拟南芥CSN1对COP1细胞内定位的影响以及CSN1生物学功能的进一步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
COP9信号复合体(CSN)是一个保守的蛋白复合体,由8个不同的亚基组成,依次命名为CSN1-CSN8。CSN复合体最初是在对拟南芥光形态发生的遗传学研究中被发现的,csn突变体幼苗都呈现组成型光形态建成的表型。
     CSN. COP1以及COP10-DDB1-DET1 (CDD)复合体都是调节植物光反应和发育的关键因子。COP1受到光信号影响会改变其在细胞核与细胞质中的分布比例。早期拟南芥遗传学研究发现COP1的细胞核定位需要CSN复合体的存在,但CSN复合体影响COP1的细胞内定位的分子机制还没有报道。
     为了探讨COP1在细胞内定位的分子机制,利用洋葱表皮细胞瞬间表达系统,我们发现共表达的CSN1能够促进GUS-COP1的细胞核定位,且CSN1的N-末端是促进GUS-COP1细胞核定位的关键。同时利用拟南芥csn1突变体,证实CSN1的N-末端是COP1实现细胞核定位不可缺少的蛋白片段。进而利用酵母双杂交系统检测发现CSN1通过其N-末端结构域直接和COP1的coiled-coil结构域发生相互作用,并且通过免疫共沉淀实验证实COP1和CSN复合体在拟南芥体内存在相互作用。此外,CSN1对COP1细胞核定位的促进作用需要COP1自身细胞核定位信号的参与,同时也与COP1的coiled-coil吉构域有关。COP1的coiled-coil结构域不仅是CSN1的结合区,还包含了COP1细胞质定位信号的一部分。这些发现使我们CSN复合体影响COP1的细胞定位的机制有了进一步的了解,为今后深入研究CSN复合体调控植物光形态发生的分子机制提供了一定的依据。
     CSN复合体最初被定义为拟南芥光形态发生的抑制因子,随着研究的深入,人们发现CSN复合体参与真核生物的各种生长发育过程以及细胞周期等细胞变化进程。CSN1亚基的C-末端包含一个PCI结构域,该结构域负责蛋白亚基与业基的相互作用以及CSN复合体的形成。CSN1的N-末端不参与CSN复合体的形成,但是对CSN复合体的功能起着重要作用。
     为了深入了解CSN复合体如何通过CSN1调控植物的生长发育等过程,本研究利用酵母双杂交文库筛选技术寻找CSN1的N-末端相互作用蛋白,获得了5个候选蛋白,分别是PAD2、TSA1、eIF-2家族蛋白、核糖体60S亚基蛋白L35以及一个含C2结构域的蛋白,并对其中的PAD2、TSA1的相关功能进行了初步研究。
     PAD2是26S蛋白酶体的核心组分20S蛋白酶体的α亚基之一。已有证据揭示拟南芥中CSN复合体、26S蛋白酶体和SCF型E3连接酶能够相互结合形成更大的复合体,而且拟定南芥SCF型E3可以通过Skp1亚基SnRK-蛋白激酶的直接相互作用锚定到PAD1上。但目前关于CSN复合体通过何种方式参与其中还不是很清楚,通过酵母双杂交文库筛选,我们发现PAD2的C-末端片段与CSN1的N-末端片段存在相互作用。进一步研究发现与PAD2高度同源的蛋白PAD1的C-末端也能和CSNl的N-末端发生相互作用。此外,在酵母双杂交系统中,我们发现PAD1的C-末端与COP1也存存相互作用,但是PAD2的C-末端与COP1没有相互作用。由此我们推测CSN复合体可以通过CSN1的N端与26S蛋白酶体发生相互作用,起到维持更大复合体的稳定的作用或者也可能调节26S蛋白酶体的相关活性,而且COP1作为另一类E3连接酶也可能通过PAD1来参加蛋白降解过程,相关机制尚需进一步的研究。
     TSA1是一种钙调结合蛋白相关蛋白,可以与TSK相互作用,并且可能参与细胞周期过程的调控。通过酵母双杂交文库筛选,我们发现TSAl的C-末端与CSNl的N-末端片段存在相互作用。酵母双杂交分析证实TSA1全长和CSN1的N-末端存在相互作用。为了研究TSA1的生物学功能,我们获得了TSAl的T-DNA插入突变体。检测发现该突变体的T-DNA插入位点在TSA1基因ATG上游103个碱基处。半定量RT-PCR检测发现突变体中TSA1的转录水平比野生中TSA1的转录水平低。在暗培养条件下,tsa1突变体幼苗的下胚轴与野生型相比略短,但在光培养条件下,则没有明显变化。这一实验结果表明TSA1可能在光形态建成过程中承担某种功能,进一步的研究尚在进行之中。
The C0P9 signalosome (CSN) complex is a conserved protein complex, typically consisting of eight subunits designated CSN1-CSN8. CSN complex is originally identified based on mutants with a constitutive photomorphogenic (cop) phenotype in Arabidopsis thaliana seedlings.
