, A., Marques, G., Jarcho, M., Parvy, J.P., Dauphin-Villemant, C., O'Connor, M.B., Gilbert, L.I., 2002. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc Natl Acad Sci USA. 99(17): 11043-11048.
    [26] Scott, J.G., Liu, N., Wen, Z., 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 121(1-3): 147-155.
    [27] Scharf, M.E., Parimi, S., Meinke, L.J., Chandler, L.D., Siegfried, B.D., 2001. Expression and induction of three family 4 cytochrome P450 (CYP4) genes identifiedfrom insecticide-resistant and susceptible western corn rootworms, Diabrotica virgifera virgifera. Insect Mol Biol. 10(2): 139-146.
    [28] Snyder, M.J., Stevens, J.L., Andersen, J.F., Feyereisen, R., 1995. Expression of cytochrome P450 genes of the CYP4 family in midgut and fat body of the tobacco hornworm, Manduca sexta. Arch Biochem Biophys. 321(1): 13-20.
    [29] Wheelock, G.D., Scott, J.G., 1992. The role of cytochrome P450lpr in deltamethrin metabolism by pyrethroid resistant and susceptible strains of house flies. Pest. Biochem. Phys. 43: 67-77.
    [30] Ranson, H., Nikou, D., Hutchinson, M., Wang, X., Roth, C.W., Hemingway, J., Collins, F.H., 2002. Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Mol Biol. 11(5): 409-418.
    [31] Tijet, N., Helvig, C., Feyereisen, R., 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene. 262(1-2): 189-198.
    [32] Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evo. 24: 1596-1599.
    [33] Li, W., Berenbaum, M.R., Schuler, M.A., 2001. Molecular analysis of multiple CYP6B genes from polyphagous Papilio species. Insect Biochem Mol Biol. 31(10): 999-1011.
    [34] Werck-Reichhart, D., Feyereisen, R., 2000. Cytochromes P450: a success story. Genome Biol.;1(6): reviews 3003: 1-9.
    [35] Feyereisen, R., 2005. In: Gilbert, L.I., Iatrou, K., Gill, S. (Eds.), Insect cytochrome P450. Comprehensive Molecular Insect Science, vol. 4. Elsevier, Amsterdam, pp. 1–77.
    [36] Murakami, K., Mihara, K., Omura, T., 1994. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem. 116(1): 164-175.
    [37] Kasai, S., Scott, J.G., 2001. Cytochrome P450s CYP6D3 and CYP6D1 are part of a P450 gene cluster on autosome 1 in the house fly. Insect Mol Biol. 10(3): 191-196.
    [38] Chen, S., Li, X., 2007. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol Biol. 7: 46.
    [39] Mao, W., Rupasinghe, S., Zangerl, A.R., Schuler, M.A., Berenbaum, M.R., 2006. Remarkable substrate-specificity of CYP6AB3 in Depressaria pastinacella, a highlyspecialized caterpillar. Insect Mol Biol. 15(2): 169-79.
    [40] David, J.P., Boyer, S., Mesneau, A., Ball, A., Ranson, H., Dauphin-Villemant, C., 2006. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochem Mol Biol. 36(5): 410-20.
    [41] Mao, Y.B., Cai, W.J., Wang, J.W., Hong, G.J., Tao, X.Y., Wang, L.J., Huang, Y.P., Chen, X.Y., 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol. 25(11): 1307-13.
    [42] Anita, M., Bautista, M., Toshiharu, T., Tadashi, M., 2007. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pest. Biochem. Phys. 87(1): 85-93.
    [43] Davies, L., Williams, D.R., Aguiar-Santana, I.A., Pedersen, J., Turner, P.C., Rees, H.H., 2006. Expression and down-regulation of cytochrome P450 genes of the CYP4 family by ecdysteroid agonists in Spodoptera littoralis and Drosophila melanogaster. Insect Biochem Mol Biol. 36(10): 801-807.
    [44] Riddick, D.S., Lee, C., Bhathena, A.., Timsit, Y.E., Cheng, P.Y., Morgan, E.T., Prough, R.A., Ripp, S.L., Miller, K.K., Jahan, A., Chiang, J.Y., 2004. Transcriptional suppression of cytochrome P450 genes by endogenous and exogenous chemicals. Drug Metab Dispos. 32(4): 367-375.
    [45] Willoughby, L., Chung, H., Lumb, C., Robin, C., Batterham, P., Daborn, P.J., 2006. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol. 36(12): 934-942.
    [1] Amichot M, Tar` es S, Brun-Barale A, Arthaud L, Bride JM, Berg′e JB., 2004. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem. 271: 1250–1257.
    [2] Feyereisen R., 2005. Insect cytochrome P450. In Comprehensive Molecular Insect Science, Vol. 4, ed. LI Gilbert, K Latrou, SS Gill, pp. 1–77. Oxford, UK: Elsevier.
