蔬菜废物两级强化水解厌氧消化实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔬菜废物具有产生量大、含水率高、挥发性固体含量高、易于生物降解、无毒和产生较为集中等特点,对其进行合理处置具有重要意义。而厌氧消化作为一种环境友好、经济可行的高效生物处理技术,为实现果蔬废物的减量化、资源化和无害化提供了有效途径。
     本研究以北京化工大学学生食堂择菜过程中产生的蔬菜废物作为研究对象,结合国家科技部863重点项目生物质垃圾厌氧消化关键技术研究(2008AA062401),针对蔬菜废物成分复杂、非均质、非连续和半流动等特性,采用两级强化水解分路厌氧消化的技术路线,分别研究了中温条件下,基质微生物比(F/M)对蔬菜残渣酸化的影响和蔬菜汁的厌氧消化产气性能。在负荷为4gVS·L-1、6gVS·L-1和8 gVS·L-1情况下,分别考察了F/M(VS/VS)=0.5、1.0、1.5、2.0、2.5、3.0和无接种7种情况对于蔬菜残渣的影响,发现当F/M≤1.0时,反应体系以产甲烷为主,有机酸积累情况不明显;当F/M>1.0时,反应器内发生不同程度的挥发性脂肪酸积累,使反应器内产气量降低,反应器内反应以水解酸化为主。未接种的情况下,虽然在实验过程中发酵液的pH均最低,但是其挥发性脂肪酸酸浓度均较低。实验证明F/M对蔬菜残渣厌氧消化产物的影响较为显著。通过控制反应体系进料时的F/M可以影响厌氧消化反应体系的进程。在负荷为80gVS·L-1情况下,考察了F/M(VS/VS)=3.0、6.0、9.0和无接种4种情况对于蔬菜厌氧消化过程的影响,发现F/M在3.0-9.0之间变化对蔬菜残渣水解酸化反应影响不大,经过接种的体系的有机酸产量分别为13457、11624和11480 mg·L-1,均高于未接种的体系。
     在对蔬菜残渣进行厌氧酸化实验研究之外,又进行了蔬菜汁的序批式厌氧消化实验,以验证其产气性能并确定最佳工艺参数。通过150d蔬菜汁厌氧消化实验得出蔬菜汁厌氧消化产气性能良好,其最佳有机负荷为8.0 gVS.L-1·d-1,单位负荷产气率高达860 mL·gVS-1,甲烷含量为65%左右,出水COD低于2800 mg·L-1, COD去除率持续维持在95%左右,有机氮去除率维持在85%以上,达到了很好的处理效果。负荷更高的情况下导致物料不能够被完全消耗,单位负荷产气率、COD去除率下降等现象;反应器内氨氮浓度处在1348 mg·L-1到2383 mg·L-1之间,没有抑制现象发生。同时,实验发现,在进料有机负荷相同的情况下,物料成分以及水力停留时间的差异对产气量的影响不大,故可采用基于VS的单位负荷产气率作为表征厌氧消化产气性能的指标。
     本论文深入研究了蔬菜废物经过固液分离后菜渣和菜汁的强化酸化工艺参数和产甲烷工艺参数,为蔬菜废物的两级强化水解厌氧消化处理技术路线提供了实验依据。
As the world's largest agricultual country, China is encouraging the famers to build more centralized vegetable processing facilities to prepare semi-finished or "cleaned" products for city residents. In year 2009, there were approxiamately 100 million tons of vegetable waste produced in this process. With the characteristics of high moisture content and degradability, vegetable waste gives a lot of pressure to the waste disposal unit. However, this large amount of waste has the potential to be used as the feedstock of industrial anaerobic digestion because the volatile solids content is relatively high. Moreover, the digestate also could be used as soil amendment because of the low toxicity. Anaerobic digestion is a kind of environment-friendly, economic-viable and highly effective biological treatment technology. It has proved an effective way to carry out reduction, recycling and harmles sness of fruit and vegetable waste.
