基于Nano-CT技术研究多孔陶瓷材料的三维结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷中空纤维膜材料体内的多孔结构对其性能影响很大,因此研究陶瓷的多孔结构具有十分重要的意义,不过现有的中空陶瓷表征手段均不能够观察这种孔的三维结构。本实验采用Nano-CT成像技术对相转化制备的陶瓷中空纤维膜的多孔结构进行了三维观察,获得了膜内部孔的形状、孔隙率、孔径分布等重要参数,并大致计算了孔的大小大约为0.4-1.5μm,孔隙率为38.31%,这些重要实验数据可以为改善其制造工艺、优化结构参数提供了基本依据,从而能够使其更好地在化工、能源、环保等多个领域得到更广泛的应用。本工作是在合肥国家同步辐射实验室U7A硬x-射线成像实验站完成的,我们主要开展了以下几个部分的工作:
     第一部分:利用Nano-CT技术进行中空陶瓷材料的二维图像的研究,获得了中空纤维膜的表面信息;
     第二部分:对YSZ-LSM陶瓷中空纤维壁内形貌进行了无损的三维观察,获得了膜内部孔的形状、孔的走向、孔径分布以及中空纤维膜内部详实的三维结构,同时计算了孔的大小和孔隙率。利用Nano-CT对YSZ-LSM进行表征技术可为改善制造工艺、优化结构参数提供准确数据,制备得到我们所需的微观结构,获得可以广泛应用于化工、能源、环保等领域所需性能的陶瓷中空纤维;
     第三部分:通过反复实验和样品的前期处理,不断提高中空陶瓷纤维膜样品制备方法,以求取得更完善的实验数据。
The study of porous structure of ceramic is of significance because it has a great impact on the performance of ceramic. However, the existing characterization techniques are not able to observe the three-dimensional (3D) structure of ceramic. In this paper, Nano-CT imaging technique were used to study the 3D structure of ceramic hollow fiber membrane which obtained by phase inversion. The results showed the shape, direction, size distribution, as well as the 3D map of the pores in side the ceramic. The pore size is about 0.4-1.5μm, and the porosity is 38.31%. These data can be used to improve their manufacturing processes and optimize the structure parameters, which make it widely used in the chemical, energy, environmental protection and other fields.
     The main works in the thesis are described as the following:
     Part 1: Using Nano-CT technique for two-dimensional images of hollow ceramic materials research, obtained information on the surface of hollow fiber membrane
     Part 2:In this work, Nano-CT imaging technique was used to study 3D structure of a ceramic fiber tube prepared by a phase inversion technology. The results showed the shape, direction, size distribution, and 3D map of the pores inside the ceramic wall. The pore size is 0.4–1.5μm, with a porosity of 38.31%. The data can be used to improve their preparation processes and optimize the structure parameters, for applications in chemical, energy, environmental protection and other fields.
     Part 2 :Through repeated experiments and sample pre-treatment, and constantly improve the ceramic hollow fiber membrane sample preparation methods, in order to obtain better experimental data.
引文
1 Alivisatos, A.P., Gu, W.W., Larabell, C., 2005. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76.
    2 Anesti, V., Scorrano, L., 2006. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta Bioenerg. 1757, 692–699.
    3 Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess,H.F., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645.
    4 Bone, N., Millar, J.B.A., Toda, T., Armstrong, J., 1998. Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases. Curr. Biol. 8, 135–144.
    5 Claude, A., 1949. Electron microscope studies of cells by the method of replicas. J. Exp. Med. 89, 425–430.
    6 Conibear, E., Stevens, T.H., 1995. Vacuolar biogenesis in yeast—sorting out the sorting proteins. Cell 83, 513–516.
    7 Egner, A., Jakobs, S., Hell, S.W., 2002. Fast 100-nm resolution three dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99, 3370–3375.
    8 Giepmans, B.N.G., Adams, S.R., Ellisman, M.H., Tsien, R.Y., 2006. Review-the fluorescent toolbox for assessing protein location and function. Science 312, 217–224.
    9 Gu, W.W., Etkin, L.D., Le Gros, M.A., Larabell, C.A., 2007. X-ray tomography of Schizosaccharomyces pombe.Differentiation 75, 529–535.
    10 Gustafsson, M.G.L., 2005. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086.
    11 Hales, K.G., 2004. The machinery of mitochondrial fusion, division, and distribution, and emerging connections to apoptosis. Mitochondrion 4,285–308.
