二氧化碳环境中缓蚀剂抑制电偶腐蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型复杂系统工程如海上石油钻采平台、苛刻复杂腐蚀环境中的油气井系统等在构建上不可避免地使用高等级耐蚀合金,耐蚀合金与碳钢的组合使用提高了系统整体可靠性和经济性。但异种金属组合产生的电偶腐蚀成为这些大型复杂系统工程中腐蚀控制的薄弱环节。大多数的缓蚀剂对电偶腐蚀的抑制效果较差,而关于缓蚀剂抑制电偶腐蚀机理方面的文献报道非常少。因此,开展电偶腐蚀及缓蚀剂抑制电偶腐蚀机理研究具有重大的理论与现实意义。
     论文采用腐蚀失重、极化曲线、交流阻抗、电偶电流、原子力显微镜及傅立叶红外光谱等实验方法研究了二氧化碳环境中S31803不锈钢与N80碳钢耦接产生的电偶腐蚀,以电极表面过剩电荷分布状态为切入点着重研究了二氧化碳腐蚀体系中偶合金属的电偶腐蚀行为、金属表面过剩电荷对缓蚀剂吸附行为的影响。通过实验揭示了缓蚀剂在电偶电极阴阳极区的吸附机理,进而根据电偶电极表面过剩电荷状态,有针对性地研究了缓蚀剂对电偶腐蚀的抑制作用与协同机制。主要研究结果如下:
     咪唑啉酰胺是一种性能优良的二氧化碳腐蚀缓蚀剂。该缓蚀剂主要抑制了碳钢在二氧化碳饱和的含氯离子介质中腐蚀的阳极过程,是一种阳极抑制型缓蚀剂。缓蚀剂在碳钢表面的吸附满足El-Awady动力学模型,符合Flory-Huggins吸附等温式。根据该模型,温度较低时一个咪唑啉酰胺分子取代了1或2个吸附水分子,占据了1或2个活性点;温度较高时一个咪唑啉酰胺分子至少取代了2个吸附水分子并占据了2个以上活性点。
     虽然咪唑啉酰胺对二氧化碳环境中碳钢腐蚀的抑制效率很高,但它与一些常用缓蚀剂一样对碳钢电偶腐蚀的缓蚀效率不高。饱和CO_2的含氯离子介质中,在金属自腐蚀电位下,不锈钢表面带有过剩正电荷,而碳钢表面带有过剩负电荷;两电极偶合后,在混合电位下,不锈钢表面带有过剩负电荷,而碳钢表面带有过剩的正电荷。偶合金属阴阳极区表面的过剩电荷与单独金属的表面过剩电荷状态具有显著的差异。
     月桂酸盐对碳钢在饱和CO_2的含氯离子介质中的腐蚀抑制效果较差,但对碳钢/不锈钢偶对的电偶腐蚀抑制效果较好。在加有月桂酸盐缓蚀剂的饱和CO_2的含氯离子介质中,不锈钢和碳钢表面均带有过剩正电荷。该缓蚀剂溶液中两电极偶合后,在混合电位下,不锈钢表面带有过剩负电荷,而碳钢表面带有过剩的正电荷。缓蚀剂在碳钢、不锈钢及偶对的阴阳极表面均能吸附,其在偶对阳极(碳钢)表面的吸附强度和覆盖度较之未耦合时增大。
     咪唑啉季胺盐化合物与KI对碳钢/不锈钢偶对的电偶腐蚀具有较好的协同抑制效果,抑制了电偶腐蚀的阴极过程。I-能显著改善电偶电极表面过剩电荷状态。加入KI后,咪唑啉季胺盐化合物与KI的协同作用增强了缓蚀剂在电偶电极表面的吸附,提高了对电偶腐蚀的抑制效果。
     金属表面过剩电荷的分布状态显著地影响缓蚀剂分子的吸附行为。在二氧化碳的含氯离子介质中,碳钢表面带有过剩负电荷,不锈钢表面带有过剩正电荷;碳钢与不锈钢耦接后,其表面电性均发生了逆转。具有阳离子特性的缓蚀剂能较好地吸附在带有过剩负电荷的金属表面而抑制金属腐蚀,但在带过剩正电荷的电偶对阳极表面的吸附较弱,使得其对电偶腐蚀的抑制作用也相应较差;阴离子缓蚀剂能较好地吸附在带过剩正电荷的电偶对阳极表面而对电偶腐蚀具有较好的抑制效果;无机阴离子能改善电偶对表面的过剩电荷状态,使得其阳极表面带过剩负电荷,其与阳离子缓蚀剂的协同作用显著增强缓蚀剂在电偶对阳极表面的吸附,从而较好地抑制电偶腐蚀。
It is unavoidable to use noble anticorrosion alloys in huge complicated systems such as offshore drilling & recovery platform and oil & gas system in rigorous complex environment. The whole reliability and economy are improved by assembling the noble anticorrosion alloys and carbon steel. The safety problem arising from galvanic corrosion has been the weakest portion for corrosion protection in the systems. Most common corrosion inhibitors have poor inhibition on galvanic corrosion. Furthermore, reports of inhibition mechanism on controlling galvanic corrosion by inhibitors are rather few. Therefore, it is significant for both theoretical and practical aspects to investigate galvanic corrosion and inhibition mechanism of inhibitors.
     In this paper, galvanic corrosion of N80 carbon steel coupled with stainless steel in CO_2-containing corrosion media was investigated by various experimental methods including weight loss, polarization curve, electrochemical impedance spectrum, galvanic current, atomic force microscopy and Fourier transform infrared spectroscopy. By studying the distribution state of surface excess charge, the galvanic corrosion behavior and effect of surface excess charge on adsorption are stressed. The mechanism of inhibitor adsorption on both cathodic and anodic areas of galvanic electrode is proposed. Based on the charge distribution state of the galvanic electrode, special studies are carried out to make it clear the inhibition and synergistic effect on galvanic corrosion. The main results are listed blow.