    [3] Saner C, Weibel B, Wurgler FE, Sengstag C., 1996. Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae. Environ.Mol. Mutagen. 27: 46–58.
    [4] Helvig C, Tijet N, Feyereisen R, Walker FA, Restifo LL., 2004. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation. Biochem. Biophys. Res. Commun. 325: 1495–1502.
    [5] Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O'Keefe M, McKenzie JA, Batterham P, Daborn PJ., 2005. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 102: 12807–12812.
    [6] Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P, Feyereisen R, Wilson TG, ffrench-Constant RH., 2002. A single P450 allele associated with insecticide resistance in Drosophila. Science 297:2253–2256.
    [7] Hung, C.F., Berenbaum, M.R., Schuler, M.A., 1997. Isolation and characterization of CYP6B4, a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera:papilionidae).Insect Biochem Mol Biol. 27(5): 377-385.
    [8] Wen ZM, Pan LP, May R. Berenbaum, Mary A. Schuler., 2003. Metabolism of linear and angular furanocouarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochemistry and Molecular Biology. 33, 937-947.
    [9] Rebecca A. Petersen, Arthur R. Zangerl, May R. Berenbaum, Mary A. Schuler., 2001. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae). Insect Biochemistry and Molecular Biology. 31, 679-690.
    [1] Vogt, R.G., 2005. Molecular basis of pheromone detection in insects.In:Gilbert LI,latro K,Gill S eds.Comprehensive Insect Physiology, Biochemistry, Pharmacology andMolecular Biology. Elsevier, London UK. 3: 753-804.
    [2] Lazard, D., Tal, N., Rubinstein, M., Khen, M., Lancet, D., Zupko, K., 1990. Identification and biochemical analysis of novel olfactory-specific cytochrome P-450IIA and UDP-glucuronosyl transferase. Biochemistry. 29(32): 7433-7440.
    [3] Vogt, R.G., Riddiford, L.M., 1981. Pheromone binding and inactivation by moth antennae. Nature. 293, 161-163.
    [4] Vogt, R.G., Riddiford, L.M., Prestwich, G.D., 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc. Natl. Acad. Sci. USA. 82, 8827-8831.
    [5] Maida, R., Ziegelberger, G., Kaissling, K., 1993. Esterase activity in the olfactory sensilla of the silkmoth Antheraea polyphemus. Neuroreport, 6, 822–824.
    [6] Ishida, Y., Leal, W.S., 2005. Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA. 102: 14075–14079.
    [7] Rybczynski, R., Reagan, J. and Lerner, M., 1989. A pheromone-degrading aldehyde-oxidase in the antennae of the moth Manduca sexta. J.Neurosci., 9, 1341–1353.
    [8] Rybczynski, R., Vogt, R., Lerner, M., 1990. Antennal-specific pheromone-degrading aldehyde-oxidases from the moths Antheraea polyphemus and Bombyx mori. J. Biol. Chem., 265, 19712–19715.
    [9] Pelletier, J., Bozzolan, F., Solvar, M., Fran?ois, M.C., Jacquin-Joly, E., Ma?bèche-Coisne, M., 2007. Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation. Gene. 404(1-2): 31-40.
    [10] Rogers, M.E., Jani, M.K., Vogt, R.G., 1999. An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta. J Exp Biol. 202(Pt 12):1625-1637.
    [11] Tijet N, Helvig C, Feyereisen R., 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene. 262(1-2): 189-198.
    [12] Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R., 2002. Evolution of Supergene Families Associated with Insecticide Resistance. Science. 298(5591):179-181.
    [13] Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG., 2006. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 15(5): 615-636.
    [14] Li X, Schuler M A, Berenbaum M R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology. 52: 231-253.
    [15] Warren, J.T., Petryk, A., Marques, G., Jarcho, M., Parvy, J.P., Dauphin-Villemant, C., O'Connor, M.B., Gilbert, L.I., 2002. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc Natl Acad Sci USA. 99(17): 11043-11048.
    [16] Niwa, R., Matsuda, T., Yoshiyama, T., Namiki, T., Mita, K., Fujimoto, Y., Kataoka, H., 2004. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem. 279(34): 35942-35949.
    [17] Namiki, T., Niwa, R., Sakudoh, T., Shirai, K., Takeuchi, H., Kataoka, H., 2005. Cytochrome P450 CYP307A1/Spook: a regulator for ecdysone synthesis in insects. Biochem Biophys Res Commun. 337(1): 367-374.
    [18] Niwa, R., Sakudoh, T., Namiki, T., Saida, K., Fujimoto, Y., Kataoka, H., 2005. The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol Biol. 14(5): 563-571.
    [19] Scott, J.G., Liu, N., Wen, Z., 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 121(1-3): 147-155.
    [20] Scott, J.G., 1999. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol. 29(9): 757-777.