     Funded by the China National "863" Project "the key technology of the anaerobic digestion of biomass (case number:2008AA062401)", the study discussed in this thesis conducted lab scale batch and sequence-batch anaerobic digestion on vegetable wastes and investigated the optimal paramenters for digestion. The feedstock was collected from the dinning house in Beijing University of Chemical Technology and grinded to get the solid fraction (residue) and liquid fraction (juice) separately. As the vegetable waste was heterogeneous, a new method, called two-step strengthened hydrolysis anaerobic digestion, was developed to enhance the degradation of the solid fraction in vegetable. Under mesophilic condition(35℃), batch and sequence-batch anaerobic digestion were carried out to determine the effect of food-microorganism (F/M) ratio on hydrolysis and acidification of vegetable residue and the performance of anaerobic digestion of vegetable juice, respectively. The organic loading rates used in the batch digestion were 4gVS·L-1、6 gVS·L-1 and 8 gVS·L-1, respectively. Six kinds of F/M ratios were 0.5,1.0,1.5,2.0,2.5 and 3.0, respectively. Also, a blank trial was carried out without inoculums to test the self-degradation or the original microorganisms in the feedstock. As the result, methanogenesis was the main reaction in the system when F/M≤1.0. A significant step of hydrolysis reaction was not observed in the digestion system; when F/M> 1.0, various degrees of hydrolysis reaction were observed in the different digestion systems, for example the gas production reduced and effluent pH decreased. Although the effluent pH of blank trial was the lowest, the concentration of the volatile fatty acid was not as high as that of the other trials. The above results proved that the effect of F/M on the acidification of vegetable residues were significant. The process of anaerobic digestion could be affected by controlling the F/M of the system. At the organic loading rate of 80 gVS·L-1, four F/M ratios as of 3.0、6.0、9.0 and blank were investigated to find out the effect of inoculum on hydrolysis and acidification of vegetable residue at high organic loading rate. The results showed that when F/M was in the range of 3.0-9.0, the effect of F/M on hydrolysis and acidification of vegetable residue was not significant. The concentration of volatile fatty acid of these three conditions with inoculum were 13457、11624 and 11480 mg·L-1, respectively, higher than the condition without inoculum.
     Besides the study of the effect of F/M on hydrolysis and acidification, sequence-batch digestion experiments were carried out to determine the performance of anaerobic digestion of vegetable juice and the optimal process parameters. Anaerobic digestion of vegetable juice through an 150 days experiment showed that anaerobic digestion of vegetable juice has good performance, The optimal organic load rate was 8.0 gVS·L-1·d-1, the biogas yield was as high as 860 mL·gVS-1, the methane content was around 65%, the COD concentration of the effluent were lower than 2800 mg·L-1, COD removal efficency remained at about 95%, organic nitrogen removal efficency kept more than 85%. A higher organic loading rate of 8.5 gVS·L-1·d-1 lead to an overload. The substance was not adequently degraded and the biogas yield and COD removal efficiency decreased respectively. The concentration of ammonia in reactor was in the range of 1348-2383 mg·L-1. No inhibition was observed. The difference between the biogas yield of various vegetable juice samples and HRTs at the same OLR was small. As a conclusion, the VS of the feedstock could be used as a performance indicator of the biogas potential of certain materials.
     This study was carried out to determining the optimal process parameters of strengthened hydrolysis and anaerobic digestion of vegetable residues and juices. It has provided an experimental basis for an enhanced two-phase anaerobic digestion of vegetable waste.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2009[M].北京:中国统计出版社,2009
