猪瘟兔化弱毒疫苗株细胞毒E2基因的克隆与序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对猪瘟兔化弱毒疫苗株在猪睾丸(ST)细胞和牛睾丸(BT)细胞上培养适应性、病毒增殖能力及细胞的纯净性方面进行了系统研究;从分子水平的角度,分析和比较了猪瘟兔化弱毒疫苗株ST细胞和BT细胞毒的主要保护性抗原E2蛋白在抗原编码区内氨基酸的变异情况,同时对其核苷酸序列和推导的氨基酸序列进行同源性分析,并应用遗传进化树理论对其E2基因的来源及其分子遗传衍化规律进行研究。
     本实验所用的猪瘟兔化弱毒疫苗株分别在ST细胞和BT细胞上培养增殖后,从病毒感染的细胞液中直接提取核酸。应用Oligo(6.0版本)引物设计分析软件设计猪瘟病毒(CSFV)E2基因片段的特异性PCR引物,通过反转录-聚合酶链式反应(RT-PCR)方法扩增两种猪瘟兔化弱毒疫苗株细胞(ST、BT)毒E2基因的cDNA,PCR产物经分离纯化后克隆到pMD 18-T载体中,重组质粒经PCR鉴定和酶切鉴定纯化后进行序列测定,然后应用DNAstar软件进行序列的拼接、序列信息编辑和分析。同时从GenBank中下载了猪瘟兔化弱毒疫苗株PK15细胞毒株、石门强毒标准株以及猪瘟标准C-株的E2基因序列,分析了猪瘟兔化弱毒疫苗株ST、BT细胞毒E2基因的核苷酸序列及推导的氨基酸序列的同源性和差异性,绘制遗传进化树,以阐明猪瘟兔化弱毒疫苗株在适应了ST细胞和BT细胞后,ST、BT细胞毒主要保护性抗原的变异情况及其遗传演化规律。
     研究结果发现,猪瘟兔化弱毒疫苗株经ST细胞和BT细胞培养增殖后,猪瘟兔化弱毒疫苗株不仅在BT细胞上具有良好的适应性,而且在ST传代细胞上生长状态良好,并保持了细胞的纯净性和良好的病毒增殖能力。
     通过对猪瘟兔化弱毒疫苗株ST、BT细胞毒E2基因的核苷酸和氨基酸序列进行比较和分析,发现猪瘟兔化弱毒疫苗株BT细胞、ST细胞毒与标准参考毒株AY663656-C81(猪瘟兔化弱毒疫苗株PK15细胞毒)同源性相对较高,核苷酸和氨基酸序列同源性分别达到99.0%~99.4%和98.7%~99.7%,与标准参考毒株Z46258-C株的核苷酸和氨基酸序列的同源性次之,即分别为98.7%~98.9%和98.4%~99.0%;绘制其E2基因的遗传进化树,明确了两种猪瘟兔化弱毒疫苗株ST、BT细胞毒的E2基因与AY663656-C81和标准Z46258-C疫苗株同属于一个基因群,起源于标准Shimen猪瘟强毒株。
     而且,在其E2蛋白抗原区的氨基酸差异分析比较中,发现猪瘟兔化弱毒疫苗株ST细胞毒与标准C疫苗株在诱导中和抗体的A、B、C三个抗原区内无一氨基酸差异,猪瘟兔化弱毒疫苗株BT细胞毒在诱导中和抗体的A、B、C、D四个抗原区内与标准C疫苗株的氨基酸仅有细微差异,证实了猪瘟病毒分子结构的遗传稳定性,进一步从分子生物学的角度显示了猪瘟兔化弱毒疫苗株在适应ST细胞、BT细胞后,并没有影响疫苗细胞毒的抗原性。
     总之,本研究系统地阐明了猪瘟兔化弱毒疫苗株在猪睾丸细胞和牛睾丸细胞上培养增殖情况,从分子遗传演化分析的角度,进一步明确猪瘟兔化弱毒疫苗株ST、BT细胞毒的主要保护性抗原E2蛋白在A、B、C、D四个抗原区内的变异情况,确保疫苗种毒良好的细胞适应性和抗原性,为今后猪瘟疫苗的工艺优化和理想的免疫效果提供重要的理论依据。
In this study, Hog cholera Virus lapinized chinese strain can grow in Bovine Testicle Cell and Swine Testis Cell, and detect growth characteristics, HCLV multiplication and no others viruses. The further study of genetic relationship between the major protective antigen encoding regions of E2 genes of ST cell strain and BT cell strain was done by molecular biology heredity methods.