    [21] Li, X., Baudry, J., Berenbaum, M.R., Schuler, M.A., 2004. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc Natl Acad Sci U S A. 101(9): 2939-2944.
    [22] Wang Q, Hasan G, Pikielny CW., 1999. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J BiolChem. 274(15): 10309-10315.
    [23] Robertson HM, Martos R, Sears CR, Todres EZ, Walden KK, Nardi JB., 1999. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol. 8(4):501-518.
    [24] Maibèche-Coisne M, Jacquin-Joly E, Fran?ois MC, Nagnan-Le Meillour P., 2002. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol Biol. 11(3):273-281.
    [25] Maibèche-Coisne M, Merlin C, Fran?ois MC, Porcheron P, Jacquin-Joly E., 2005. P450 and P450 reductase cDNAs from the moth Mamestra brassicae: cloning and expression patterns in male antennae. Gene. 346: 195-203.
    [26] Wojtasek H, Leal WS.,1999. Degradation of an alkaloid pheromone from the pale-brown chafer, Phyllopertha diversa (Coleoptera: Scarabaeidae), by an insect olfactory cytochrome P450. FEBS Lett. 458(3): 333-336.
    [27] Maibèche-Coisne M, Nikonov AA, Ishida Y, Jacquin-Joly E, Leal WS., 2004. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci USA. 101(31): 11459-11464.
    [28] Yasukochi, Y., Peterson, J.A, Masters, B.S.S., 1979. NADPH cytochrome c (P450) reductase. J. Biol. Chem. 10, 7097-7104.
    [29] Hovemann BT, Sehlmeyer F, Malz J., 1997. Drosophila melanogaster NADPH-cytochrome P450 oxidoreductase: pronounced expression in antennae may be related to odorant clearance. Gene. 189(2): 213-219.
    [30] Krieger, J., Raming, K., Breer, H., 1991. Cloning of genomic and complementary DNA encoding insect pheromone-binding proteins: evidence for microdiversity. Biochim. Biophys. Acta.1088, 277–284.
    [31] Krieger J, Grosse-Wilde E, Gohl T, Breer H., 2005. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur J Neurosci. 21(8):2167-2176.
    [32] Maida R, Mameli M, Müller B, Krieger J, Steinbrecht RA., 2005. The expression pattern of four odorant-binding proteins in male and female silk moths, Bombyx mori. J Neurocytol. 34(1-2):149-63.
    [33] Forstner M, Gohl T, Breer H, Krieger J., 2006. Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invert Neurosci. 6(4):177-187.
    [34] Li, B., Xia, Q., Lu, C., Zhou, Z., Xiang, Z., 2005. Analysis of cytochrome P450 genes in silkworm genome (Bombyx mori). Sci China C Life Sci. 48(4): 414-418.
    [35] Werck-Reichhart, D., Feyereisen, R., 2000. Cytochromes P450: a success story. Genome Biol.;1(6): reviews 3003: 1-9.
    [36] Feyereisen, R., 2005. In: Gilbert, L.I., Iatrou, K., Gill, S. (Eds.), Insect cytochrome P450. Comprehensive Molecular Insect Science, vol. 4. Elsevier, Amsterdam, pp. 1–77.
    [37] Murakami, K., Mihara, K., Omura, T., 1994. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem. 116(1): 164-175.
    [38] Kasai, S. and Scott, JG., 2001. Expression and regulation of CYP6D3 in the house fly, Musca domestica (L.). Insect Biochem Mol Biol. 32(1): 1– 8.
    [39] Ranson, H., Nikou, D., Hutchinson, M., Wang, X., Roth, C.W., Hemingway, J., Collins, F.H., 2002. Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Mol Biol. 11(5): 409-418.
    [40] Peng HM, Ding X, Coon MJ., 1993. Isolation and heterologous expression of cloned cDNAs for two rabbit nasal microsomal proteins, CYP2A10 and CYP2A11, that are related to nasal microsomal cytochrome P450 form a. J Biol Chem. 268(23): 17253-17260.
    [41] Ding X, Kaminsky LS., 2003. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 43: 149-173.
    [42] Robin MA, Maratrat M, Loeper J, Durand-Schneider AM, Tinel M, Ballet F, Beaune P, Feldmann G, Pessayre D., 1995. Cytochrome P4502B follows a vesicular route to the plasma membrane in cultured rat hepatocytes. Gastroenterology. 108(4):1110-1123.
    [43] Loeper J, Louérat-Oriou B, Duport C, Pompon D., 1998. Yeast expressed cytochrome P450 2D6 (CYP2D6) exposed on the external face of plasma membrane is functionally competent. Mol Pharmacol. 54(1): 8-13.
    [44] Chinta, S., Pai, H., Upadhya, S., Boyd, M., Ravindranath, V., 2002. Constitutive expression and localization of the major drug metabolizing enzyme cytochrome P450 2D in human brain. Mol. Brain Res. 103, 49–61.