    12 Hell, S.W., 2007. Far-field optical nanoscopy. Science 316, 1153–1158.
    13 Hermann, G.J., Shaw, J.M., 1998. Mitochondrial dynamics in yeast. Annu. Rev. Cell Dev. Biol. 14, 265–303.
    14 Hoog, J.L., Schwartz, C., Noon, A.T., O’Toole, E.T., Mastronarde, D.N., McIntosh, J.R.,
    15 Antony, C., 2007. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev. Cell 12,349–361.
    16 Jakobs, S., Martini, N., Schauss, A.C., Egner, A., Westermann, B., Hell,S.W., 2003. Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J. CellSci. 116,2005–2014.
    17 Jensen, R.E., 2005. Control of mitochondrial shape. Curr. Opin. Cell Biol 17, 384–388. Larabell, C.A., Le Gros, M.A., 2004. X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Mol. Biol. Cell 15, 957–962.
    18 Le Gros, M.A., McDermott, G., Larabell, C.A., 2005. X-ray tomography of whole cells. Curr. Opt. Struct. Biol. 15, 593–600.
    19 Logan, D.C., 2003. Mitochondrial dynamics. New Phytol. 160, 463–478. Logan, D.C., 2006. The mitochondrial compartment. J. Exp. Bot. 57,1225–1243.
    20 Lucic, V., Forster, F., Baumeister, W., 2005. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865.
    21 Marabini, R., Herman, G.T., Carazo, J.M., 1998. 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicroscopy 72, 53–65.
    22 Mastronarde, D.N., 1997. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343–352.
    23 McDonald, K., 2007. Cryopreparation methods for electron microscopy of selected model systems Cellular Electron Microscopy. Elsevier Academic Press Inc., San Diego, pp. 23–56.
    24 Meyer-Ilse, W., Hamamoto, D., Nair, A., Lelievre, S.A., Denbeaux, G., Johnson, L., Pearson, A.L., Yager, D., Legros, M.A., Larabell, C.A.,2001. High resolution protein localization using soft X-ray microscopy. J. Microsc. (Oxford) 201, 395–403.
    25 Palade, G.E., Porter, K.R., 1954. Studies on the endoplasmic reticulum.1.Its identification in cells in situ. J. Exp. Med. 100, 641–656.
    26 Perktold, A., Zechmann, B., Daum, G., Zellnig, G., 2007. Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell. FEMS Yeast Res. 7, 629–638.
    27 Rust, M.J, Bates, M., Zhuang, X.W., 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat.Methods 3, 793–795.
    28 Sorzano, C.O.S., Marabini, R., Velazquez-Muriel, J., Bilbao-Castro, J.R., Scheres, S.H.W., Carazo, J.M., Pascual-Montano, A., 2004. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204.
    29 Sosinsky, G.E., Giepmans, B.N.G., Deerinck, T.J., Gaietta, G.M., Ellisman, M.H., 2007. Markers for correlated light and electron microscopy Cellular Electron Microscopy. Elsevier Academic Press Inc., San Diego, pp. 575–591.
    30 Subramanian, S., 2005. Bridging the imaging gap: visualizing subcellular architecture with electron tomography. Curr. Opin. Microbiol. 8, 316–322.
    31 Sun, M.G., Williams, J., Munoz-Pinedo, C., Perkins, G.A., Brown, J.M., Ellisman, M.H., Green, D.R., Frey, T.G., 2007. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat. Cell Biol. 9, 1057–1065.
    32 Chang, F. and Nurse, P. (1996) How fission yeast fission in themiddle. Cell 84:191–194.
    33 Chao, W.L., Harteneck, B.D., Liddle, J.A., Anderson, E.H. and Attwood, D.T. (2005) Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435:1210–1213.
    34 Frank, J. (1992) Electron tomography: three-dimensional imaging with the transmission electron microscope. Plenum Press, NewYork.
    35 Gould, K.L. and Simanis, V. (1997) The control of septum formation in fission yeast. Genes Dev 11:2939–2951.
    36 Kremer, J.R., Mastronarde, D.N. and McIntosh, J.R. (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76.
    37 Larabell, C.A. and Le Gros, M.A. (2004) X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Mol Biol Cell 15:957–962.
    38 Le Gros, M.A., McDermott, G. and Larabell, C.A. (2005) X-ray tomography of whole cells. Curr Opin Struct Biol 15:593–600.
    39 Marks, J., Hagan, I.M. and Hyams, J.S. (1986) Growth polarity and cytokinesis in fission yeast—the role of the cytoskeleton.J Cell Sci 229–241.