     The nucleic acids of Hog cholera viruses conducted in the research were extracted from the viruses propagated in ST cell and BT cell. E2 Gene of different cell strains infected by HCLV were amplified by RT-PCR (Reverse transcription-polymerase chain reaction). The cDNAs were cloned into pMD18-T vector and identified. The sequencing products were purified and sequenced. Finally, using DNAStar software was used for data analysis, sequence translation, phylogenetic tree drawing and molecular evolution analysis.
     The results indicated that HCLV can multiplicated in Bovine Testicle Cell and Swine Testis Cell,and cell’s stabilization growth characteristics, and no exogenous viruses.
     Their nucleotide sequences were determined and the amino acid sequences were deduced. Compared with the corresponding region of AY663656-C81, their homologies among seven strains were very higher. That is, their nucleotide sequence homologies and amino acid homologies were 99.0%~99.4%,98.7%~99.7% respectively. And the nucleotide sequence homologies and amino acid homologies were 99.0%~99.4%, 98.7%~99.7% respectively, compared with Z46258-C. The phylogenetic trees revealed that E2 genes of ST cell strain and BT cell strain, AY663656-C81 and Z46258-C conducted in this study belonged to the same group, derived from AF092448-Shimen.
     Furthermore, the variation analysis of amino-acid in the major protective antigen encoding regions of E2 genes of all strains, showed that E2 genes of ST cell strain be none mutation in A,B,C and D antigen regions, While there is subtle difference in E2 genes of BT cell strain’s A,B,C and D antigen regions. The research confirmed that E2 genes of ST cell strain and BT cell strain infected by HCLV were genetically stable.
     In conclusion, this study elucidated HCLV multiplication be cultured in Bovine Testicle Cell and Swine Testis Cell,and E2 genes of ST cell and BT cell strain be none or subtle difference in A,B,C and D antigen regions by molecular heredity evolution methods. The research ensured vaccine virus in ST cell and BT cell favourable suitability and antigenicity. Of particular significance, these would provide the theory support for the possibility and development trend of the classical swine fever vaccine in ideal immunological effect.
引文
1 王在时.猪瘟防制研究的回顾与展望.中国兽药监察所研究报告汇编.(国家攀登计划[1995-1999]专集),1999,14:1-28.
    2 刘湘涛,赵启祖,李忠润,等.猪瘟病毒(HCV)的研究进展和存在的问题.兰州大学学报(自然科学版.遗传学专辑),1995,31:157-161.
    3 殷震,刘景华主编.动物病毒学(第 2 版).北京:科学出版社,1997.652-664.
    4 刘湘涛,赵启祖,李忠润,等.猪瘟病毒和猪瘟防制.见:谢庆阁,翟中和主编.畜禽重大疫病免疫防制研究.北京:中国农业出版社,1996.51-63.
    5 高彦生,陈琨.2002 年 1 月国际动物疫情.中国畜牧兽医(试刊),2002,29(2):48~50.
    6 谢庆阁,翟中和.畜禽重大疫病免疫防制研究进展[M].北京:中国农业科技出版社,1996.
    7 李红卫,涂长春,吕宗吉,等.两个猪瘟病毒野毒株 gp55 基因抗原编码区序列的分析比较[J].中国病毒学,1997, 12 (4) : 354-357.
    8 蔡宝祥. 家畜传染病学(第 4 版) [M ]. 北京: 中国农业出版社,2001: 2012206.