     The inhibitor, imidazoline amide, is of anodic adsorption type and mainly inhibits anodic process of carbon steel corrosion in CO_2-saturated solution containing Cl-. It is also an effective corrosion inhibitor for carbon steel in this solution. The adsorption meets the El-Awady thermodynamic kinetic model, and is in line with the Flory-Huggins isotherm. According to the model, at relative lower temperature, an inhibitor molecule replaces one or two water molecules, and it occupies one or two active spots accordingly; at relative higher temperature, an inhibitor molecule replaces at least two water molecules, and it occupies more than two active spots accordingly.
     Although imidazoline amide has high inhibition efficiency for carbon steel in corrosion environment containing carbon dioxide, like some other corrosion inhibitors, it is non-effective for galvanic corrosion either. In CO_2-saturated solution containing Cl-, at their corrosion potentials, stainless steel and carbon steel carry positive and negative excess charges. However, when stainless steel and carbon steel is coupled in the same solution, at the mixed potential, stainless steel and carbon steel carry negative and positive excess charges respectively. The surface charges on cathodic and anodic areas of galvanic couple are much different from those on single metals.
     Sodium laurate is not effective for carbon steel corrosion in CO_2-saturated solution containing Cl-, but it is effective for galvanic corrosion of galvanic couple (stainless steel/carbon steel). In the presence of laurate inhibitor, positive excess charges would be carried on both stainless steel and carbon steel. When stainless steel and carbon steel is coupled in the inhibitor solution, at the mixed potential, stainless steel and carbon steel carry negative and positive excess charges respectively. The inhibitor can adsorb to the surface of both carbon steel and stainless steel whether they are alone or coupled. Comparing to the adsorption on carbon steel uncoupled, the adsorbability and coverage of the inhibitor film on the carbon steel of the couple is bigger and larger.
     There exists synergistic inhibition on galvanic corrosion for the couple (stainless steel/carbon steel) between imidazoline quaternary compound and inorganic ion I-, they remarkbly inhibit the cathodic process of galvanic corrosion. Ion I- can improve the metal surface excess charge on galvanic electrode significantly. The adsorption is strengthened by the synergistic effect of quaternary compound and inorganic ion I-, thus the galvanic corrosion is well controlled.
     Surface excess charge on metals can significantly affect the adsorption behavior of inhibitors. In CO_2-saturated solution containing Cl-, at their corrosion potentials, stainless steel and carbon steel carry positive and negative excess charges respectively. However, charges change to be inverted when two metals are electrically coupled. Cationic inhibitors can adsorb on the metal carrying negative excess charge, thus the corrosion is inhibited; Cationic inhibitors are difficult to adsorb on the anode of galvanic couple carrying positive excess charge, thus is non-effective to galvanic corrosion. However, high inhibition efficiency for galvanic corrosion can be obtained by using anionic inhibitors. Inorganic anion can change positive charges into negative charges on the anode of the galvanic couple, thus helps cationic inhibitors to be easily adsorbed on it. The adsorption is strengthened remarkably by the synergistic inhibition of cationic inhibitor and inorganic anion, thus the galvanic would be better controlled.
引文
[1] Matern S. Life cycle cost LCC-A new approach to materials selection. Engineering & Economy, Information 9763, Sweden
    [2] P. Cavassi and M. Cornago: "The Cost of Corrosion in the Oil and Gas Industry", JPCL, May 1999: 30-40
    [3] "Corrosion Costs and Preventive Strategies in the United States", Report by CC Technologies Laboratories, Inc. to Federal Highway Administration (FHWA), Office of Infrastructure Research and Development, Report FHWA-RD-01-156, September 2001
    [4] 赵麦群, 雷阿丽. 金属的腐蚀与防护. 北京: 国防工业出版社, 2002: 98-102
    [5] M. E. El-Dahshan.Galvanic corrosion in the systems titanium/316L stainless steel /Al brass in Arabian Gulfwater.Desalination, 2002, 142: 161-169
    [6] R. R. Zahran, G. H. Sedahmed. Galvanic corrosion of zinc in turbulently moving containing drag reducing polymers. Materials Letters, 1997: 29-33