    [2]Statistical Review of World Energy 2009[EB/OL]. BP. www.bp.com/statisticalreview
    [3]叶诗瑛.城市有机垃圾厌氧消化工艺条件研究[D].安徽:合肥工业大学,2007
    [4]黄鼎曦,陆文静,王洪涛.农业蔬菜废物处理方法研究进展和探讨[J].环境污染治理技术与设备,2002,3(11):38-42
    [5]张莉,通讯员,汤国辉.鲜切果蔬,商机巨大“钱景”广[N].江苏经济报,2005-05-01
    [6]李建伟.蔬菜生产、市场和技术发展情况的思考[A].第五届中国农业推广研究征文集[C],2006
    [7]政协北京市第十届三次会议委员优秀提案第1009号.关于根据循环经济原理妥善处理北京市大型农副产品批发市场果蔬残余物的建议[EB/OL]. http://www.bjzx.gov.cn/html/lshg/meet4th/yxta/1009.htm
    [8]刘广民,董永亮,薛建良.果蔬废弃物厌氧消化特征及固体减量研究[J].环境科学与技术,2009,32(3):27-30,49
    [9]王远远.蔬菜废弃物沼气发酵工艺条件及沼气发酵残余物综合利用技术的研究[D].上海:上海交通大学,2008
    [10]He P J, Feng X W, Shao L M. Management of the Municipal Solid Wastes[M]. Beijing: Science Press.,2003
    [11]European Union. Council directive 1999/32/EC of 26 April 1999 on the landfill of waste. Brussels:Official Journal of the European Communities, Legislation 182,1999,1-19
    [12]可再生能源发展“十一五”规划[J].现代化工,2008,28(4):89
    [13]郑明霞,李秀金,李来庆等.蔬菜废物两步批式厌氧消化产气实验研究[J].北京化工大学学报,2007,34(2):12-15
    [14]吕家龙,吕先能,封立忠等.杭州市蔬菜采后处理的调查与研究[J].中国蔬菜,1988,03:39-42
    [15]刘荣厚,王远远,孙辰等.蔬菜废弃物厌氧发酵制取沼气的试验研究[J].农业工程学报,2008,24(4):209-213
    [16]董永亮.果蔬废弃物厌氧处理产能实验研究[D].黑龙江:哈尔滨工程大学,2008
    [17]李秀金主编.固体废物工程[M].北京:中国环境科学出版社,2003
    [18]Wadhwa M, Kaushal S, Bakshi M P S. Nutritive evaluation of vegetable wastes as complete feed for goat bucks[J]. Small Ruminant Research,2006,64:279-284
    [19]Mekasha Yoseph, Tegegne Azage, Yami Alemu, Umunna N N. Evaluation of non-conventional agro-industrial by-products as supplementary feeds for ruminants:in vitro and metabolism study with sheep[J]. Small Ruminant Research,2002,44:25-35
    [20]Vallini G.,et al.Process constrains in sorce-collected vegetable waste composting[J].Water Science and Technology,1993,28(2):229-236
    [21]El-Haggar, et al. Mobile composting unit for organic waste suitable for severe hot weather[J]. Internation Journal of Environment and Pollution,1996,16(2/3):322-327
    [22]El-Haggar S M, Hamoda M F, Elbieh M A. Composting of vegetable wastein subtropical climates[J]. International Joural of Enivronment and Pollution,1998,9(4):411-420
    [23]Aziz Shiralipour, Paul H Smith. Conversion of biomass into methane gas[J]. Biomass, 1984,6(1-2):85-92
    [24]Nallathambi Gunaseelan V. Biochemical methane potential of fruits and vegetable solid waste feedstocks[J]. Biomass and Bioenergy,2004,26:389-399
    [25]Cecchi F, et al. Anaerobic digestion and composting in an integrated strategy for managing vegetable residues from agro-industries or sorted organic fraction of municipal solid waste[J]. Water Science and Technology,1990,22(9):31-44
    [26]Venkata Mohan S, Mohanakrishna G, Sarma P N. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell[J]. Bioresource Technology,2010,101:970-976
    [27]Zeller B L. Development of porous carbohydrate food ingredients for the use in flavour encapsulation. Trends in Food Science and Technology,1999,9 (11-12),389-394
    [28]Giinther Laufenberg, Benno Kunz, Marianne Nystroem. Transformation of vegetable waste into value added products:(A) the upgrading concept; (B) practical implementations [J]. Bioresource Technology,2003,87:167-198
    [29]Brose J. Novel process technology for utilisation of fruit and vegetable waste. SBIR Phase I project USDA ICSRS, Washington, DC,1993
    [30]Al-Wandawi, H et al. Tomato processing wastes as essential raw material source[J]. Journal of Agriculture and Food Chemistry,1985,33,804-807
    [31]Bankar D B, Dara S S. Binding of calcium and magnesium by modified onion skins[J]. Journal of Applied Polymer Science,1982,27,1727-1733
    [32]Dronnet V M, Axelos M A V, Renard C M et al. Binding of divalent metal cations by sugar-beet pulp[J]. Carbohydrate Polymers,1997,34,73-82