    40 Meyer-Ilse, W., Hamamoto, D., Nair, A., Lelievre, S.A., Denbeaux,G., Johnson, L., Pearson, A.L., Yager, D., Legros, M.A.and Larabell, C.A. (2001) High resolution protein localization using soft X-ray microscopy. J Microsc–(Oxford) 201:395–403.
    41 Mitchison, J.M. and Nurse, P. (1985) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J Cell Sci 75:357–376.
    42 Morrell-Falvey, J.L., Ren, L., Feoktistova, A., Haese, G.D. and Gould, K.L. (2005) Cell wall remodeling at the fission yeast cell division site requires the Rho-GEF Rgf3p. J Cell Sci 118:5563–5573.
    43. Alexander Sasov, SkyScan et al. (2004) X-ray nanotomography. SPIE Vol. 5535, Developments in x-ray tomography IV., pp 201-211
    44 L. A. Feldkamp, L. C. Davis, and J. W. Kress et al. (1984) Practical cone-beam algorithm. J. Opt. Soc. Am. A, Vol. 1, No. 6, pp 612-619
    45 J. Anthony Seibert, John M. Boone, and Karen K. Lindfors (1998) Flat-field correction technique for digital detectors. SPIE Vol. 3336, Physics of Medical Imaging., 1998, pp 348-354
    46 P. Sire, P. Rizo, M. Martin et al. (1993) X-ray cone-beam CT system calibration. SPIE Vol. 2009, X-Ray Detector Physics and Applications 11., pp 229-239
    47 Lorenz von Smekal,a) Marc Kachelrie?, Elizaveta Stepina, and Willi A. Kalender et al. (2004) Geometric misalignment and calibration in one-beam tomography. Med. Phys., Vol. 31, No. 12, pp 3242-3266
    48 X. Song, E.C. Frey, B.M.W. Tsui (2001) Development and evaluation of a microCT system for small animal imaging. IEEE Proc. vol. 3,Nuclear Science Symposium Conference Record., 2001, pp 1600–1604
    49 Yun W, Lai B, Krasnoperova A, Di Fabrizio E, Cai Z, Cerrina F, Chen Z, Gentili M andGluskin E 1999 Rev. Sci.Instrum. 70 3537
    50 Attwood D 1999 Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge:Cambridge University Press) p 337
    51 Lo T N et al 2007 J. Phys. D: Appl. Phys. 40 3172
    52 Chao W, Harteneck B D, Liddle J A, Anderson E H and Attwood D T 2005 Nature 435 1210
    1 S. Mann and G. A. Ozin, Nature _London_ 382, 313 _1996_.
    2 J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, Nature ,London,412, 819 2001.
    3 S. H. Yu, Top. Curr. Chem. 271, 79 _2007_.
    4 C. Y. Wu, S. H. Yu, and M. Antonietti, Chem. Mater. 18, 3599 _2006_.
    5 B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar, D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella,and M. Baciocchi, Appl. Phys. Lett. 61, 1877 _1992_.
    6 W. B. Yun, B. Lai, Z. Cai, J. Maser, D. Legnini, E. Gluskin, Z. Chen, A. A. Krasnoperova, Y. Vladimirsky, F. Cerrina, E. Di Fabrizio, and M. Gentili, Rev. Sci. Instrum. 70, 2238 _1999_.
    7 W. B. Yun, B. Lai, A. Krasnoperova, E. Di Fabrizio, Z. Cai, F. Cerrina, Z. Chen, M. Gentili, and E. Gluskin, Rev. Sci. Instrum. 70, 3537 _1999_.
    8 E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, Nature _London_ 401, 895 _1999
    9 W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Nature London 435, 1210 _2005_.
    10 Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W.-K. Lee, H. J. Wu, C. L.Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G.Margaritondo, Appl. Phys. Lett. 92, 103119.2008
    11 G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. B. Yun, and H. P. D. Shieh, Appl. Phys. Lett. 89, 221122,2006
    12 A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging _IEEE, New York, 1988.
    13 D. Weiss, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G.Schmahl, Ultramicroscopy 84, 185,2000.
    14 C. A. Larabell and M. A. le Gros, Mol. Biol. Cell 15, 957,2004.
    15 G. C. Yin, M. T. Tang, Y. F. Song, F. R. Chen, K. S. Liang, F. W. Duewer W. B. Yun, C. H. Ko, and H. P. D. Shieh, Appl. Phys. Lett. 88, 241115,2006.