    9 韩雪清, 刘湘涛, 赵启祖. 专家论坛猪瘟病毒及其猪瘟疫苗研究进展[J ]. 动物医学进展, 2000, 21 (2) : 226.
    10 蒋晓颖, 俞秋兰, 钱丽英. 当前猪瘟流行病因学研究进展. 动物科学与动物医学,2002,19(2):29-31.
    11 郑自才, 石谦, 黄昌祥, 等. 猪瘟兔化弱毒犊牛睾丸细胞苗免疫程序研究[J ]. 畜牧兽医学报, 1995, 26 (2) : 1602167.
    12 谭溪清. 一例严重的猪瘟免疫失败原因分析. 湖南畜牧兽医,2007,23(4):23.
    13 丁百花,黄纪勇,沈秋姑,等. 猪瘟免疫失败原因及分析. 江西畜牧兽医杂志,2007,12(01):24.
    14 Stegeman J A, Bouma A, Elbers A R, et al. The leukocyte count is a valuable parameter for detecting classical swine fever[J]. Tijdschr Diergeneeskd, 2000, 125(17): 511-518.
    15 Armengol E, Wiesmuller K H, Wienhold D, et al. Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus[J]. J Gen Virol, 2002, 83(3): 551-60.
    16 Van Rijn P A, van Gennip H G P, de Meijer EJ, et al. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brecia[J]. J Gen Virol, 1993, 74: 2053-2060.
    17 王 镇, 丁明孝. 猪瘟病毒致病机制及防治的研究进展[J]. 畜牧兽医学报, 1998, 29(5): 385-391.
    18 Edwards, Moennig V, Wensvoort G. the development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from otherpestiviruses[J]. Vet Microbiol, 1991, 29: 101-108.
    19 花象柏. 对“繁殖障碍型猪瘟”的病原发病机理的思考[J]. 江西畜牧兽医杂志, 1996, 2: 10-12.
    20 黄鉴明. 繁殖障碍型猪瘟的诊断与防制[J]. 中国畜禽传染病, 1995, 4: 16-18.
    21 Dewulf J, Laevens H, Koenen F, et al. An experimental infection with classical swine fever virus in pregnant sows:transmission of the virus, course of the disease, antibody response and effect on gestation[J]. J Vet Med B Infect Dis Vet Public Health, 2001, 48(8): 583-591.
    22 Vannier P, Plateau E, Tillon J P. Congenital tremor in pigs farrowed from sows given hog cholera virus during pregnancy[J]. Am J Vet Res, 1981, 42(1): 135-137.
    23 Ahrens U, Kaden V, Drexler C, et al. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows[J]. Vet Microbiol, 2000, 77(1-2): 83-97.
    24 罗廷荣. 猪瘟病毒生物学特性研究的一些新进展[J].广西农业生物科学,2001,20(1): 55-63.
    25 花象柏. 对“繁殖障碍型猪瘟”的病原发病机理的思考[J].江西畜牧兽医杂志,1996,2: 10-12.
    26 黄鉴明. 繁殖障碍型猪瘟的诊断与防制[J].中国畜禽传染病,1995,4:16-18.
    27 Gomez-Villamandos J C, Ruiz-Villamor E, Bautista M J, et al. Pathogenesis of classical swine fever: renal haemorrhages and erythrodiapedesis[J]. J Comp Pathol, 2000, 123(1): 47-54.
    28 吴增坚,杨奎. 非典型猪瘟[J]. 畜牧与兽医, 2000, 32(2): 35-37.
    29 EdwardsS,MoennigV,Wensvoort G.The development of an international referenee Panel of monoclonal antibodies for the differentiation of hogcholera virus from other Pestiviruses.Vet Mierobiol,1991,29:101~108.
    30 Wensvoort G,TerpstraC,BoonstraJetal.Produetion of monoelonal antibodies against swine fever virus and their use in laboratory diagnosis.VetMierobiol,1986,12:101-108.