    [1] Cygler M, Schrag J D, Sussman J L, Harel M, Silman I, Gentry M K, Doctor B P, 1993. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 2(3): 366-382.
    [2] Mentlein R, Heiland S, Heymann E., 1980. Simultaneous purification and comparative characterization of six serine hydrolases from rat liver microsomes. Arch.Biochem. Biophys. 200: 547–559.
    [3] Mentlein R, Heymann E., 1984. Hydrolysis of ester- and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Biochem. Pharmacol. 33: 1243–1248.
    [4] Satoh T, Hosokawa M., 1998. The mammalian carboxylesterases: from molecules to functions. Annual Review of Pharmacology and Toxicology. 38: 257-288.
    [5] Satoh T, Hosokawa M., 2006. Structure, function and regulation of carboxylesterases. Chemico-Biological Interactions. 162(3): 195-211.
    [6] Hemingway J, Karunaratne SH., 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism.Med Vet Entomol. 12(1): 1-12.
    [7] Hemingway J, Hawkes N J, McCarroll L, Ranson H., 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 34(7): 653-665.
    [8] Karunaratne S H, Hemingway J, Jayawardena K G, Dassanayaka V, Vaughan A., 1995. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. The Journal of Biological Chemistry. 270(52): 31124-31128.
    [9] Mouches C, Pasteur N, BergéJ B, Hyrien O, Raymond M, de Saint Vincent B R, de Silvestri M, Georghiou G P., 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science. 233(4765): 778-780.
    [10] FieldLM, Devonshire AL., 1998. Evidence that theE4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem. J. 330: 169–173.
    [11] Vontas JD, Small GJ, Hemingway J., 2000. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stal). Insect Mol. Biol. 9: 655–660.
    [12] Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG., 1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci USA. 94(14): 7464-7468.
    [13] Campbell P M, Newcomb R D, Russell R J, Oakeshott J G., 1998. Two different amino acid substitutions in the ali-esterase E3 confer alternative types of organophosphorus insecticides resistance in the sheep blowfly, Lucilia cuprina[J]. Insect Biochem. Mol. Biol., 28: 139-150.
    [14] Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N., 1998. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos. Trans. R. Soc. London B. 353: 1–5.
    [15] Vogt RG., 2005. Molecular basis of pheromone detection in insects. In: Gilbert LI, latro K, Gill S eds. Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology. Elsevier, London UK. 3:753-804.
    [16] Vogt RG, Riddiford LM., 1981. Pheromone binding and inactivation by moth antennae.Nature. 293, 161-163.
    [17] Klein U., 1987. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem. 17, 1193-1204.
    [18] Ishida Y and Leal WS., 2005. Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA. 102: 14075–14079.
    [19] Ma?bèche-Coisne M, Merlin C, Fran?ois MC, Queguiner I, Porcheron P, Jacquin-Joly E., 2004. Putative odorant-degrading esterase cDNA from the moth Mamestra brassicae: cloning and expression patterns in male and female antennae. Chem Senses. 29(5): 381-390.
    [20] Merlin C, Rosell G, Carot-Sans G, Fran?ois MC, Bozzolan F, Pelletier J, Jacquin-Joly E, Guerrero A, Ma?bèche-Coisne M., 2007. Antennal esterase cDNAs from two pest moths, Spodoptera littoralis and Sesamia nonagrioides, potentially involved in odourant degradation. Insect Mol Biol. 16(1): 73-81.
    [21] Xia, Q., Zhou, Z., Lu, C., Cheng, D., Dai, F., Li, B., Zhao, P., Zha, X., Cheng, T., Chai, C., Pan, G., Xu, J., Liu, C., Lin, Y., Qian, J., Hou, Y., Wu, Z., Li, G., Pan, M., Li, C., Shen, Y., Lan, X., Yuan, L., Li, T., Xu, H., Yang, G., Wan, Y., Zhu, Y., Yu, M., Shen, W., Wu, D., Xiang, Z., Yu, J., Wang, J., Li, R., Shi, J., Li, H., Li, G., Su, J., Wang, X., Li, G., Zhang, Z., Wu, Q., Li, J., Zhang, Q., Wei, N., Xu, J., Sun, H., Dong, L., Liu, D., Zhao, S., Zhao, X., Meng, Q., Lan, F., Huang, X., Li, Y., Fang, L., Li, C., Li, D., Sun, Y., Zhang, Z., Yang, Z., Huang, Y., Xi, Y., Qi, Q., He, D., Huang, H., Zhang, X., Wang, Z., Li, W., Cao, Y., Yu, Y., Yu, H., Li, J., Ye, J., Chen, H., Zhou, Y., Liu, B., Wang, J., Ye, J., Ji, H., Li, S., Ni, P., Zhang, J., Zhang, Y., Zheng, H., Mao, B., Wang, W., Ye, C., Li, S., Wang, J., Wong, G.K., Yang, H.; Biology Analysis Group., 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 306(5703): 1937-1940.