    16 W. Chao, E. H. Anderson, G. Denbeaux, B. Harteneck, A. L. Pearson, D. Olynick, F. Salmassi, C. Song, and D. Attwood, J. Vac. Sci. Technol. B 21, 3108 ,2003.
    17 A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, Z.Kristallogr. 222, 650,2007.
    18 See EPAPS Document No. E-APPLAB-92-005824 for a video of the 3D rendering of the concaved cuboctahedron CuS crystal. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
    19 Y. Wan, C. Y. Wu, Y. L. Min, and S. H. Yu, Langmuir 23, 8526,2007.
    20 Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, and M. Kuhn, Appl. Phys. Lett. 74, 150,1999.
    21 F. Zernike, Z. Tech. Phys. 11, 454-457 (1935).
    22 G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, and B. Niemann, Rev. Sci.Instrum. 66, 1282-1286 (1995).
    23 J. Chen, C. Wu, J. Tian, W. Li, S. Yu, and Y. Tian, Appl. Phys. Lett. 92, 233104 (2008).
    24 Y. Tian, W. Li, J. Chen, L. Liu, G. Liu, A. Tkachuk, J. Tian, Y. Xiong, J. Gelb, G. Hsu, W. Yun,Rev. Sci. Instrum. 79,103708 (2008).
    25 http://www.microscopyu.com/tutorials/java/phasecontrast/shadeoff/index.html
    26 L. Song, L. Ci, L. Lv, Z. Zhou, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, X. Zhao, Z.Zhang, X. Dou, W. Zhou, G. Wang, C. Wang, S. Xie, Adv. Mater. 16, 1529–1534 (2004).
    27 Z. Hu, S. Liu, Z. Yue, L. Yan, M. Yang, H. Yu, Environ. Sci. Technol. 42, 276-281 (2008).
    28 the International Conference on X-Ray Microscopy IOP Publishing Journal of Physics: Conference Series 186 (2009) 012005
    29 Tian Y, Li W, Chen J, Liu L, Liu G, Tkachuk A, Tian J, Xiong Y, Gelb J, Hsu G, and Yun W 2008 Rev. Sci. Instrum. 79 103708
    30 Yang C C 2008 OPTIK 119 143-146
    31 Gonzalez R C and Woods R E 2002 Digital Image Processing, Second Edition (Prentice Hall)
    32 Dougherty E R and Astola J 1994 An Introduction to Nonlinear Image Processing (SPIE Optical Engineering Press)
    33 Song L, Ci L, Lv L, Zhou Z, Yan X, Liu D, Yuan H, Gao Y, Wang J, Liu L, Zhao X, Zhang Z,Dou X, Zhou W, Wang G, Wang C, Xie S 2004 Adv. Mater. 16, 1529–1534
    34 W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Nature ,London,435, 1210,2005。
    35 M. Awaji, Y. Suzuki, A. Takeuchi, H. Takano, N. Kamijo, S. Tamura, and M. Yasumoto, Nucl. Instrum. Methods Phys. Res. A 467, 845,2001.
    36 U. Neuh?usler, G. Schneider, W. Ludwig, M. A. Meyer, E. Zschech, and D. Hambach, J. Phys. D 36, A79,2003.
    37 H. S. Youn, S. Y. Baik, and C. H. Chang, Rev. Sci. Instrum. 76, 023702,2005.
    38 G. C. Yin, M. T. Tang, Y. F. Song, F. R. Chen, K. S. Liang, F. W. Duewer, W. Yun, C. H. Ko, and H. P. Shieh, Appl. Phys. Lett. 88, 241115,2006.
    39 Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W.-K. Lee, H. J. Wu, C. L.Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu,A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, Appl. Phys. Lett. 92, 103119,2008.
    40 J. Chen, C. Wu, J. Tian, W. Li, S. Yu, and Y. Tian, Appl. Phys. Lett. 92, 233104,2008.
    41 G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, and B. Niemann,Optik Stuttgart,97,181,1994.
    42 T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins,Nature,London,373, 595,1995.
    43 S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, Nature _London_ 384, 335,1996.
    44 K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961,1996.
    45 D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, Phys. Med. Biol. 42,2015,1997.
    46 P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, Appl. Phys. Lett. 75, 2912,1999.
    1 J.sunarso,S.Baumann,J.M.serra,W.A.Meulenbe,S.Liu,y.s.Lin,J.C.Diniz da Cost, Mixed ionic-eleetronic conducting(MIEC) ceramic-based membranes for oxygen separation,J. Membr.Sei.320(2008)13-41
    2 P N.oyer,R.E.Riehards,S.L.Russek,D.M.Taylor,Ion transport membrane technology for oxygen separation and syngas Production,Solid State Ionies134(2000)21-33
    3 H.J.M.Bouwmeester,Dense ceramie Membranes for oxygen separation,In fundamentals of Inorganic Membrane Seienee and Technology,Edited by A.J.Burggraaf and L.Cot Elservier, Amsterdam,1996,PP.435-528.
