高温钙基CO_2吸收剂的锆改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢是一种理想的能源载体,在清洁燃料领域具有重要的意义。甲烷水蒸汽重整制氢工艺是制氢的重要途径,二氧化碳吸收是强化该制氢过程的重要手段,而二氧化碳吸收剂性能将直接影响制氢工艺的优劣。本文对氧化钙基二氧化碳吸收剂进行氧化锆负载改性,并考察其吸收性能。
     本文通过负载氧化锆,对氧化钙基高温CO2吸收剂进行改性,制得CaO-ZrO2粉体的前驱体,然后再经高温煅烧,即得到经锆改性后的吸收剂。实验采用XRD、SEM及热重分析仪对吸收剂进行测试表征,考察了不同制备方法和制备条件(前驱体、颗粒粒径、Zr/Ca比例等)对吸收剂的锆改性效果,研究得到如下结论:采用化学沉淀法制备的锆改性吸收剂,吸收剂颗粒粒径减小,降低了二氧化碳气体向吸收剂内部扩散的阻力;颗粒粒径为120~160目的吸收剂可降低吸收反应过程中的孔堵塞;当Zr/Ca=1/40时,吸收剂中掺杂ZrO2形成了良好的介孔结构,可缓解氧化钙在高温下的烧结和破碎程度,提高吸收剂的循环热稳定性。
     实验采用直径为φ34mm固定床反应器对经锆改性的吸收剂进行高温CO2吸收及煅烧再生性能的测试和评价,考察碳酸化操作条件(碳酸化反应及再生时间、碳酸化温度、再生温度、CO2分压等)对二氧化碳吸收转化率的影响。测试结果表明,化学沉淀法制备的锆改性吸收剂,当Zr/Ca=1/40,颗粒粒径为120~160目时,CO2分压为30%,碳酸化温度为650℃,反应时间30 min,再生温度为800℃,再生时间30 min反应条件下,最大吸收转化率达到82.6%,且在10次循环吸收反应后仍保持较高的碳酸化转化率73.6%。
     经锆改性的吸收剂,具有良好的内部孔隙结构,在高温下达到较高的C02吸收率,再生温度降低维持了吸收剂的循环热稳定性,对C02的吸收具有较大的潜力,为强化甲烷水蒸气重整制氢工艺的可行性研究提供了基础。
Hydrogen is an ideal clean energy carrier. Carbon dioxide sorption-enhanced steam methane reforming process can effectively increase the capacity of hydrogen production.Performance of absorbent for carbon dioxide will directly affect the characteristics and merits of hydrogen technology. The purpose of this paper is load-modified calcium oxide absorbent based zirconium oxide, and studied its absorption for carbon dioxide.
     In this paper, calcium oxide based absorbent of CO2 in high-temperature, which are modified by zirconium, was prepared to be precursor powders of CaO-ZrO2 and then calcined at high temperature. XRD and SEM were used to analysis the modification effect of absorbent in experiments.The influence of different preparation methods, preparation conditions (precursor, particle size and Zr/Ca) conclusions as following:Zirconium modified absorbent prepared by chemical precipitation has smaller particle size. The decreasing of particle size reduced the resistance of carbon dioxide diffuse to the absorbent; Sintering and crushing in the high temperature can be alleviated after doping with ZrO2.The doping of Zr in the sorbent was benefit in maintaining the mesoporous structure of CaO, leading to a high conversion rate of carbonation and enhancing the thermal stability of the sorbent.
     The CO2 absorption of zirconium-modified absorbent and evaluation of regeneration in high temperature were conducted in fixed bed reactor with a diameter ofφ34mm. The influence of carbonation operating conditions (carbonate temperature, regeneration reaction time and temperature, CO2 partial pressure, etc.)on the absorption rate of carbon dioxide was investigated. The results showed that absorbent with particle size of 120~160 mesh and Zr/Ca=1/40, under the experimental conditions of 30% CO2 partial pressure, carbonation temperature of 650℃, reaction time 30 min, and regeneration at 800℃for 30 min, the maximum conversion rate of sorption reached 82.6%, and remained 73.6% after 10 cycles without severe sintering.