    [7] 张艳成, 吴荫顺, 张健. 带锈铸铁与 304 不绣钢的电偶腐蚀. 腐蚀科学与防护技术, 2001, 13(2): 66-70
    [8] 黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究. 中国腐蚀与防护学报, 2001, 21(1): 46-53
    [9] 陆峰, 钟群鹏, 曹春晓. 大气环境条件下复合材料与金属电偶腐蚀及控制方法研究. 材料保护, 2002, 35(12): 19-22
    [10] C. J. Semion. Lead/carbon steel galvanic corrosion evaluation. Journal of Nuclear Materials, 1996, 238: 198-204
    [11] 刘双梅, 刘道新, 樊国福. TA7 钛合金/耐热不锈钢电偶腐蚀敏感性研究. 材料工程, 2001, 1: 17-30
    [12] C. M. Abreu, M. J. Cristo′bal, M. F. Montemor. Galvanic coupling between carbon steel and austenitic stainless steel in alkaline media. Electrochimica Acta, 2002, 47: 2271-2279
    [13] 李淑英, 陈玮. 碳钢紫铜在NaCl介质中的电偶腐蚀行为. 腐蚀科学与防护技术, 2000, 12(5): 300-302
    [14] 赵麦群, 雷阿丽. 金属的腐蚀与防护. 北京: 国防工业出版社, 2002: 98-102
    [15] 刘建华, 吴昊, 李松梅等. 高强合金与钛合金的电偶腐蚀性为. 北京航空航天大学学报. 2003, 29 (2): 124-127
    [16] 于存烨. 腐蚀基本知识(二) 石油化纤设备中的电偶腐蚀. 石油化工腐蚀与防护, 1992, 9(2): 53-57
    [17] 杨世伟, 席慧智, 谢辅洲等. 舰船材料的电偶腐蚀研究. 哈尔滨工程大学学报, 2000, 21(6): 34-38
    [18] 李淑英, 陈玮. 碳钢/ 紫铜在 NaCl 介质中的电偶腐蚀行为. 腐蚀科学与防护技术, 2003, 12(5): 300-302
    [19] 战广深, 姚春玲. 牺牲阳极合金在海水中的接触腐蚀行为. 材料保护, 1999, 32(2): 31-33
    [20] Mensfeld F, Hengstenberg D H, Kenkel J V. Galvanic Corrosion of Al Alloys, effect of Dissimilar Metals. Corrosion, 1974, 30(10): 243-257
    [21] 李全桂, 赵闺彦. 腐蚀和腐蚀控制手册. 北京: 国防工业出版社, 1991
    [22] G. Batis, A. Routoulas, E. Rakanta. Effect s of migrating inhibitors on corrosion of reinforcing steel covered with repair mortar. Cement & Concrete Composites, 2003, 25(1): 109-115
    [23] M. E. El-Dahshan, A. A. Shams ElDin, H. H. Haggag. Galvanic corrosion in the systems titanium/ 316L stainless steel/ Al brass in Arabian Gulf water. Desalination, 2002, 142(2): 161-169
    [24] D. G. Kolman, J. R. Scully. An assessment of the crack tip potential of b2titanium alloys during hydrogen environmentally assisted crack propagation based on crack tip and passive surface elect rochemicalmeasurements. Corrosion Science, 2000, 42(11): 1863-1879
    [25] D. J. Blackwood, S. K. M. Chooi. Stability of protective oxide films formed on a porous titanium. Corrosion Science, 2002, 44(3): 395-405
    [26] Shao2Yu Chiu, Ying2Lang Wang, Chuan2Pu Liu, J in2Kun Lana, et al. Theapplication of elect rochemical met rologies for investigating chemical mechanical polishing of Al with a Ti barrier layer. Materials Chemistry and Physics, 2003, 82(2): 444-451
    [27] S. D. Cramer, B. S. Covinor, S. J. Bullard, et al. Corrosion prevention and remediation st rategies for reinforced concrete coastal bridges. Cement & Concrete Composites, 2002, 24(1): 101-117
    [28] V. Alonzo, A. Darchen, D. Hauchard, et al. Acceleration of zinc corrosion in alkaline suspensions containing iron oxides or iron hydroxides, Electrochimica Acta, 2003, 48(8): 951-955
    [29] R. Strommen, W. Keim, Finnegan J, Mehdizadeh P. Advances in offshore cathodic protection modeling using the boundary elementmethod. Corrosion, 1986, 45: 45
    [30] R. A. Adey, C. A. Brebbia, S. M. Niku. Application of boundary elementsin corrosion engineering. In: Brebbia CA, editor. Topics in boundaryelement research VII. Berlin: Springer, 1990: 34
    [31] V. G. DeGiorgi, I. I. E. D. Thomas, K. E. Lucas, A. Kee. A combined design methodology for impressed current cathodic protection system. In: Ertekin RC, Brebbia CA, Tanaka M, Shaw R, editors. Proceedings of boundary element technology XI. Southampton, England: Computational Mechanics Publications; 1996: 335
    [32] S. Aoki, K. Amaya. Optimization of cathodic protection system by BEM. Engng Anal Bound Elem 1997, 19: 147
    [33] S. Aoki, K. Amaya. Boundary element analysis of inverse problems in corrosion engineering. In: Wrobel LC, Ingham DB, editors. Boundary integral formulations for inverse analysis. London, England: Computational Mechanics Publications; 1997: 151
    [34] S. Aoki, K. Amaya, M. Miyasaka. In: Orazem ME, editor. Boundary element analysis of cathodic protection for complicated structures. Proceedings of corrosion’99, NACE, 1999: 45
    [35] S. Aoki, K. Amaya, M. Miyasaka. Analysis of corrosion problems by boundary element method, Tokyo, Syokabo, 1998
    [36] S. Aoki, K. Amaya, H. Miyuki. Effective boundary element method for predictingcorrosion rate of heat exchanger. In: Atluri SN, Yagawa G, Cruse TA, editors. Proceedings of computational mechanics’95 theory and application. Berlin: Springer, 1995: 2714
    [37] K. Amaya, S. Aoki. Development of effective BEM for galvanic corrosion analysis of a slender structure. Trans JSME 1992, 58-551: 1234. In Japanese
    [38] 张学元. 二氧化碳腐蚀与控制. 北京: 化学工业出版社, 2000