    [22] Mita, K., Morimyo, M., Okano, K., Koike, Y., Nohata, J., Kawasaki, H., Kadono-Okuda, K., Yamamoto, K., Suzuki, M.G., Shimada, T., Goldsmith, M.R., Maeda, S., 2003. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci USA. 100(24): 14121-14126.
    [23] Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evo. 24: 1596-1599.
    [24] Field LM, Williamson MS, Moores GD, Devonshire AL, 1993. Cloning and analysisof the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem. J. 294 ( Pt 2): 569-574.
    [25] Kroetz DL, McBride OW, Gonzalez FJ, 1993. Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry. 32(43): 11606-11617.
    [26] Shibata F, Takagi Y, Kitajima M, Kuroda T, Omura T., 1993. Molecular cloning and characterization of a human carboxylesterase gene. Genomics. 17(1): 76-82.
    [27] Robin C, Russell R J, Medveczky K M, Oakeshott J G., 1996. Duplication and divergence of the genes of the alpha-esterase cluster of Drosophila melanogaster. Journal of Molecular Evolution. 43(3): 241-252.
    [28] Claudianos C, Russell R J, Oakeshott J G., 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochemistry and Molecular Biology. 29(8): 675-686.
    [29] Schiel MA, Green SL, Davis WI, Sanghani PC, Bosron WF, Sanghani SP., 2007. Expression and characterization of a human carboxylesterase 2 splice variant. J Pharmacol Exp Ther. 323(1): 94-101.
    [30] Ranson H, Collins F, Hemingway J., 1998. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci USA. 95(24): 14284-14289.
    [31] Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H., 2003. The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics. 4(1): 35.
    [32] Ma Z, Proffer TJ, Jacobs JL, Sundin GW., 2006. Overexpression of the 14alpha-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl Environ Microbiol. 72(4): 2581-2585.
    [33] Hawkes NJ, Hemingway J., 2002. Analysis of the promoters for theβ-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus. Biochim. Biophys. Acta. 1574: 51–62.
    [34] Chen S, Li X., 2007. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol Biol. 7: 46.
    [35] Rybczynski, R., Reagan, J. and Lerner, M., 1989. A pheromone-degradingaldehyde-oxidase in the antennae of the moth Manduca sexta. J.Neurosci. 9, 1341–1353.
    [36] Rybczynski, R., Vogt, R., Lerner, M., 1990. Antennal-specific pheromone-degrading aldehyde-oxidases from the moths Antheraea polyphemus and Bombyx mori. J. Biol. Chem., 265, 19712–19715.
    [37] Ishida Y, Leal WS., 2002. Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyphemus. Insect Biochem Mol Biol. 32(12): 1775-1780.
    [38] Wang, Y., Zhang, P., Fujii, H., Banno, Y., Yamamoto, K., Aso, Y., 2004. Proteomic studies of lipopolysaccharide-induced polypeptides in the silkworm, Bombyx mori. Biosci Biotechnol Biochem. 68(8): 1821-1823.
    [39] Vierstraete E, Verleyen P, Baggerman G, D'Hertog W, Van den Bergh G, Arckens L, De Loof A, Schoofs L., 2004. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc Natl Acad Sci USA. 101(2): 470-475.
    [40] Leclerc V, Reichhart JM., 2004. The immune response of Drosophila melanogaster. Mol Cell Proteomics. 3(2): 156-166.
    [41] Shiotsuki T, Kato Y., 1999. Induction of carboxylesterase isozymes in Bombyx mori by E. coli infection. Insect Biochem Mol Biol. 29(8): 731-736.
    [42] Gao G, Chen K, Yao Q, Wang L, Chen H., 2006. Cloning and differential expression of Bombyx mori carboxylesterase gene. Acta Entomologica Sinica. 49(6): 930-937.
    [43] Randolt, K., Gimple, O., Geissend?rfer, J., Reinders, J., Prusko, C., Mueller, M.J., Albert, S., Tautz, J., Beier, H., 2008. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch Insect Biochem Physiol. 69(4): 155-167.
    [1] Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG., 1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci USA. 94(14): 7464-7468.
    [2] Campbell P M, Newcomb R D, Russell R J, Oakeshott J G., 1998. Two different amino acid substitutions in the ali-esterase E3 confer alternative types of organophosphorus insecticides resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol., 28: 139-150.
    [3] Claudianos C, Russell RJ, Oakeshott JG., 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol. 29(8): 675-686.
    [4] Lan WS, Cong J, Jiang H, Jiang SR, Qiao CL., 2005. Expression and characterization of carboxylesterase E4 gene from peach-potato aphid (Myzus persicae) for degradation of carbaryl and malathion. Biotechnol Lett. 27(15): 1141-1146.