    31 Wensvoort G,Terpstra C,de KluyVer EP etal.Antigenie differentiate of Pestivirus strains with monoelonal antibodies against hog cholera virus.VetMierobiol,1989,21:9-20.
    32 Terpstra C,Bloemraad M,Gielkens AJL.The neutralising Peroxidase- linked assay for deteetion of antibody against swine fever virus.Vet Mierobiol,1984,9:113-120
    33 WensvoortG,BloemraadM,Terpstra C.An enZyme immunoassay employing monoclonal antibodies and deteeting speeifieally antibodies to classieal swine fevervirus.VetMierobiol,1988,17:129-140.
    34 Greiser-Wilke l,DePner K,Fritzemeier J et al.APPlieation of a computer Program for genetic typing of classieal swine fever virus isolates from Germany.J Virol Meth,1998,75:141 一 150.
    35 Hofmann MA,Breehtbuhl K,Stauber N.RaPid charaeterization of new Pestivirus strains by direet sequeneing of PCR-amplified cDNA from the s’non-coding region.ArehVirol,1994,139:217-219.
    36 Paton DJ,MeGoldriek A,Belak5 et al.Classieal swine fever virus: a ring test to evaluate RlT-PCR deteetion methods.VetMierobiol,2000b,73:159-174.
    37 Hergarten G, Hurter KP, Hess RG. Detection of infection with classical swine fever virus in wild boar:a comparison of different laboratory diagnostic methods[J]. Dtsch Tierarztl Wochenschr, 2001,108(2):51-54.
    38 Clavijo A, Lin M, Riva J, et al. Application of competitive enzyme-linked immunosorbent assay for the serologic diagnosis of classical swine fever virus infection[J]. J Vet Diagn Invest, 2001, 13(4):357-360.
    39 Moennig V. Introduction to classical swine fever: virus, disease and control policy[J]. Vet Microbiol, 2000, 73(2-3): 93-102.
    40 Chenut G, Saintilan AF, Burger C et al. Oral immunisation of swine with a classical swine fever vaccine (Chinese strain) and transmission studies in rabbits and sheep[J]. Vet Microbiol, 1999,64(4): 265-276.[71]
    41 Kaden V, Lange B. Oral immunisation against classical swine fever (CSF): onset and duration of immunity[J]. Vet Microbiol, 2001, 82(4): 301-310.
    42 Kaden V, Schurig U, Steyer H. Oral immunization of pigs against classical swine fever. Course of the disease and virus transmission after simultaneous vaccination and infection[J]. Acta Virol, 2001, 45(1): 23-29.
    43 Terpstra C, Woortmeyer R, Barteling SJ. Development and properties of a cell culture produced vaccine for hog cholera based on the Chinese strain[J]. Dtsch Tierarztl Wochenschr, 1990, 97(2): 77-79.
    44 Vandeputte J, Chappuis G. Classical swine fever: the European experience and a guide for infected areas[J]. Rev Sci Tech, 1999, 18(3): 638-647.
    45 吕宗吉,李红卫,涂长春等. 我国部分地区猪瘟病毒流行株的基因差异[J]. 中国兽医学报, 2000,20(4): 313-316.
    46 Changchun Tu, Zongji, Hongwei Li, et al. Phylogenetic comparison of classical swine fever virus in China[J].Virus Res, in press, 2001.
    47 于立权, 崔玉东, 朴范泽. 猪瘟疫苗研究进展[J].动物医学进展, 2002, 23(2): 10-13.
    48 Widjojoatmodjo MN, van Gennip HG, Bouma A, et al. Classical swine fever virus E(rns) deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines[J]. J Virol, 2000, 74(7): 2973-2980.
    49 M.M.Hulst and R.J.M. Moormann. Inhibition of Pestivirus Infection in Cell Culture by Envelope Proteins Erns and E2 of Classical Fever Virus: Erns and E2 Interact with Different Receptors[J]. Journal of General Virology, 1997, 78: 2779-2787.
    50 Van Rijn PA, Bossers A, Wensvoort G, et al. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge[J]. J Gen Virol, 1996, 77 (11): 2737-2745.