    [39] A. Ikeda, M. Ueda, S. Mukai. NACE Corrosion 84. New Orileans, USA, NACE, 1984, 1(1): 39
    [40] C. De Waard, U. Lotz, D. E. Milliams. Predictive model for CO2 corrosion engineering in wet natural gas pipelines. Corrosion, 1991, 47(12): 976-985
    [41] S. Nesic, G. T. Solvi, J. Enerhaug. Comparision of the rotating cylinder and pipe flow tests for flow - sensitive carbon dioxide corrosion. Corrosion, 1995, 51(10): 773-787
    [42] B. R. Linter. Reactions of pipeline steels in carbon dioxide solutions. Corrosion Science, 1999: 117-139
    [43] X. Mao, X. Liu, X. W. Revie. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions. Corrosion, 1994, 50(9): 651-657
    [44] C. A. Palacios, J. R. Shadley. Characteristics of corrosion scales on steels in CO2 saturated NaCl brine. Corrosion, 1991, 47(2): 122-127
    [45] T. Crump. A Brief History of Science-As seen through the development of scientific instruments. Robinson, London, 2002
    [46] 李亚民. 边界元数值方法在双金属电偶腐蚀中的应用. 学位论文
    [47] 郭海丁, 田锡唐. 夹层体的电偶腐蚀. 腐蚀科学与防护技术, 1996, 8(1): 72-78
    [48] Akira Tahara, Toshiaki Kodama. Potential distribution measurement in galvanic corrosion of Zn/Fe couple by means of Kelvin probe. Corrosion Science, 2000(42): 655-673
    [49] C. M. Abreu, M. J. Cristobal. Galvanic coupling between carbon steel and austenitic stainless steel in alkaline media. Electrochimica Acta, 2002, 47: 2271-2279
    [50] F. E. Varela. The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple(prediction by boundary element method), CorrosionScience, 1997, 39: 775-788
    [51] Lenard, D. R. Moores, J. G. Effects of vapor phase corrosion inhibitors on the galvanic corrosion of aluminum, Corrosion Science, 1993, 34(5): 871-880
    [52] F. X. Gan, Chin, Der-Tau; Meitz, Amanda K. Laboratory evaluation of ozone as a corrosion inhibitor for carbon steel, copper, and galvanized steel in cooling water, ASHRAE Transactions, 1996, 102(1): 395-409
    [53] U. Nuernberger, W. Beul, Einfluss einer Feuerverzinkung und PVC-Beschichtung von Bewehrungsstaehlen und von inhibitoren auf die Korrosion von Stahl in gerissenem Beton(Influence of galvanizing and PVC-coating of reinforcing steels and of inhibitors on steel corrosion in cracked concrete), Werkstoffe und Korrosion, 1991, 42(10): 537-546
    [54] I. M. Zin, S. B. Lyon, V. I. Pokhmurskii. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture, Corrosion Science, 2003, 45(4): 777-788
    [55] 艾俊哲, 姬鄂豫, 郭兴蓬等. 咪唑啉硫脲衍生物对电偶腐蚀的抑制作用. 石油与天然气化工, 2004, 33(5): 357-361
    [56] H. Shaikh, R. V. Subba Rao, R. P George, et al. Corrosion failures of AISI type 304 stainless steel in a fertiliser plant, Engineering Failure Analysis, 2003, 10(3): 329-339
    [57] H. Ishikawa, Y. Terada, Y. Ogata, et al. Chromium-bearing UOE line pipe for service in wet carbon dioxide environment, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1995, 5: 125-136
    [58] K. D. Efird, Galvanic corrosion in oil and gas production, ASTM Special Technical Publication, 1988, STP(978): 260-282
    [59] 魏宝明主编. 金属腐蚀理论及应用. 北京: 化学工业出版社, 1984
    [60] 李章亚主编. 油气田腐蚀与防护技术手册. 北京: 石油工业出版社, 1999
    [61] 杨绮琴, 方北龙等编. 应用电化学. 广州: 中山大学出版社, 2001
    [62] L. E. Newton et al. eds. CO2 Corrosion in oil and Gas Production, NACE, 1984: 131-166
    [63] C. L. Page, V. T. Ngala, M. M. Page, Corrosion inhibitors in concrete repair systems, Magazine of Concrete Research, 2000, 52: 25-37
    [64] L. Zhao, H. K. Teng, Y. S. Yang, et al. Corrosion inhibition approach of oil production systems in offshore oilfields, Materials and Corrosion, 2004, 5: 684-688
    [65] B. Williams, Corrosion inhibitors - The way forward, Concrete Engineering International, 2003, 7: 24-26
    [66] J. W. Lee, M. C. Kang, J. J. Kim, Characterization of 5-aminotetrazole as a corrosion inhibitor in copper chemical mechanical polishing, Journal of the Electrochemical Society, 2005, 152: C827-C831
    [67] J. Michalski, J. wanow, J. Tacikowski, I. Sukowski, P. Wach, T. N. Tarfa, J. Tymowski, Anti-corrosion nitriding, with post-oxidation and inhibitor impregnation, and its industrial applications Heat Treatment of Metals, 2004, 31: 31-35
    [68] B. R. W. Hinton, Corrosion inhibition with rare earth metal salts, Journal of Alloys and Compounds, 1992, 180: 15-25
    [69] P. J. Prabhu, A review of the effects of silica on stress corrosion cracking of steam generator tubes, Proceedings of the Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, 1999: 619-628
    [70] G. Rocchini, The evaluation of the corrosion inhibitor performance in hot HCI solutions by the impedance technique, Corrosion Reviews, 2002, 20: 509-530