    [33]Dronnet V M, Axelos M A V, Renard C M et al. Improvement of the binding capacity of metal cations by sugarbeet pulp.1. Impact of cross-linking treatments on composition, hydration and binding properties [J]. Carbohydrate polymers,1998a,35,29-37
    [34]Dronnet V M, Axelos M A V, Renard C M et al. Improvement of the binding capacity of metal cations by sugar-beet pulp.2. Binding of divalent metal cations by modified sugar-beet pulp[J]. Carbohydrate polymers,1998b,35,239-247
    [35]康佳丽.稻草中温高效厌氧消化生产生物气的实验研究[D].北京:北京化工大学,2007
    [36]彭武厚,陆鑫.沼气发酵原理及其作用[A]。可再生能源规模化发展国际研讨会暨第三届泛长三角能源科技论坛论文集.2006
    [37]张永吉.厌氧预处理对曝气耗氧量的削减作用和机理[J].给水排水,1999,125(14)23-25
    [38]曹先艳,袁玉玉,赵由才等.添加剂对餐厨垃圾厌氧发酵产氢的影响[J].环境污染与防治,2007,29(6):426-429
    [39]Idania V V, Elvira R L,Alessandro C M et al. Improvement of Biohydrogen Production from Solid Wastes by Intermittent Venting and Gas Flushing of Batch Reactors Headspace[J]. Environ Sci Technol,2006,40(10):3409-3415
    [40]Zabranska J, Dohanyos M, Jenicek P et al. The contribution of thermophilic anaerobic digestion to the stable operation of wastewater sludge treatment[J]. Water Sci Technol, 2002,46:447-53
    [41]Ghosh S. Gas Produetion by accelerated bioleaching of organic materials[P]. US Patent: 1983,4:396-402
    [42]Kettunen R H, Rintala J A. The effect of low temperature (5-29℃) and adaption on the methanogenic activity of biomass[J]. Appl Microbiol Biotechnol,1997,48:570-576
    [43]Demeyer A, Jacob F, Jay M et al. La conversion bioenergetique du rayonnement solaire et les biotechnologies. Edition technique et documentation, Paris; 1981.309
    [44]Bouallagui H, Haouari O, Touhami Y et al. Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste[J]. Process Biochemistry,2004, 39:2143-2148
    [45]Elmashad H M, Zeeman G, Lettinga G. Thermophilic Anaerobic digestion of cow manure. Effect of temperature on hydrolysis[A]. In:Proceedings of the 9th World Congress Anaerobic Digestion. Belgium:IWAAntwerpen,2001,2-6
    [46]Speece R E. Anaerobic biotechnology for the industrial wastewater treatment[J]. Environ Sci Technol,1983,17,416-427
    [47]Zennaki-Bensouda Z, Zaid A, Lamini H et al. Fermentation methanique des dechets de bovins:etude du temps de retention, de la temperature et de la concentration en substrat[J]. Tropicultura 1996,14:134-40
    [48]Van Lier JB. Thermophilic anaerobic wastewater treatment:Temperature aspects and process stability[D]. Wageningen, The Netherlands:Wageningen Agricultural University, 1995
    [49]Alvarez JA, Zapico CA, Gomez M et al. Anaerobic treatment and pre-treatment of municipal wastewater at low ambient temperature[A]. In:Proceedings of the 9th World Congress Anaerobic Digestion. Belgium:IWA Antwerpen,2001,2-6
    [50]Visser A, Gao Y, Lettinga G. Effects of short-term temperature increases on the thermophilic anaerobic breakdown of sulfate containing synthetic wastewater[J]. Water Res,1993,27 (4),541-550
    [51]Kroeker E J, Schulte D D, Sparling A B et al. Anaerobic treatment process stability[J]. J Water Pollut Control Fed,1979,51 (40),718-727
    [52]刘国涛.城镇有机垃圾水解及其水解液厌氧消化工艺与性能研究[D].重庆:重庆大学城市建设与环境工程学院,2007
    [53]Clark R H, Speece R E. The pH tolerance of anaerobic digestion[A].5th International Water Pollution Research Conf H,1970,27/1-14
    [54]Mu Y, Wang G, Yu HQ. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures[J]. Enzyme and Microbial Technology,2006, 38:905-913
    [55]Wang G, Mu Y, Yu HQ. Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater[J]. Biochemical Engineering Journal,2005,23:175-184
    [56]Britz TJ, TrnovecW, Fourie PC. Influence of retention time and influent pH on the performance of an upflow anaerobic sludge bioreactor treating cannery waste waters[J]. International Journal of Food Science and Technology,2000,35:267-274
    [57]何晶晶,潘修疆,吕凡等.pH值对有机垃圾厌氧水解和酸化速率的影响[J].中国环境科学,2006,26(1):57-61
    [58]金杰,吴克,蔡敬民等.BMW厌氧消化过程中产气性能影响因素研究[J].包装与食品机械,2006,24(5):8-12
    [59]沈伯雄,梁材,周元驰等.生活垃圾厌氧发酵制沼气研究[J].环境卫生工程,2006,14(3):24-27