引文
[1]裴克毅,孙绍增,黄丽坤.全球变暖与二氧化碳减排[J].节能技术,2005,23(131):239-243
    [2]Abanades J C, Edward S R, Fa W J. Sorbent Cost and Performance in CO2 Capture Systems[J].Industrial and Engineering Chemistry Research,2004,43(13):3462-3466
    [3]Maman S, Svendsen H F, Huf K A, et al. Selection of new absorbents for carbon dioxide capture[J]. Energy Conversion and Management,2007,48:251-258
    [4]章轲.首份行业二氧化碳排放量估算[N].第一财经日报,2010.02.23(10)
    [5]闫跃龙,肖云汉,田文栋,等.含碳能源直接制氢的热力学分析与实验研究[J].工程热物理学报,2003,24(5):744-746
    [6]王键,武增华,邱新平.氢经济开创绿色能源新时代[J].环境保护,2004,9:52-55
    [7]Zhu J, Zhang D, King K D. Reforming of CH4 by partial oxidation:thermodynamic and kinetic analyses[J].Fuel,2001,80 (7):899-905
    [8]刘少文,吴广义.制氢技术现状及展望[J].贵州化工,2003,28(5):4~9
    [9]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业,2005,25(2):165-169
    [10]Alejandeo L O, Douglas P H. Hydrogen Production Using Sorption-Enhanced Reaction [J]. Ind.Eng.Chem.Res.,2001,40(23):5102-5109
    [11]Xiu G H, Li P, Rodrigues A E. Sorption-Enhanced reaction Progress with reactive regeneration[J].Chemical Engineering Science,2002,57(18):3893~3908
    [12]Lee D K, Baek I H, Yoon W L. Modeling and simulation for the methane steam reforming enhanced by in situ CO2 removal utilizing the CaO carbonation for H2 production[J]. Chemical Engineering Science,2004,59 (4):931-942
    [13]Hildenbrand N, Readman J, Dahl I M, et al. Sorbent enhanced steam reforming (SESR) of methane using dolomite as internal carbon dioxide absorbent:Limitations due to Ca (OH)2 formation[J].Applied Catalysis A,2006,303(1):131-137
    [14]Wu S F, Beum T H, Yang J I, et al. The characteristics of a sorbent-enhanced stema-methnae reaction for the production of hydrogen using CO2 sorbent [J]. Chinese J. of Chem. Eng.,2005,13(1):43-47
    [15]李清辉,吴素芳.用于天然气吸附强化制氢的CO2吸附剂吸附率影响因素[J].浙江化工,2007,38(8):4-6
    [16]李振山,蔡宁生,黄煜煜,等.吸收增强式甲烷水蒸气重整制氢实验研究[J].燃料化学学报,2007,35(1):79-84
    [17]黄绍兰,童华,王京刚,等.CO2捕集回收技术研究[J].环境污染与防治,2008,30(12):77-82
    [18]李英杰,赵长遂,段伦博.基于钙基吸收剂煅烧/碳酸化循环吸收CO2研究进展[J].锅炉技术,2007,38(2):73-76
    [19]乔春珍,肖云汉,田文栋,等.钙基CO2吸收剂的循环特性[J].化工学报,2006,57(12):2953-2958
    [20]Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas[J].Industry& Engineering Chemistry Research, 2002,41(16):4035-4042
    [21]Kato Y, Yoshizawa Y, Kanie T. Calcium Oxide/Carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors[J].Nuclear Engineering and Design,2001,210(1-3):1-8
    [22]白涛,王春波,李永华,等.固体CaO颗粒吸收CO2特性分析[J].锅炉技术,2007,38(6):70-75
    [23]赵长遂,范荧,夏敏慧,等.CaO基矿物质循环吸收CO2的碳酸化研究[J].2008,4(1):1-6
    [24]金宇,王广才,李子江,等.CO2的回收和捕集技术进展[J].化学工程师,2008,(1):40-43
    [25]Elwell L C, Grant W S. CO2捕获技术方案选择[J].电力建设,2007,28(11):101-105
    [26]晏水平,方梦祥,张卫风,等.烟气中CO2化学吸收法脱除技术分析与进展[J].化工进展,2006,25(9):1018-1024
    [27]王家荣.高含CO2气田脱碳工艺探讨[J].油气田地面工程,2007,26(2):25-26
    [28]姜世楠.一乙醇胺CO2吸收剂的理化性质[J].舰船防化,2006,(2):19-23
    [29]宿辉,胡明星.四原子氮有机胺三乙烯四胺吸收CO2的研究[J].环境科学与管理,2007,32(4):58-61
    [30]Tan C S, Chen J E. Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed[J].Separation and Purification Technology,2006,49:174-180