    [71] C. M. Hansson, L. Mammoliti, B. B. Hope, Corrosion inhibitors in concrete - Part I: The principles, Cement and Concrete Research, 1998, 28: 1775-1781
    [72] A. J. Szyprowski, Methods of investigation on hydrogen sulfide corrosion of steel and its inhibitors, Corrosion, 2003, 59: 68-81
    [73] J. A. Haslegrave, W. M. Hedges, H. T. R. Montgomerie, T. M. OBrien, Development of corrosion inhibitors with low-environmental toxicity, Proceedings-SPE Annual Technical Conference and Exhibition, 1992, Pi: 833-844
    [74] Yu. I. Kuznetsov, Adsorptive passivation of iron by organic acid anions, Russian Journal of Electrochemistry, 2004, 40: 1287-1291
    [75] G. V. Prabhu-Gaunkar, A. Raman, Corrosion inhibitors in fertilizer production and handling, Corrosion Reviews, 1998, 16: 393-416
    [76] V. S. Gireesh, S. M. A. Shibli, Inhibition characteristics of tungstates for corrosion prevention on steel, Corrosion Prevention and Control, 2001, 48: 11-20
    [77] B. Little, R. Ray, A perspective on corrosion inhibition by biofilms, Corrosion, 2002, 58: 424-428
    [78] M. S. Vukasovich, Applications for the versatile molybdate inhibitor, Materials Performance, 1990, 29: 48-51
    [79] 王佳, 曹楚南, 陈家坚. 缓蚀剂理论与研究方法的进展. 腐蚀科学与防护技术, 1992, 4(2): 80-87
    [80] G. Mclmtire, J. Lippert, J. Yudelson, The Effect of Dissolved CO2 and O2 on the Corrosion of Iron. Corrosion, 1990, 46(2): 91-95
    [81] 郑家燊, 黄魁元. 缓蚀剂科技发展历程的回顾与展望. 材料保护, 2000, 33(5): 11-15
    [82] T. I. Bogdanova, Y. N. Shekhter, A. I. Kozlova, S. I. Reznik, Classification and properties of solvent removable inhibited thin film coatings, Chemistry and Technology of Fuels and Oils(English translation of Khimiya i Tekhnologiya Toplivi Masel), Nov-Dec, 1977, 13(11-12): 809-814
    [83] 林永学, 陈雷等. CO2 腐蚀环境下油管防腐技术方法初探. 石油钻探技术, 1999, 27(3): 34-36
    [84] R. A. Turishcheva, Yu. N. Shekhter, M. B. Bakaleinikov, V. V. Samgina, Effect of basicity of calcium alkylbenzenesulfonate on properties of VZM-ML-1 vehicle pretective coating, Chemistry and Technology of Fuels and Oils, 1981, 17: 67-69
    [85] 林海潮. 缓蚀剂研究的进展. 腐蚀科学与防护技术, 1997, 9(4): 308-313
    [86] L. A. Godinez, Y. Meas, R. Ortega-Borges, A. Corona, Corrosion inhibitors, Revista de Metalurgia, 2003, 39: 140-158
    [87] 曹楚南, 陈家坚. 缓蚀剂在油气田的应用. 石油化工腐蚀与防护, 1997, 14(4): 34-36
    [88] M. A. Migahed, Corrosion inhibition of steel pipelines in oil fields by N, N-di(poly oxy ethylene) amino propyl lauryl amide, Progress in Organic Coatings, 2005, 54: 91-98
    [89] 赵建国. EC 缓蚀剂对钢铁的缓蚀行为研究. 腐蚀与防护, 1999, 20(8): 350-351
    [90] M. A. Migahed, H. M. Mohamed, A. M. Al-Sabagh, Corrosion inhibition of H-11 type carbon steel in 1 M hydrochloric acid solution by N-propyl amino lauryl amideand its ethoxylated derivatives, Materials Chemistry and Physics, 2003, 80: 169-175
    [91] 杜天保. 硫酸中环乙基炔氧甲基胺乙酸盐对铁的缓蚀作用及与 Cl-协同作用. 材料保护, 1997, 30(8): 1-2
    [92] E. E. Ebenso, U. J. Ekpe, B. I. Ita, O. E. Offiong, U. J. Ibok, Effect of molecular structure on the efficiency of amides and thiosemicarbazones used for corrosion inhibition of mild steel in hydrochloric acid, Materials Chemistry and Physics, 1999, 60: 79-90
    [93] Luo H. Corrosion Inhibition of x Mild Steel by Aniline and Alkylamines in Acidic Solutions, Corrosion, 1998, 54(9): 721-724
    [94] O. Olivares-Xometl, N. V. Likhanova, M. A. Dominguez-Aguilar, J. M. Hallen, L. S. Zamudio, E. Arce, Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic environment, Applied Surface Science, 2006, 252(6): 2139-2152
    [95] 杨熙珍, 张鹤鸣等. 含硫咪唑啉衍生物对氢氟酸中钢的缓蚀作用机理. 中国腐蚀与防护学报, 1990, 10(4): 391-396
    [96] 董泽华. 咪唑啉对碳钢在弱酸性 H2S 溶液中缓蚀作用. 材料保护. 1998, 31(6): 66
    [97] 潘献辉. 盐酸中 BMPT 对不锈钢缓蚀性能探讨. 腐蚀与防护. 1999, 20(4): 156-159
    [98] 周欣, 何晓英, 伍远辉等. 肉桂醛对 X60 碳钢的缓蚀行为的电化学研究. 西华师范大学学报(自然科学版), 2003, 24(4): 434-436
    [99] Y. Duda, R. M. Govea-Rueda, B. Galicia, I. Hiram, R. Zamudio, S. Luis, Corrosion inhibitors: Design, performance, and computer simulations, Journal of Physical Chemistry B, 2005, 109: 22674-22684
    [100] L. Zhao, H. K. Teng, Y. S. Yang, X. Tan, Corrosion inhibition approach of oil production systems in offshore oilfields Materials and Corrosion, 2004, 55: 684-688
    [101] X. Jiang, Y. G. Zheng, W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution, Corrosion Science, 2005, 47: 2636-2658
    [102] 汪晓军. FNP-C 酸缓蚀剂的长效缓蚀性能. 材料保护, 1998, 31(10): 20-21
    [103] T. Vasudevan. Inhibition of Corrosion of Mild Steel in Acid Solutions by Quarternary Salts of Pytidinium Bases, Snti-Corrosion Methods and Materials, 1996, 43(2): 120-126