    [60]Hori T, Haruta S, Ueno Y et al. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester[J]. Applied and Environmental Microbiology,2006,72(2):1623-1630
    [61]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社,1988,91-100
    [62]张旭,王宝贞,朱宏.厌氧消化体系的酸碱性及其缓冲能力[J].中国环境科学,1997,17(6):492-495
    [63]TanakaY, HagaK. Influence of pH on UASB treatment of swine wastewater[A]. Proc 8th International Conf On Anaerobie Digestion[C], Sendi.Japan:1997,2:405-408
    [64]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996,98-134
    [65]HeSungJee, NaomidiiNisbio, ShiroNagai. Influence of redox Potential on biomethanation of H2 and CO2 by Methanobacaerium Tbennoautotropbicum in El-stat batch cultures[J]. Tournalof Genernal Applical and Microbiology,1987,33:401-408
    [66]任南琪.产酸发酵细菌演替规律研究[J].哈尔滨建筑大学学报,1999,32(2):29-34
    [67]李建政,任南琪.产酸相最佳发酵类型工程控制对策[J].中国环境科学,1998,18(5):398-402
    [68]赵丹.产酸相发酵类型控制对策研究[J].给水排水,1999,25(12):79
    [69]周洪波,Cord-RuwischRalf,陈坚等.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J].中国沼气,2000,18(4):20-23
    [70]Lopes W S, Leite V D, Prasad S. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste[J]. Biores Technol,2004, (94):261-266
    [71]Hashimoto A G. Effect of inoculum/substrate ratio on methane yield and production rate from straw[J]. Biological Wastes,1989,28,247-255
    [72]Raposo F, Banks C J, Siegert I, et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests [J]. Process Biochemistry,2006,41: 1444-1450
    [73]Chynoweth D P, Turick C E, Owens J M et al. Biochemical methane potential of biomass and waste feedstocks[J]. Biomass Bioenergy,1993,5(1):95-111
    [74]Gunaseelan V N. Anaerobic digestion of biomass for methane production:a review[J]. Biomass Bioenergy,1997,13(1-2):83-114
    [75]Owen W F, Stuckey D C, Healy J B et al. Biossay for monitoring biochemical methane potential and anaerobic toxicity[J]. Water Res,1979,13:485-492
    [76]Neves L, Oliveira R, Alves M M. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios[J]. Process Biochemistry,2004, 39:2019-2024
    [77]Pan Jinming, Zhang Ruihong, Hamed M et al. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation[J]. International journal of hydrogen energy,2008,33:6968-6975
    [78]Guangqing Liu, Ruihong Zhang, Hamed M et al. Effect of feed to inoculum ratios on biogas yields of food and green wastes[J]. Bioresource Technology,2009,100:5103-5108
    [79]Pavan P, Musacco A, Cecchi F et al. Thermophilic semi-dry anaerobic digestion process of the organic fraction of municipal solids waste during transient conditions[J]. Environ Technol,1994,15,1173-1182
    [80]Mata-Alvarez J, Mace S, Llabres P. Anaerobic of organic solids wastes. An overview of research achievements and perspectives [J]. Biores Technol,2000,74,3-16
    [81]De Baere L. Anaerobic digestion of solids waste:state of the art[J]. Water Sci Technol,
    2000,41 (3),283-290
    [82]Pavan P, Battistoni P, Mata-Alvarez J. Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability[J]. Water Sci Technol,2000,41, 75-81
    [83]Ten Brummeler E. Full scale experience with the BIOCEL process[J]. Water Sci Technol, 2000,41,299-304
    [84]Forster-Carneiro T, Perez M, Romero L I. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste[J]. Bioresource Technology,2008, 99:6994-7002
    [85]Rincon B, Borja R, Gonzalez J M et al. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue[J]. Biochemical Engineering Journal,2008,40:253-261
    [86]Mtz.-Viturtia A, Mata-Alvarez J, Cecchi F. Two-phase continuous anaerobic digestion of fruit and vegetable wastes[J]. Resources Conservation and Recycling,1995,13:257-267
    [87]De Laclos H F, Desbois S, Saint-Joly C et al. Anaerobic digestion of municipal solid organic waste:Valorga full-scale plant in Tilburg[J]. Water Science and Technology,1997, 36(6-7):457-462