    [5] Satoh T, Hosokawa M., 1998. The mammalian carboxylesterases: from molecules to functions. Annual Review of Pharmacology and Toxicology. 38: 257-288.
    [6] Satoh T, Hosokawa M., 2006. Structure, function and regulation of carboxylesterases. Chemico-Biological Interactions. 162(3): 195-211.
    [7] Hemingway J, Karunaratne SH., 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol. 12(1): 1-12.
    [8] Heidari R, Devonshire AL, Campbell BE, Dorrian SJ, Oakeshott JG, Russell RJ., 2005. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochem Mol Biol. 35(6): 597-609.
    [9] Heidari R, Devonshire AL, Campbell BE, Bell KL, Dorrian SJ, Oakeshott JG, Russell RJ., 2004. Hydrolysis of organophosphorus insecticides by in vitro modifiedcarboxylesterase E3 from Lucilia cuprina. Insect Biochem Mol Biol. 34(4): 353-363.
    [10] Karunaratne S H, Hemingway J, Jayawardena K G, Dassanayaka V, Vaughan A., 1995. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. The Journal of Biological Chemistry. 270(52): 31124-31128.
    [11] FieldLM, Devonshire AL., 1998. Evidence that theE4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem. J. 330: 169–173.
    [12] Vontas JD, Small GJ, Hemingway J., 2000. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stal). Insect Mol. Biol. 9: 655–660.
    [1]吉武成美,蒋猷龙, 1987.家蚕的起源和分化研究[J].农业考古, 14(2): 316-324
    [2]郭郛, 1987.从河北省正定南庄出土的陶蚕蛹试论我国家蚕的起源问题[J].农业考古, 13(1): 302-309.
    [3]李兵,沈卫德, 2003.野桑蚕与家蚕对敌敌畏的抗性研究初报[J].江苏蚕业, 25(1): 57-58
    [4] Herath P R J, Hemingway J, Weerasinghe I S, et al, 1987. The detection and characterization of malathion resistance in field populations of Anopheles culicifacies B in Sri Lanka[J]. Pestic Biochem Physiol, 29: 157-162
    [5] Karunaratne S H, Hemingway J, Jayawardena K G, et al, 1995. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes[J]. J Biol Chem, 270(52):31124-31128.
    [6] Hemingway J, Hawkes N J, McCarroll L, et al, 2004. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochem Mol Biol, 34(7): 653-665.
    [7] Mouches C, Pasteur N, Berge J B, et al, 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito[J]. Science, 233(4765): 778-780
    [8] Newcomb R D, Campbell P M, Ollis D L, et al, 1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly[J]. Proc Natl Acad Sci USA, 94(14): 7464-7468
    [9] Campbell P M, Newcomb R D, Russell R J, et al, 1998. Two different amino acid substitutions in the ali-esterase E3 confer alternative types of organophosphorus insecticides resistance in the sheep blowfly, Lucilia cuprina[J]. Insect Biochem. Molec. Biol., 28: 139-150.
    [10] Xia Q, Zhou Z, Lu C, et al, 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science, 306(5703): 1937-1940.
    [11] Mita K, Morimyo M, Okano K, et al, 2003.The construction of an EST database for Bombyx mori and its application [J]. Proc Natl Acad Sci USA, 100(24): 14121-14126.
    [12] Cygler M, Schrag J D, Sussman J L, et al, 1993. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases,and related proteins[J]. Protein Sci, 2(3): 366-82.
    [13] Kroetz D L, McBride O W, Gonzalez F J, 1993. Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms [J]. Biochemistry, 32(43):11606-11617
    [14] Field L M, Williamson M S, Moores G D, et al, 1993. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer) [J]. Biochem J, 294 (2):569-574.
    [15]滕霞,孙曼霁, 2003.羧酸酯酶研究进展[J].生命科学, 15(1): 31-35
    [16] Satoh T, Hosokawa M, 2006. Structure, function and regulation of carboxylesterases [J].Chem Biol Interact, 162(3): 195-211.
    [17] Hemingway J, 2000. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance [J]. Insect Biochem Mol Biol, 30: 1009-1015
    [18] Shiotsuki T, Kato Y, 1999. Induction of carboxylesterase isozymes in Bombyx mori by E. coli infection [J]. Insect Biochem Mol Biol, 29(8): 731-736.