    [31]Sakwattanapong R, Aroonwilas A, Veawab A V. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanol amines [J].Industrial and Engineering Chemistry Research,2005,44:4465-4473
    [32]张卫风,方梦祥,骆仲泱,等.中空纤维膜接触器分离烟气中CO2[J].环境科学学报,2006,26(5):773-778
    [33]艾宁,陈健,费维杨,等.MDEA+2,3-丁二酮水溶液对CO2吸收速率的测定[J].天然气化工,2004,29(3):10-14
    [34]王金莲,方梦祥,晏水平,等.吸收CO2新型混合化学吸收剂的研究[J].环境科学,2007,28(11):2630-2637
    [35]Jared P C, Philip D P, Tornas T. An economic scoping study for CO2 capture using aqueous ammonia[R].DOE/NETL Report,2005,1-12
    [36]郭强.一种用于CO2吸收的固体吸收剂[J].舰船防化,2004,(3):21-24
    [37]何涛,曹彬,胡军印,等.高温下钙基吸附剂吸附CO2的研究[J].化学工程,2007,35(12):8-11
    [38]Abanades J C, Alvarez D. Conversion Limits in the Reaction of CO2 with Lime[J].Energy and Fuels,2003,17(2):308-315
    [39]Li Y, Buchi S, Grace J R, et al. SO2 removal and CO2 capture by limestone resulting from calcinations/sulfation/carbonation cycles [J]. Energy and Fuels,2005,19(5):1927-1934
    [40]Sun P, Grace C J, Anthony E J. Simultaneous CO2 and SO2 capture at fluidized bed combustion temperatures[A].Process of the 18 Fluidized Bed Combustion [C].Toronto, Canada,2005,125-141
    [41]Barker R. The reactivity of calcinm oxide towards carbon dioxide and its use for energy storage[J].Journal of Applied Chemistry Biotechnology,1974,24(2):221-227
    [42]李英杰,赵长遂.钙基吸收剂循环锻烧/碳酸化反应过程特性研究[J].中国电机工程学报,2008,28(2):55-60
    [43]白涛,王晋权,庞永梅,等.基于逾渗理论的CaO吸收CO2动力学模型研究[J].电力 科学与工程,2008,24(1):51-54
    [44]李振山,房凡,蔡宁生.高浓度CO2下CaCO3循环煅烧试验与模拟[J].热能动力工程,2007,22(6):642-646
    [45]Balagopal N N, Takeo Y, Hiroto K, el al. Processing of Lithium Zirconate for Applications in Carbon Dioxide Separation:Structure and Properties of the Powders[J]. Journal of American Cerement Society,2004,87(1):68-74
    [46]王银杰,其鲁.Li2Zr03材料吸收CO2性能的进一步研究[J].无机化学学报,2004,20(7):770-775
    [47]吕国强,王华,马文会,等.Li4SiO4吸收C02的实验研究[J].热能工程,2007,36(5):4-8
    [48]余青霓,赵成坚,魏巍,等.金属氧化物净化CO2吸收剂研究[J].航天医学与医学工程,2007,20(6):432-436
    [49]毛欣.高强度高吸收性能CO2吸收剂LiOH[J].煤矿安全,2007,06:52-55
    [50]Nunes S P, Peinemann K V.化学工业中的膜技术[M].马润宇译.北京:化学工业出版社,2005:38-40
    [51]陆建刚,郑有飞,连平,等.膜基-气体吸收耦合分离混合气中CO2性能评价[J].南京气象学院学报,2007,30(6):881-884
    [52]晏水平,方梦祥,张卫风,等.基于膜吸收技术的烟气CO2分离工艺设计与经济性分析[J].动力工程,2007,27(3):416-423
    [53]陈进,兰治淮.工业废气CO2的回收利用[J].冶金环境保护,2007(5):52-56
    [54]吴永良,焦真,王冠楠,等.用于CO2吸收的离子液体的合成、表征及吸收性能[J].精细化工,2007,24(4):324-329
    [55]陈向民,李慧颖,李智勇,等.利用氨吸收电厂烟道气中的CO2及对大气减排CO2的分析[J].河北工业科技,2008,25(1):24-28
    [56]胡志光,叶秋生,程立国等.喷氨法吸收燃煤电厂CO2的可行性分析[J].环境科学与管理,2008,33(1):80-83
    [57]李清辉.CaO基高温CO2吸附剂研究[D].浙江:浙江大学材料与化学工程学院,2007
    [58]宋艳玲,马长捷.CH4-CO2重整催化剂用纳米MgO载体的制备[J].工业催化,2007,15(11):59-62
    [59]韩小红,王英.水滑石及类水滑石材料的合成及应用新进展[J].江苏化工,2003,31(2):26~31
    [60]Yong Z, Mata V, Rodrigues A E, Adsorption of carbon dioxide onto hydrotalcite-like compounds(HTlcs) at high temperatures[J].Ind Eng Chem Res.2001,40:204~209