    4 C.S.chen,s.J.Feng,S.Ran,D.C..zhu, w.Liu,H.J.M.Bouwmeester,Conversion of methane to Syngas by a membrane-based oxidation-reforming Proee,Angew.Chim.Int.Ed.42(2003)5196
    5 J.Davsson,Perforrmance and costs of power plants with capture and storagee of Co2,Energy 32(2007)1163
    6 Vattenrall frormally commissions pilot plant free of carbon dioxide emissions; :available at httP://www.industrialinfo.eom/showAbstraet.jsP?newsitemID=138950.
    7 Y.Teraoka,H.M.zhang,s.Furukawa,N.vamazoe,oxygen permeation through Perovskite- type oxides,Chem.Lett.(1985)1743
    8 J.H.tong,W.S.yang,B.c.zhu,R.cai,investsgation of ideal zireonium-doped Perovskite-type ceramiec mernbrane materials for oxygense Parati,J.Membr.Sei.203(2002) 175
    9 M.Arnod,H.H.wang,A.Feldhoff,Influence of Co2 on the oxygen permeation performance And the micro structure of Perovskite-type(Ba0.5Sr0.5)(Co0.8Fe0.2)O3-6 membranes, J.Membr. Sci.293(2007)44 I0 S.C. Li,W.Q. Jin,N.P. Xu,J.shi, Mechanical strength, and oxygen and eleetronic transport ProPerties of srCoo.4Fe0.6O-YSZ membranes,J.Membr.Sei.186(2001)195
    11 J.x.Yi,Y.B.zuo,W. Liu,L.winnubst,C.S. Chen,Oxgen permeation through a Ce0.8Sm0.2O2-Lao.8Sr0.2CrO.3 dual-Phase composite membrane,J.Membr.Sei.280(2006) 849-855
    12 B.wang,J,x.Yi, L.winnubst,C.S.Chen,Stability and oxygen permeation behavior of Ce0.8Sm0.2O-La0.8SrO,Composite membrane under large oxygen Partial Pressure gradients,J.Membr.Sei.280(2006)849-855
    13 H.Takamura,H.sugai,M.watanbe,T.Kasahara,A.Kamegawa,M.Okada,Oxygen Permeation ProPerties and surface modification of acceptor-doPed CeO2/MnFeZO4
    14 Posites,J.Eleetroeeram.17(2006)741-748
    15 .Minh, Journa l of the American ceramic societ,76(1993)563
    16 1ame O, Bellet D, Di Michiel M, et al. Acta Materialia, 2004, 52(4): 977–984
    17孟波,谭小耀,杨乃涛,等.中国有色金属学报. 2005, 15(3), 358–362 MENG Bo, TAN Xiaoyao, YANG Naitao, et al. The Chinese Journal of Nonferrous Metals, 2005, 15(3): 358–362
    18盛永刚,徐耀,李志宏.等.物理学报, 2005, 54(1): 221–227
    19 Bernard D, Dendron D, Heintz J M, et al. S. Acta Materials, 2005, 53: 121–128
    20许峰,胡小方,卢斌,等.无机材料学报, 2009, 24: 175–181 XU Feng, HU Xiaofang, LU Bin, et al. Journal of Inorganic Materials, 2009, 24: 175–181
    21 TIAN Yangchao, LI Wenjie, CHEN Jie Chen, et al. Rev Sci Instr, 2008, 79: 103708
    22田金萍,李文杰,陈洁,等.核技术, 2008, 31(9): 671–675 TIAN Jinping, LI Wenjie, CHEN Jie, et al. Nucl Tech, 2008, 31(9): 671–675
    23 LUYen J, Buekenhoudt A, Adriansens W, et al. Solid State Ionics, 2000, 135: 637–642
    24 LI Wei, LIU Jianjun, CHEN Chusheng. Journal of Membrane Science, 2009, 340: 266–271
    25 Benjamin F, Kingsbury K, Li K. Journal of Membrane Science, 2009, 328: 134–140
    26 Chiao Chien Wei, Li K. Ind Eng Chem Res, 2008, 47: 1506–1512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700