    [88]Pavan P, Battistoni P, Cecchi F et al. Two-phase anaerobic digestion of source-sorted OFMSW:performance and kinetic study[J]. Water Science and Technology,2000,41(3): 111-118
    [89]Esa A Salminen, Jukka A Rintala. Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste:effect of hydraulic retention time and loading[J]. Water Research, 2002,36:3175-3182
    [90]张光明,王伟.城市垃圾厌氧消化产酸阶段研究[J].中国沼气,1996,14(2):11-14
    [91]Froylan M Espinoza-Escalante, Carlos Pelayo-Ortiz, Jose Navarro-Corona et al. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila:The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane[J]. Biomass and Bioenergy,2009,33:14-20
    [92]Nidal M, Grietje Z, Huub G et al. Anaerobic stabilisation and conversion of biopolymers in primary sludge-effect of temperature and sludge retention time[J]. Water Research, 2004,38:983-991
    [93]Hamed M E, Grietje Z, Wilko K P et al. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure[J]. Bioresource Technology,2004, 95:191-201
    [94]Poggi-Varaldo H M,Valdes L,Esparza-Garcia F et al.Solid substrate anaerobic co-digestion of paper mill sludge,biosolids,and municipal solid waste[J]. Water Science and Technology,1997,35(2-3):197-204
    [95]Kuebler H, Hoppenheidt K, Hirsch P et al. Full scale co-digestion of organic waste[J]. Water Science and Technology,2000,41(3):195-202
    [96]Dinopoulou G, Rudd T, Lester JN. Anaerobic acidogenesis of a complex wastewater:Ⅰ. The influence of operational parameters on reactor performance [J]. Biotechnology and Bioengineering,1987,31:958-968
    [97]Hwang S, Lee Y, Yang K. Maximization of acetic acid production in partial acidogenesis of swine wastewater[J]. Wiley Journal of Biotechnology and Bioengineering,2001,75(5): 521-529
    [98]Grady CPL, Daigger GT, Lim HC. Biological wastewater treatment[M]. New York: Marcel Dekker,1999
    [99]Tchobanoglous G, Burton FL. Wastewater engineering:Treatment, disposal and reuse[M]. 3rd Ed. New York:McGraw-Hill,1991
    [100]贾传兴.有机垃圾两相厌氧消化中氮素转化特性的试验研究[D].重庆:重庆大学,2007
    [101]Ye Chen, Jay J Cheng, Kurt S Creamer. Inhibition of anaerobic digestion process:A review[J]. Bioresource Technology,2008,99:4044-4064
    [102]陈朝猛,曾光明,张盼月等.痕量金属离子在城市有机垃圾厌氧消化中的促进作用研究[A].全国第四届环境保护与环境工程学术研讨会论文集,2004,217-221
    [103]Speece R E.Anaerobic Digestion of Biomass[M].USA:Elsevier Applied Science Pub.109-128
    [104]McCarty P L, McKinney R. Salt toxicity in anaerobic digestion[J]. J Water Pollut Control Fed,1961,33:399-415
    [105]Braun B, Huber P, Meyrath J. Ammonia toxicity in liquid piggery manure digestion[J]. Biotechnol Lett,1981,3:159-164
    [106]Hendriksen H V, Ahring B K. Effects of ammonia on growth and morphology of thermophilic hydrogen-oxidizing methanogenic bacteria[J]. FEMS Microb Ecol,1991,85: 241-246
    [107]Kugelman I J, McCarty P L. Cation toxicity and stimulation in anaerobic waste treatment[J]. J Water Pollut Control Fed,1964,37:97-116
    [108]Krylova N I, Khabiboulline R E, Naumova R P et al. The influence of ammonium and methods for removal during the anaerobic treatment of poultry manure[J]. J Chem Tech Biotechnol,1997,70:99-105
    [109]Anthony Mshandete, Lovisa Bjornsson, Amelia K Kivaisi et al. Effect of particle size on biogas yield from sisal fibre waste[J]. Renewable Energy,2006,31:2385-2392
    [110]Hasegawa S, Shiota N, Katsura K. Solubilization of organic sludge by thermophilic aerobic baeteria as a pretreatment for anaerobic digestion[J]. Water Seience and Technology,2000,41(3):163-169
    [111]Karim K, Hoffinann R, Klasson T et al. Anaerobic digestion of animal waste:effect of mode mixing[J]. Water Researeh,2005,39:3597-3606
    [112]冷成保,肖波,杨家宽等.城市生活垃圾(MSW)厌氧消化处理研究[J].江苏环境科技,2003,14(1):4-6
    [113]Prasad Kaparaju, Inmaculada Buendia, Lars Ellegaard et al. Effects of mixing on methane production during thermophilic anaerobic digestion of manure:Lab-scale and pilot-scale studies[J]. Bioresource Technology,2008,99:4919-4928

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700