     CSN, COP1 and C0P10-DDB1-DET1 (CDD) complex component are key regulators of plant light responses and development. COP1 can respond to light signals by differentially partitions between nuclear and cytoplasmic compartments. Previous genetic analysis in Arabidopsis indicates that nuclear localization of COP1 requires CSN. However the mechanism underlying the functional relationship between COP1 and CSN is unknown.
     In this report, we report that, in onion epidermal cells, expression of CSN1 can stimulate nuclear localization of GUS-COP1, and the N-terminal domain of CSN1 is necessary and sufficient for this function. We also provide genetic evidence that CSN1 N-terminal domain is specifically required for COP1 nuclear localization in Arabidopsis hypocotyls cells. Further, we demonstrate that CSN1, via its N-terminal domain (NTD), directly interacts with COP1 at the coiled-coil domain in yeast two hybrid system, and confirm that COP1 weakly associates with CSN in vivo. Moreover, CSN1-induced COP1 nuclear localization requires COP1's own nuclear-localization sequences as well as its coiled-coil domain, which contains both the cytoplasmic localization sequences and the CSN1 interacting domain. These findings provide a mechanistic insight into the interrelationship between COP1 and the CSN complex. Our findings set a foundation for further investigations into the mechanism of COP1 subcellular localization in plants.
     CSN complex is initially defined as a repressor of photomorphogenesis in Arabidopsis, and it has now been found to participate in diverse cellular and developmental processes in various eukaryotic organisms. CSN1 contains a large PCI domain located at the C-terminal half of the protein, which is necessary for subunit-subunit interaction and complex assembly. The NTD of CSN1, on the other hand, does not have a structural role, but is involved in a critical function of CSN that is not yet understood molecularly.
     To get more information about the functional contribution of CSNl-NTD in plant development, yeast two-hybrid screening is used to identify proteins able to interact with the NTD of CSNl. At last, five different genes are identified by sequencing the positive clones. The proteins of these genes are PAD2, TSA1, eIF-2 family protein,60S ribosomal protein L35 and C2 domain-containing protein. We focus on the study of the functions of PAD2, TSA1 with CSN1-NTD.
     PAD2 is one of the 20S proteasome alph subunits. By yeast two-hybrid screening, we got the NTD truncated version of PAD2. In Arabidopsis, PAD2 has a homology, named PAD1. We find that the C-terminal domain (CTD) of PAD1 can also interact with CSN1-NTD in yeast two-hybrid system. Moreover, the interaction between COP1 and the CTD of PAD1, but not the CTD of PAD2, is detected by yeast two-hybrid assay.