    [104] 王延. 盐酸介质中脱氢松香基咪唑啉缓蚀剂对 Q235 钢缓蚀性的研究. 腐蚀与防护, 1998, 19(6): 247-248
    [105] K. Abd El, A. A. El Warraky, A. M Abd El Aziz,. Corrosion inhibition of mild steel by sodium tungstate in neutral solution. Part 3: Coinhibitors and synergism, British Corrosion Journal, 1998, 33(2): 152-157
    [106] C. A. Loto, A. H. Adeleke, The effect of potassium dichromate inhibitor on the corrosion of stainless steels in sulphuric acid mixed with sodium chloride. Corrosion Prevention and Control, 2004, 51(2): 61-69
    [107] T. Hayashi, H. Nishihara, K. Aramaki, Inhibition effect of bismuth(III) compounds on the corrosion of iron in 1 N HCl at elevated temperatures, Corrosion Science, 1996, 38(6): 867-879
    [108] M. Ergun, D. Bektas. Evaluation of corrosion inhibitors for aluminum in chloride containing solutions. Turkish Journal of Engineering & Environmental Sciences, 1996, 20(5): 289-293
    [109] S. S. A. Rehim, H. H. Hassan, M. A. Amin, Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique. Applied Surface Science, 2002, 187(3): 279-290
    [110] S. A. M. Refaey, Inhibition of steel pitting corrosion in HCl by some inorganic anions. Applied Surface Science, 2005, 240(4): 396-404
    [111] 王佳, 曹楚南. 缓蚀剂阳极脱附现象的研究 Ⅱ缓蚀剂阳极脱附对电极阻抗的影响. 中国腐蚀与防护学报, 1995, 15(4): 247-252
    [112] E. E. Oguzie, Corrosion inhibition of mild steel in hydrochloric acid solution by methylene blue dye, Materials Letters, 2005, 59(8): 1076-1079
    [113] H. Akrout, L. Bousselmi, E. Triki, et al. Adsorption mechanism of non-toxic organic inhibitors on steel in solutions at pH 8 determined by electrochemical quartz crystal microbalance measurements, Materials and Corrosion, 2005, 56(3): 185-191
    [114] W. Durnie, R. De Marco, A. Jefferson, et al. Development of a structure-activityrelationship for oil field corrosion inhibitors, Journal of the Electrochemical Society, 1999, 146(5): 1751-1756
    [115] T. Y. Soror, New naturally occurring product extract as corrosion inhibitor for 316 stainless steel in 5% HCl, Journal of Materials Science and Technology, 2004, 20(4): 463-466
    [116] J. M. Bockris, B. Yang, Mechanism of corrosion inhibition of iron in acid solution by acetylenic alcohols. Journal of the Electrochemical Society, 1991, 138(8): 2237-2252
    [117] V. Jovancicevic. Inhibition of CO2 corrosion of mild steel by imidazolines and their precursors. Corrosion, 1998, NACE Paper NO. 18
    [118] 宁世光. 咪唑啉衍生物对钢在酸中的缓蚀作用与电子密度和前线轨道能量的关系. 中国腐蚀与防护学报, 1990, 10(4): 383
    [119] 汪的华, 甘复兴, 姚禄安. 缓蚀剂吸附行为的研究进展与展望. 材料与保护, 2000, 33(1): 29-32
    [120] 沈慕昭. 电化学基本原理及其应用. 北京: 北京师范大学出版社, 1987: 121-123
    [121] 曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 1-2
    [122] 吴荫顺. 金属腐蚀研究方法. 北京: 冶金工业出版社, 1993: 127
    [123] 中国腐蚀与防护学会《金属腐蚀手册》编辑委员会. 金属腐蚀手册. 上海: 上海科学技术出版社, 1987
    [124] C. D. Bain, E. B. Troughton, Y. T. Tao et al, Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold, J. Am. Chem. Soc. , 1989, 111: 321-335
    [125] 屈钧娥. 原子力显微镜对金属/溶液界面腐蚀行为及缓蚀剂缓蚀机制的研究. 华中科技大学博士论文, 2005: 23
    [126] 吴瑾光. 近代傅里叶变换红外光谱技术及应用. 科学技术文献出版社, 1994
    [127] 林沝, 吴平平, 周文敏, 王俊德. 实用付里叶变换红外光谱学. 中国环境科学出版社, 1991
    [128] J. L. Crolet, N. Thevenot, S. Nesie. Role of conductive corrosion products in the protectiveness of corrosion layers. Corrosion, 1998, 54(3): 194-201
    [129] Arne Dugstad. Mechanism of protective film formation during CO2 corrosion of carbon steel. Corrosion 1998, NACE: 31
    [130] K. R. Trethewey, P. R. Roberge. Modelling of CO2 Corrosion Mechanism, Modelling aqueous. Corrosion, 1994: 317-335
    [131] B. Mishra, S. Al-Hassan, D. L. Oison, et al. Development of a predictive model for activation-controlled corrosion of steel in solutions containing carbon dioxide. Corrosion, 1997, 53(11): 852-859
    [132] C. de Waard, D. E. Milliams. Carbon acid corrosion of steel. Corrosion, 1975, 31(5): 177-201
    [133] C. de Waard, Lots Prediction of CO2 corrosion of carbon steel. A working party report on predicting CO2 corrosion in oil and gas industry, 1994: 30-58
    [134] B. Mishra, S. Al-Hassan, D. L. Olson, and M. M. Salama, Development of a Preditive Model for Activation-Controlled Corrosion of Steel in Solution Containing Carbon Dioxide. Corrosion, 1997, 53(11): 852-859
    [135] F. M. Song, D. W. Kirk, J. W. Graydon, et al Predicting carbon dioxide corrosion of bare steel under an aqueous boundary layer, Corrosion, 2004, 60(8): 736-748
    [136] A. Ikeda, M. Ueda, S. Mukai. Corrosion behavior of carbon and Cr steels. In: Hausler R H, Giddard H P(Eds), Advances in CO2 Corrosion. Vol. 1, NACE, Houston, Texas, 1984: 39