    [61]Hufton J, Mayorga S, Nataraj S, et al. Sorption-enhanced reaction process for the hydrogen production[J]. Am.Inst.Chem.Eng.J,1999,45(2):248~256
    [62]Anand M, Hufton J, Mayorga S, et al. Sorption enhanced reaction Process (SERP)[J].proc. usdoe Hydrogen Program Rev.1996,1:537~49
    [63]Hutfon J R, Mayogra S G, Gaffney T R, et al. Sorption enhanced reaction process(SERP) for the production of hydrogen[J].Proc.usdoe Hydorgen Program Rev.1996,2:693~705
    [64]王保文,郑瑛,贺铸.CaO高温分离CO2过程的数值模拟[J].工程热物理学报,2006,27(6):1051-1053
    [65]陈传敏,赵长遂,赵毅.XRD研究O2/CO2气氛下石灰石煅烧产物烧结特性[J].东南大学学报(自然科学版),2008,38(1):97-100
    [66]Gupta H, Mahesh V, Sakadjian B B, et al. Reactive separation of CO2 using pressure pelletised limestone [J].International Journal of Environmental Technology and Management,2004,4(1-2):3-20
    [67]胡恩源,蔡炽柳,闫常峰,等.钙基吸收剂吸收和释放CO2特性的研究[J].材料研究与应用,2008,2(4):365-368
    [68]李英杰,赵长遂,段伦博,等.醋酸调质钙基吸收剂的循环碳酸化特性[J].东南大学学报,2008,38(1):123-129
    [69]Reddy E P, Smirniotis P G. High-Temperature Sorbents for CO2 Made of Alkali Metals Doped on CaO Supports [J].Journal of Physical Chemistry B,2004,108(23):7794-7800
    [70]Hughes R W, Lu D, Anthony E J, et al. Improved longterm conversion of limestone derived sorbents for in situ capture of CO2 in a fluidized bed combustor [J].Industrial and Engineering Chemistry Research,2004,43(18):5529-5539
    [71]陈建峰,贾志谦,王玉红,等.超重力场中合成立方型纳米CaCO3颗粒与表征[J].化学物理学报,1997,10(5):457-460
    [72]Liu R J, Chen J F, GuoF, et al. Kinetics and Mechanism of Decomposition of Nano-sized Calcium Carbonate under Non-isothermal Condition Chinese[J].Chem.Eng.,2003,11(3): 302-306
    [73]Rhines F N, Dehoff R T. Channe Network Decay in Sintering and Heterogeneous Catalyst[J].Pienum Press, New York,1984:49-61
    [74]吴嵘.改性纳米氧化钙高温二氧化碳吸附剂的制备及评价[D].浙江:浙江大学材料与化工学院,2006
    [75]王慧.无机复合固体碱的制备和稳定化及其在酯交换法合成碳酸二甲酯等绿色催化过程中的应用[D].太原:中国科学院山西煤炭化学研究所,2006
    [76]刘水刚,张学兰,李军平,等.高稳定性介孔CaO-ZrO2固体碱的结构及碱性研究[J].石油化工,2008,37(3):226-232
    [77]魏彤.固体碱的制备、表征及其在酯交换合成碳酸二甲酯中催化行为的研究[D].太原:中国科学院山西煤炭化学研究所,2003
    [78]颜秀茹,郭伟巍,宋宽秀,萍.CaO-ZrO2纳米粉体的制备和表征[J].硅酸盐通报,2002,(4):52-56
    [79]任勃,李茹民,董国君.CaO/ZrO2固体碱的制备及催化合成碳酸二异辛酯[J].应用科技,2006,33(11):66-69
    [80]刘水刚,李军平,赵宁,等.介孔Ni/CaO-ZrO2纳米复合物催化甲烷和二氧化碳重整[J].催化学报,2007,28(11):1019-1024
    [81]刘建本,阮建明,皱俭鹏,等.化学共沉淀法制备四方相ZrO2-CaO纳米粉[J].粉末冶金材料科学与工程,2002,7(4):265-270
    [82]梁丽萍,高荫本,陈诵英.共沉淀-超临界流体干燥法合成CaO-ZrO2复合氧化物超微粉体及其烧结性能研究[J].硅酸盐通报,1998,(3):17-22
    [83]陈汝芬,宋秀芹.(Y203Ca0)-(ZrO2)超细粉的制备及条件对粒径的影响[J].微纳电子技术,2004,(3):21-24
    [84]王月娟,周仁贤,蒋晓原,等.ZrO2负载过渡金属催化剂的结构和催化性能[J].石油化工,1999,28(9):588-593
    [85]Ghosh D A, Mahuli S K, Agninotri R, et al. Investigation of High-Reactivity Calcium Carbonate Sorbent for Enhanced SO2 Capture [J].Industry Engineering Chemistry,1996, 35(2):598-606
    [86]张丽,卢继昌,金玲,等.CO2活化CaCO3作为脱硫剂的半干法烟气脱硫实验研究[J]. 高校化学工程学报,2007,21(5):859-864
    [87]阎常峰,陈勇,Grace J R,等.快速煅烧分解石灰石对其吸收CO2和SO2的影响[J].燃烧科学与技术,2007,13(1):29-34
    [88]刘立忠,张承中,杨毅,等.循环流化床系统脱硫剂中CaO含量变化研究[J].西安建筑科学大学学报,2007,39(3):358-360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700