    51 Moormann RJ, Bouma A, Kramps JA, et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test[J]. Vet Microbiol, 2000, 73(2-3): 209-219.
    52 Van Rijn PA, vans Gennip HG, Moormann RJ. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV) [J]. Vaccine, 1999, 17(5): 433-440.
    53 Bouma A, De Smit AJ, De Jong MC M, et al. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus[J]. Vaccine, 2000, 18: 1374-1381.
    54 Bouma A, de Smit AJ, de Kluijver EP, et al. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus[J]. Vet Microbiol, 1999, 66(2): 101-114.
    55 陆宇,陈建国, 丁明孝. 猪瘟病毒及其疫苗研究进展[J]. 中国病毒学, 1996, 11(3): 201-207.
    56 Markowska-Daniel I, Collins RA, Pejsak Z. Evaluation of genetic vaccine against classical swine feve[J]. Vaccine, 2001, 21(17-19): 2480-2484.
    57 Andrew ME, Morrissy CJ, Lenghaus C, et al. Protection of pigs against classical swine fever with DNA-delivered gp55[J]. Vaccine, 2000, 18(18): 1932-1938.
    58 Yu X, Tu C, Li H, et al. DNA-mediated protection against classical swine fever virus [J]. Vaccine, 2001, 19: 1520-1535.
    59 周鹏程,聂玉春,曹圻, 等. 特异寡聚核苷酸对猪瘟病毒在细胞中增殖抑制作用的研究[J]. 中国病毒学,2001,16(3): 270-274.
    60 Smit AJ, Bouma A, van Gennip HG, et al. Chimeric (marker) C-strain viruses induce clinical protection against virulent classical swine fever virus (CSFV) and reduce transmission of CSFV between vaccinated pigs[J]. Vaccine, 2001, 19(11-12): 1467-1476.
    61 Moser C, Tratschin JD and Hofmann Ma. A recombinant Classical Swine Fever Virus stably.
    62 expresses a marker gene[J]. J Virol 1998, 72(6): 5318-5322.
    63 王 琴, 王长江. 新型动物疫苗的研究进展及应用前景[J]. 中国兽药杂志, 2001, 35(6): 54-58.
    64 Anonymous. Report of the scientific veterinary committee (adopted 17 september 1997): the use of marker vaccines in the control of infectious disease in particular, classical swine fever[J]. Document VI/8119/97-AL, commission of the European communites, 1997.
    65 史国瑞译,陈文樾校.瘟病毒分类.国外兽医学—畜禽传染病,1993,13(1):1-2.
    66 王克恭.浅谈猪瘟的昨天的今天[A].中国畜牧兽医学会家畜传染病学分会第八次学术研讨会论文集〔C〕.1999.230-233
    67 Franeki,RIB,Fauquet,D.L.,Knudson,D.L.,et al:Classifieation and nomenelature of viruses.Areh virol suppl,1991,2:223-233.
    68 Stark R, Rumenapf G, Meyers, et al. Genomic localization of hog cholera virus glycoproteins .Virology, 1990, 174:280.
    69 杜念兴.猪瘟的回顾与展望.中国畜禽传染病,1998,20(5):317-319.
    70 付烈振,张楚瑜,朱燕.猪瘟和猪瘟病毒的分子生物学[A]. 谢庆阁、翟中和主编. 畜禽重大疫病免疫研究进展[M]. 北京: 中国农业科技出版社, 1996, 32-40.
    71 李成. 应用电镜技术对猪瘟病毒的研究[J]. 中国兽医科技, 1989, 7: 24-25.
    72 Harkness J W. Classical swine fever and its diagnosis: A current view[J]. Vet Rec, 1985, 16:288-293.
    73 Freitas T R, Caldas L A, Rebello M A. Protaglandin A1 inhibits replication of classical swine fever virus[J]. Mem Inst Oswaldo Cruz, 1998, 93(6): 815-818.
    74 [90] Moenning V. The hog cholera virus[J].Comp Immun Microbiol Infect Disease,1992, 15(3): 189-201.