    [19]高贵田,陈克平,姚勤,等, 2006.家蚕羧酸酯酶基因克隆及差异表达[J].昆虫学报, 49(6): 930-937
    [1]吉武成美,蒋猷龙, 1987.家蚕的起源和分化研究.农业考古, 14(2): 316-324. Yoshitake N, Jiang Y L, 1987. The research of origin and differentiation of Bombyx mori. Agricultural Archaeology, 14(2): 316-324. (in Chinese)
    [2]郭郛, 1987.从河北省正定南庄出土的陶蚕蛹试论我国家蚕的起源问题.农业考古, 13(1): 302-309. Guo F. Exploring the origin of Chinese Bombyx mori from the pottery silkworm pupa unearthed in Nanzhuang, Zhengding country, Hebei province. Agricultural Archaeology, 1987, 13(1): 302-309. (in Chinese)
    [3]李兵,沈卫德, 2003.野桑蚕与家蚕对敌敌畏的抗性研究初报.江苏蚕业, 25(1): 57-58. Li B, Shen W D, 2003. Jiangsu Sericulture, 25(1): 57-58. (in Chinese)
    [4] Scott J G, Liu N, Wen Z, 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology C: Pharmacology Toxicology and Endocrinology, 121(1-3): 147-155.
    [5] Walsh S B, Dolden T A, Moores G D, Kristensen M, Lewis T, Devonshire A L, Williamson M S, 2001. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochemical Journal, 359(Pt 1): 175-181.
    [6] Li X, Schuler M A, Berenbaum M R, 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52: 231-253.
    [7] Karunaratne S H, Hemingway J, Jayawardena K G, Dassanayaka V, Vaughan A, 1995. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. The Journal of Biological Chemistry, 270(52): 31124-31128.
    [8] Hemingway J, Hawkes N J, McCarroll L, Ranson H, 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7): 653-665.
    [9] Vaughan A, Hemingway J, 1995. Mosquito carboxylesterase Est alpha 2(1) (A2).Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. The Journal of Biological Chemistry, 270(28): 17044-17049.
    [10] Mouches C, Pasteur N, BergéJ B, Hyrien O, Raymond M, de Saint Vincent B R, de Silvestri M, Georghiou G P, 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science, 233(4765): 778-780.
    [11] Field L M, Williamson M S, Moores G D, Devonshire A L, 1993. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochemical Journal, 294( Pt 2): 569-574.
    [12] Oppenoorth F J, van Asperen, 1960. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science, 132: 298-299.
    [13] Newcomb R D, Campbell P M, Ollis D L, Cheah E, Russell R J, Oakeshott J G, 1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Sciences, 94(14): 7464-7468.
    [14] Claudianos C, Russell R J, Oakeshott J G, 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochemistry and Molecular Biology, 29(8): 675-686.
    [15] Campbell P M, Newcomb R D, Russell R J, Oakeshott J G, 1998. Two different amino acid substitutions in the ali-esterase E3 confer alternative types of organophosphorus insecticides resistance in the sheep blowfly, Lucilia cuprina. Insect Biochemistry and Molecular Biology, 28: 139-150.
    [16]王东,李兵,王燕红,刘衬丽,赵华强,许雅香,沈卫德, 2008.野桑蚕羧酸酯酶基因(BmmCarE-2)的克隆及表达分析.蚕业科学, 34(4): 650-657. Wang D, Li B, Wang Y H, Liu C L, Zhao H Q, Xu Y X, Shen W D, 2008. Cloning and expression analysis of BmmCarE-2 gene from Bombyx mandarina. Acta Sericologica Sinica, 34(4): 650-657. (in Chinese)
    [17] Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J,Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H; Biology Analysis Group, 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306(5703): 1937-1940.
    [18] Stumpf N, Nauen R, 2002. Biochemical Markers Linked to Abamectin Resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72(2): 111-121.
    [19] Cygler M, Schrag J D, Sussman J L, Harel M, Silman I, Gentry M K, Doctor B P, 1993. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 2(3): 366-382.
    [20] Hemingway J, 2000. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochemistry and Molecular Biology, 30: 1009-1015.
    [21]向仲怀, 2005.蚕丝生物学.北京:中国林业出版社. Xian Z H, 2005. Biology of Sericulture. Beijing: China Forestry Publishing House. (in Chinese)
    [22] Satoh T, Hosokawa M, 1998. The mammalian carboxylesterases: from molecules to functions. Annual Review of Pharmacology and Toxicology, 38: 257-288.
    [23] Kroetz D L, McBride O W, Gonzalez F J, 1993. Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry, 32(43): 11606-11617.
    [24] Vaughan A, Hemingway J, 1995. Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. The Journal of Biological Chemistry, 270(28): 17044-17049.
    [25] Robin C, Russell R J, Medveczky K M, Oakeshott J G., 1996. Duplication and divergence of the genes of the alpha-esterase cluster of Drosophila melanogaster. Journal of Molecular Evolution, 43(3): 241-252.
    [26]滕霞,孙曼霁, 2003.羧酸酯酶研究进展.生命科学, 15(1): 31-35.Teng X, Sun M J, 2003. Advances on carboxylesterase research. Chinese Bulletin of Life Sciences, 15(1): 31-35. (in Chinese)
    [27] Satoh T, Hosokawa M, 2006. Structure, function and regulation of carboxylesterases. Chemico-Biological Interactions, 162(3): 195-211.