    [137] J. K. Heuer, J. F. Stubbins. Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow. Corrosion, 1998, 54(7): 566
    [138] R H. Hausler. Corrosion Inhibition In the Presence Of Corrosion Product Layers. Proceeds of the European Symposium on Corrosion inhibitors(6SEIC). Italy: Ann Univ Ferrara, 1985: 41-65
    [139] 罗明道, 姚禄安, 吴庆余等. 含二氮五元环类化合物的电子结构与缓蚀性能的关系. 中国腐蚀与防护学报, 1996, 16(3): 195-199
    [140] 郑家燊, 吕战鹏, 彭芳明. 新型咪唑啉类缓蚀剂的合成、结构表征及缓蚀性能研究. 油田化学, 1994, 11(2): 163-167
    [141] R. Guo, T. Q. Liu, X. Wei, Effects of SDS and some alcohols on the inhibition efficiency of corrosion for nickel, Colloids and Surfaces A: Physicochem. Eng.Aspects, 2002, 209: 37-45
    [142] A. Chetouani, B. Hammouti, T. Benhadda, et al. Inhibitive action of bipyrazolic type organic compounds towards corrosion of pure iron in acidic media, Appl. Surf. Sci. , 2005, 249: 375-385
    [143] E. Khamis, The effect of temperature on the acidic dissolution of steel in presence of inhibitors, corrosion, 1990, 46: 476-450
    [144] D. M. Drazic, L. Vracar, V. J. Drazic. The kinetics of inhibitor adsorption on iron. Electrochim Acta, 1994(39)
    [145] F. W. Schapink, M. Oudeman, W. LeuK, et al. The Adsorption of Thiourea at a Mercury/Electrolyte Interface. Trans Faraday Soc, 1960, 56: 415-418
    [146] J. O. M. Bockris, D. A. J. Swinkels. Adsorption of Decylamine on Solid Metal Electrodes. J of Electrochim Soc, 1964, 111: 736-739
    [147] H: Dhar, B. E. Conway, K. M. Joshi, On the form of adsorption isotherms for substitutional adsorption of molecules of different sizes. Electrochim Acta, 1973, 18: 789-803
    [148] B E. Conway. Theory and Principles of Electrodes Processes. New York: Ronald Press, 1965
    [149] Z. Szklarska-Smialowska, G. Wieczorek, Adsorption Isotherms on Mild Steel in H2SO4 Solutions for Primary Aliphatic Compounds Differing in Length of the Chain. Corrosion Science, 1971, 11: 901
    [150] B. G. Ateya, B. E. El-Anadouli, F. M. El-Nizamy. The adsorption of thiourea on mild steel. Corrosion Science, 1984, 24(6): 509-515
    [151] A. El-Awady, A. Abd El-Nabey, S. Aziz, M. Khautia, H. El-Ghamdey, Structural effects and mechanism of the inhibition of acid corrosion of steel by some dithiocarbamate derivatives, Int. J. Chem, 1990, 1: 169-706
    [152] A. El-Awady, A. Abd El-Nabey, S. Aziz, Kinetic-thermodynamic and adsorption isotherms analyses for the inhibition of the acid corrosion of steel by cyclic and open-chain amines. J. Electrochem. Soc., 1992, 139(8): 2149-2154
    [153] J. H. Ikeda, H. Tamura. The adsorption of urea on some metals. Journal of electroanalytical chemistry, 1982, 137(1)
    [154] B. G. Ateya, The adsorption of thiourea on mild steel Corrosion Science, 1984, 24:509-515
    [155] A. Suda, M. Asari, Behavior and mechanism of corrosion protection for galvanized steels by self-healing effect of chromate coatings Corrosion Engineering, 1997, 46(2): 95-102
    [156] Hausler, R. H. Corrosion inhibition and galvanic couples in the oilfield, Special Report - United States Army, Cold Regions Research and Engineering Laboratory(Hanover, New Hampshire), 1979, 17: 1-17
    [157] R. L. Martin, Corrosion consequences and inhibition of galvanic couples in petroleum production equipment, Corrosion(Houston), 1995, 51(6): 482-488
    [158] V. I. Pokhmurskyi, Synergistic effect of phosphate and calcium-containing pigments on the corrosion resistance of galvanized steel, Materials Science, 2003, 39(2): 153-160
    [159] 刘东, 付朝阳, 郭兴蓬等. 一种咪唑啉油气井缓蚀剂的研究. 昆明: 第十三届全国缓蚀剂学术会议讨论会, 2004: 145-149
    [160] D. Barten, J. M. Kleijn, M. A. C. Stuart. Adsorption of a linear polyelectrolyte on a gold electrode, Physical Chemistry Chemical Physics, 2003, 5(19): 4258-64
    [161] Ai Junzhe, Guoxingpeng, Chen Zhenyu. The adsorption behavior and corrosion inhibition mechanism of cationic inhibitor on the galvanic electrode in 1% NaCl solution, Applied surface science.( in press )
    [162] M. Bouklah, A. Attayibat, B. Hammouti, A. Ramdani, S. Radi, M. Benkaddour, Pyridine-pyrazole compound as inhibitor for steel in 1 M HCl, Applied Surface Science, 2005, 240: 341-347
    [163] L. G. Qiu, A. J. Xie, Y. H. Shen, The adsorption and corrosion inhibition of some cationic gemini surfactants on carbon steel surface in hydrochloric acid, Corrosion Science, 2005, 47: 273-279
    [164] H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid, Applied Surface Science, 2005, 239: 154-159