    75 吕宗吉,涂长春,余兴龙. 猪瘟病毒基因组结构与功能的研究进展[J].广东畜牧兽医科技,2001,26(4): 8-12.
    76 Thiel,H J.,Plagemann,P.G.W.andMoennig,V.(1996).Pestiviruses in Field V1rology.,3rd edn , 1059-1073.Editedby B.N.Fields , D.M.KniPe and P.M.Howley PhiladelPhia:LIPPineott-Raven.
    77 JishikawaK.et al.,ComParison of the entire nueleotide and dedueed amine aeid sequenee of the attenuated hog cholera vaccine strain GPE-and the wildtyPe Parental strain ALD.Arch.Virol.1995,140:1385-1391.
    78 Lowings L.P.,etal,:Classieal swine fever:genetic deteetion and analysis ofdifferenees between virusi solates.J.Gen.Virol.1994,1175:3461-3468.
    79 RijnbrandR , Straaten T.V.D.and Rijn P.A.Metal.:Internalentry of ribosome is direeted by the s’uneoding region of classieal swine fever virus and is dependent on the Prence of an RNA Pseudoknot uPstream of the initiation codon.J.Virol.1997,71(l):451-457.
    80 Sizova D V,KoluPaeva V G and Pestova,et al.Specific interaetion of eukaryotic translation faetor 3 with the s’nontranslated regions of hePatitisC virus and classieal swine fever virus RNAS.J.Virol.1998,72(6):4775-4782.
    81 Moormann R.J M.,et al.,:Nucleotide sequence of hog cholera virus RNA:ProPerties of the PolyProtein encoded by the open reading frame sPanning the viral genomic RNA.Vet.Mierobiol.1990a,23:185-191.
    82 Behrens S-E.,et al:Charaeterization of an autonoxzious subgenomic Pestivirus RNA rePlieon. J.Virol.72:2364-2372.
    83 Buckholz RG, Gleeson MA. Yeast systems for the commercial production of heterologous proteins[J]. Biotechnology (N Y), 1991, 9(11): 1067-1072.
    84 Calera JA, Paris S Monod. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus[J]. Infect.Immun, 1996, 65: 4718-4724.
    85 Campbell SM, Rosen JM, Hennighauson LG, et al. Comparison of the whey acidic protein gene of rat and mouse[J]. Nucleic Acids Res, 1984, 12: 8685-8697.
    86 Carmona E, Dufour E, Plouffe C et al. Potency and selectivity of the cathepsin L1 propertide as an inhibitor of cysteine proteases[J]. Biochemistry, 1996, 35: 8149-8157.
    87 CHang HK, Younghoon oh, Tae H Lee. Codon optimization for high-level expression of human in mammalian cells[J]. Gene, 1997, 199: 293-301.
    88 Van Rijn P.A.,et al,:EPitoPe maPPing of enveloPe glyeoProtein EI of hog cholera virus strain Preseia.J.Gen.Virol.1993,74:2053-2060.
    89 Van Rijn P.A.et al,:Antigenic strueture of enveloPe glycoProtien EI of hog choleravirus.J.Virol.1994,68:3934-3942.
    90 MengYuetal,:Virology,1996,222:289-292.
    91 Gtrfrtiv Tangy,Andres Mcallister,and Michel Brahic.Molecular cloning of the complete genome of Strain GDVII of Theiler's Virus and production of infectious transcripts.J.Virol.1989.63:1101~1106.
    92 Lowing P,Ibrate G,Needham J et al.Classical swine fever virus diversity and evolution.J Gen Virology,1996,77:1311~1321.
    93 Parchariyanon S,Damrongwatanapokin S,Inui K et al.Different genetic spectrum ofclassical swine fever firus in Thsiland.Proceedings of the 15th IPUS congress,Birmingham,England,5~9 July,1998,p358.