    [28] He Y P, Ma E B, Zhu K Y, 2004. Characterizations of general esterases in relation to malathion susceptibility in two field populations of the oriental migratory locust, Locusta migratoria manilensis (Meyen). Pesticide Biochemistry and Physiology, 78(2): 103-113.
    [29] Alon M, Alon F, Nauen R, Morin S, 2008. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology, 38(10): 940-949.
    [30] Hemingway J, Hawkes N J, McCarroll L, Ranson H, 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7): 653-665.
    [31] Shiotsuki T, Kato Y, 1999. Induction of carboxylesterase isozymes in Bombyx mori by E. coli infection. Insect Biochemistry and Molecular Biology, 29(8): 731-736.
    [32]高贵田,陈克平,姚勤,王林玲,陈慧卿, 2006.家蚕羧酸酯酶基因克隆及差异表达.昆虫学报, 49(6): 930-937. Gao G T, Chen K P, Yao Q, Wang L L, Chen H Q, 2006. Cloning and differential expression of Bombyx mori carboxylesterase gene. Acta Entomologica Sinica. 49(6): 930-937. (in Chinese)
    [1] McCaffery AR, Walker AJ, Topper CJ, 1991. Insecticide resistance in the bollworm Helicoverpa armigera from Indonesia. Pestic. Sci., 32, 85– 90.
    [2] Gunning RV, Easton CS, Balfe ME, Ferris IG, 1991. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pestic. Sci., 33, 473– 490.
    [3] McCaffery AR, King ABS, Walker AJ, El-Nayir H, 1998. Resistance to synthetic pyrethroids in the bollworm Heliothis armigera from Andhra Pradesh, India. Pestic. Sci., 27, 65– 76.
    [4] McCaffery AR, 1998. Resistance to insecticides in heliothine Lepidoptera: a global view. Philos. Trans. R. Soc. London Ser. B Biol. Sci., 353, 1 735– 1 750.
    [5] Hemingway J, 2000. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem. Mol. Biol., 30(11): 1 009– 1 015.
    [6] Vulule JM, Beach RF, Atieli FK, Mcallister JC, Brogdon WG, Roberts JM, Mwangi RW, Hawley WA, 1999. Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin-impregnatednets. Med. Vet. Entomol., 13, 239– 244.
    [7] Karunaratne SH, Hemingway J, Jayawardena KG, Dassanayaka V, Vaughan A, 1995. Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide-resistant and susceptible Culex quinquefasciatus mosquitoes. J. Biol. Chem, 270(52): 31 124– 31 128.
    [8] Qi XP, Niu BL, He LH, Weng HB, Liu Y, Shen WF, Meng ZQ, 2008. cDNA cloning, sequence analysis and expression profiling of Hakettin1 gene from Helicoverpa armigera. Acta Entomologica Sinica, 51 (3): 258– 63. [齐晓朋,牛宝龙,何丽华,翁宏飚,刘岩,沈卫峰,孟智启, 2008.棉铃虫HaKettin1基因的全长cDNA克隆、序列分析和表达谱.昆虫学报, 51 (3): 258– 263]
    [9] Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1 596– 1 599.
    [10] Cygler M, Schrag JD, Sussman JL, Harel M, Silman I, Gentry MK, Doctor BP, 1993. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein. Sci., 2(3): 366– 382.
    [11] Satoh T, Hosokawa M, 1998. The mammalian carboxylesterases: from molecules to functions. Annu. Rev. Pharmacol. Toxicol., 38: 257– 288.
    [12] Pelham HR, 1990. The retention signal for soluble proteins of the endoplasmic reticulum. Trends. Biochem. Sci., 15(12): 483– 486.
    [13] Kroetz DL, McBride OW, Gonzalez FJ, 1993. Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry., 32(43): 11 606– 11 617.
    [14] Field LM, Williamson MS, Moores GD, Devonshire AL, 1993. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem. J., 294 ( Pt 2): 569– 574.
    [15] Vaughan A, Hemingway J, 1995. Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J. Biol. Chem., 270(28): 17 044– 17 049.
    [16] Robin C, Russell RJ, Medveczky KM, Oakeshott JG, 1996. Duplication and divergence of the genes of the alpha-esterase cluster of Drosophila melanogaster. J.Mol. Evol., 43(3): 241– 252.
    [17] Yu SJ, Nguyen SN, Abo-Elghar GE, 2003. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol., 77, 1– 11.
    [18] Newcomb RD, East PD, Russell RJ, Oakeshott JG, 1996. Isolation of alpha cluster esterase genes associated with organophosphate resistance in Lucilia cuprina. Insect Mol. Biol., 5(3): 211– 216.
    [19] Newcomb RD, Campbell PM, Russell RJ, Oakeshott JG, 1997b. cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Mol. Biol., 27(1): 15– 25.
    [20] Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD, 2005. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl. Environ. Microbiol., 71(5): 2 558– 2 563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700