    [165] K. F. Khaled, An electrochemical study for corrosion inhibition of iron by some organic phosphonium chloride derivatives in acid media, Applied Surface Science,2004, 230: 307-313
    [166] A. J. Szyprowski, Effect of substituted imidazoline inhibitors on hydrogen uptake by a carbon steel undergoing hydrogen sulfide corrosion, Corrosion, 2003, 59: 130-138
    [167] M. M. Osman, M. N. Shalaby, Some ethoxylated fatty acids as corrosion inhibitors for low carbon steel in formation water, Materials Chemistry and Physics, 2003, 77: 261-269
    [168] 王佳, 曹楚南, 陈家坚. 缓蚀剂阳极脱附现象的研究-I. 缓蚀剂阳极脱附现象. 中国腐蚀与防护学报, 1995, 15(4): 241-246
    [169] 王佳, 曹楚南. 缓蚀剂阳极脱附现象的研究-V. 缓蚀剂与金属阳极过程. 中国腐蚀与防护学报, 1996, 16(2): 101-106
    [170] M. Abdallah. Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution. Corrosion Science, 2002, 44: 717-728
    [171] M. S. de Sa, C. A. C. Sequeira, Mild steel pitting corrosion inhibition by organic carboxylates, Corrosion Prevention & Control, 1991, 38: 55
    [172] E. E. Foad El-Sherbini, S. M. Abdel Wahaab, M. Deyab. Ethoxylated fatty acids as inhibitors for the corrosion of zinc in acid media, 2005, 89: 183-191
    [173] P. Kern, D. Landolt, Adsorption of organic corrosion inhibitors on iron in the active and passive state. A replacement reaction between inhibitor and water studied with the rotating quartz crystal microbalance, Electrochimica Acta, 2001, 47: 589-598
    [174] Foad El Sherbini, E. E. Effect of some ethoxylated fatty acids on the corrosion behaviour of mild steel in sulphuric acid solution, Materials Chemistry and Physics, 1999, 60(3): 286-290
    [175] Osman, M. M. El Rehim, S. S. Abad Effect of some ethoxylated fatty acids on corrosion of aluminum in hydrochloric acid solutions, Materials Chemistry and Physics, 1998, 53(1): 34-40
    [176] E. Rocca, J. Steinmetz, Inhibition of lead corrosion with saturated linear aliphatic chain monocarboxylates of sodium, Corrosion Science, 2001, 43: 891-902
    [177] A. D. Mercer, in: Proceedings of the Fifth European Symposium on Corrosion Inhibitors, Ann. Univ. Ferrara, Italy, 1980: 563
    [178] P. Kern, D. Landolt, Adsorption of a bromine labeled carboxylic acid corrosion inhibitor on iron measured with EQCM, EIS and XPS, Corrosion Science, 2002, 44: 1809-1824
    [179] Y. I. Kuznetsov, K. A. Ibatullin, On the inhibition of the carbon dioxide corrosion of steel by carboxylic acids, Zashchita Metallov, 2002, 38: 496-501
    [180] A. Veawab, P. Tontiwachwuthikul, Industrial& Engineering Chemistry Research, 2001, 40: 4771
    [181] C-O. A. Olsson, P. Agarwal, M. Frey, D. Landolt, An XPS study of the adsorption of organic inhibitors on mild steel surfaces, Corrosion Science, 2000, 42: 1197-1211
    [182] M. Forsyth, C. M. Forsyth, K. Wilson, T. Behrsing, G. B. Deacon, ATR characterisation of synergistic corrosion inhibition of mild steel surfaces by cerium salicylate, Corrosion Science, 2002, 44: 2651-2656
    [183] A. Chetouani, B. Hammouti, T. Benhadda, M. Daoudi, Inhibitive action of bipyrazolic type organic compounds towards corrosion of pure iron in acidic media Applied Surface Science, 2005, 249: 375-385
    [184] J. Bian, S. F. Weng, J. G. Wu, G. X. Xu, Acta Scientiarum Naturalium, Universitatis Pekinensis, 1995, 31: 711
    [185] 艾俊哲, 郭兴蓬, 屈钧娥等. 咪唑啉酰胺在电偶电极表面的吸附行为. 物理化学学报, 2005, 10: 1096-1101
    [186] W. Richard Bowen, R. T. A. Doneva. Atomic Force Microscopy Studies of Membranes: Effect of Surface Roughness on Double-Layer Interactions and Particle Adhesion, Journal of Colloid and Interface Science, 2000, 229(2): 544-549
    [187] J. Z. Ai, X: Guo. J. E. Qu. Adsorption and synergistic mechanism on the galvanic electrode between cationic inhibitor and KI. Colloids and surfaces A, physiochemical and engineering (In press)
    [188] S. T. Keera, The beneficial influence of halide ions on the inhibition characteristics of nitrogen-containing organic inhibitors to reduce the corrosion rate of carbon steel in HCI, Anti-Corrosion Methods and Materials, 2003, 50(4): 280-285
    [189] R. Fuchs-Godec, V. Dolecek, A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media, Colloids and Surfaces A: Physicochem. Eng.Aspects, 2004, 244: 73-76
    [190] L. M. Doubova, S. Trasatti, Effect of the crystallographic orientation of Ag single crystal face electrodes on the kinetics of proton discharge. Journal of Electroanalytical Chemistry, 1999, 467(2): 164-176
    [191] J. Lipkowski, V. Nguyen, C. Huong, et al. Adsorption of diethylether on single crystal gold electrodes, J. Electroanal. Chem, 1983, 143: 375-396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700