    94 Terpstra C.Special Review Series:Hog Cholera:An Update of Present Knowledge[J].Br.Vet.J,1991,147:397~406.
    95 Barlic-Maganja D,Grom J.Highly sensitive one-tube RT-PCR and microplate hybridisation assayfor the detection and for the discrimination of classical swine fever virus from other pestiviruses.J Virol Methods.2001,95(1-2):101~110
    96 Kniazeff D,de Bree J,Laevens H et al.Within-and between-pen transmission of Classical Swine Fever Virus:a new method to estimate the basic reproduction ratio from transmission experiments.Epidemiol Infect 2002,128(2):293~299.
    97 蒋晓颖,俞秋兰,钱丽英.当前猪瘟流行病因学研究进展.动物科学与动物医学,2002,19(2):29~31.
    98 Laevens H, Koenen F, Deluyker H, et al. Experimental infection of slaughter pigs with classical swine fever virus: transmission of the virus, course of the disease and antibody response[J]. Vet Rec.1999, 145(9): 243-248.
    99 Biorklund H,Lowings P,Paton D.et al.Phylogenetic comparison and molecular epidemilogy of classical swine fever virus.Virus Genes,1999,19:189~195.
    100 Clavijo A,Lin M,Riva J,Mallory M et al.Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus.Res Vet Sci.2001,70(1):1~7.
    101 VanRijn PA,VanGennip H G P,Demei jer E J.Epitope mapping of envelope glycoprotein E of hog cholera virus strain Brescia.J Gen Virology,1993,74:2053-2060.
    102 Wendisch J M,R Stark,E Weiland,et al.RNA of classical swine fever virus:Biochemiocal antibodies[J].Virol,1996,70:352-358.
    103 Dune H W.Diseases of swine.4 th ed.1975.189.
    104 Kozak M.The Scanning model for translation an update[J].cell Biol,1989 108:229-241
    105 韩雪清,李红卫,刘湘涛,等.中国猪瘟兔化弱毒(C-株)兔脾组织毒 E2(gp55)12.基因的序列分析[A].中国农业科学院第五次青年优秀论文获奖论文集[C].1999.
    106 王镇,陆宇,周鹏程等. 猪瘟病毒在 PK 细胞和 MPK 细胞中繁殖过程的研究[J]. 微生物学报,1999,39(3):189-195.
    107 Gualandi GL, Ferrari M, Cardeti G, et al. Protection tests in pigs vaccinated with the lapinized Chinese strain of hog cholera virus (HCV) previously adapted in a minipig kidney (MPK) cell line, to challenge infection with virulent HCV[J]. Microbiologica,1991,14(3):213-217.
    108 Edwards,S.et al:Dtsch.Tieraerztl.Wochenschr.1990,97:79-81.
    109 Wensvoort,G.et al:Vet.Mierobiol.,1989,21,9-20.
    110 Moornann,R.M.et al:Virology,1990,177,184-198.
    111 Collett;M.S.et al:Virology,1988,165,191-199.
    112 GoffardA,DubuissonJ·GlycosylationofhepatitisCvirusenvelopeproteins[J]·Biochimie,2003,85(3-4):295-301.
    113 Ratner L·Glucosidase inhibitors for treatment of HIV-1 infection[J]·AIDS Res Hum Retroviruses, 1992, 8(2):165-173.
    114 Risatti G R, Holinka L G, Fernandez Sainz I, et al·N-linked glycosylation status of classical swine fever virusstrain Brescia E2 glycoprotein influences virulence inswine[J]·J Virol, 2007, 81(2):924-933.
    115 Vanderhallen H,Mittelhozer C,Hofmann M A,et al.Classical swine fever virus is genetically stablein vitroandin vivo[J].Arch Virol,1999,144:1669-1677.
    116 赵 耘,王在时,王 琴,等.猪瘟石门株不同代次 E2基因主要抗原编码区序列差异分析[J].中国兽医杂志,2002,38(7):7-10.
    117 李红卫,涂长春等 猪瘟病毒石门株与兔化弱毒株gp55 基因的克隆与序列分析.病毒学报,1998,14(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700