     TSA1 is a caldesmon-related protein, and has Ca2+-binding activity. By yeast two-hybrid screening, we got the NTD truncated version of TSA1. The interaction between full length TSA1 and CSN1-NTD is confirmed by yeast two-hybrid assay. To study the biological function of TSA1, T-DNA insertion mutant is obtained from the SALK T-DNA collection. In the line, T-DNA insertion is 103bp before the ATG of AtTSAl. The expression level of AtTSA1 in the mutant is examined by half-quantitative RT-PCR, which shows lower TSA1 transcript in the mutant than in the wild type. In normal light growth conditions, tsal mutants do not exhibit any detectable abnormality throughout the whole life span. While in the dark, the mutants exhibit slightly decreased hypocotyls, compared with the wild type.
     Further studies are required to del ineate the functional relationship between CSNl and these interaction proteins.
引文
[1]N. Wei, S. F. Kwok, A. G. von Arnim, A. Lee, T. W. McNell is, B. Piekos, X. W. Deng, Arabidopsis C0P8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness, Plant Cell 6 (1994) 629-643.
    [2]N. Wei, X. W. Deng, The C0P9 signalosome, Annu Rev Cell Dev Biol 19 (2003) 261-286.
    [3]C. Fankhauser, J. Chory, Light control of plant development, Annu Rev Cell Dev Biol 13 (1997) 203-229.
    [4]N. Wei, X.W. Deng, C0P9:a new genetic locus involved in light-regulaled development and gene expression in arabidopsis, Plant Cell 4 (1992) 1507-1518.
    [5]C. S. Hardtke, X. W. Deng, The cell biology of the COP/DFT/FUS proteins Regulating proteolysis in photomorphogenesis and beyond?, Plant Physiol 124 (2000) 1548-1557.
    [6]G. Serino, X.W. Deng, The C0P9 signalosome:regulating plant development through the control of proteolysis, Annu Rev Plant Biol,2003, pp.165-182.
    [7]X. W. Deng, T. Caspar, P. H. Quail, copl:a regulatory locus involved in light-control led development and gene expression i n Arabidopsis, Genes Dev 5 (1991) 1172-1182.
    [8]J. Chory, C. Peto, R. Feinbaum, L. Pratt, F. Ausubel, Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light,1989.
    [9]J. W. Reed, J. Chory, Mutational analyses of light-controlled seedl ing development in Arabidopsis, Semin Cell Biol 5 (1994) 327-334.
    [10]D. F. Schroeder, M. Gahrtz, B. B. Maxwell, R. K. Cook, J. M. Kan, J. M. Alonso, J.R. Ecker, J. Chory, De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis, Curr Biol 12 (2002) 1462-1472.
    [11]Y. Yanagawa, J.A. Sullivan, S. Komatsu, G. Gusmaroli, G. Suzuki, J. Yin, T. Ishibashi, Y. Saijo, V. Rubio, S. Kimura, J. Wang, X. W. Deng, Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes, Genes Dev 18 (2004) 2172-2181.
    [12]D. A. Chamovitz, N. Wei, M. T. Osterlund, A. G. von Arnim, J. M. Staub, M. Matsui, X. W. Deng, The C0P9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch, Cell 86 (1996) 115-121.
    [13]N. Wei, X. W. Deng, Making sense of the C0P9 signalosome. A regulatory protein complex conserved from Arabidopsis to human, Trends Genet 15 (1999) 98-103.
    [14]E. Oron, T. Tuller, L. Li, N. Rozovsky, D. Yekutieli, S. Rencus-Lazar, D. Segal, B. Chor, B. A. Edgar, D. A. Chamovitz, Genomic analysis of C0P9 signalosome function in Drosophila melanogaster reveals a role in temporal regulation of gene expression, Mol Syst Biol 3 (2007) 108.
    [15]G. Serino, T. Tsuge, S. Kwok, M. Matsui, N. Wei, X. W. Deng, Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome, Plant Cell 11 (1999) 1967-1980.
    [16]K. Tomoda, Y. Kubota, Y. Arata, S. Mori, M. Maeda, T. Tanaka, M. Yoshida, N. Yoneda-Kato, J.Y. Kato, The cytoplasmic shuttling and subsequent degradation of p27Kipl mediated by Jabl/CSN5 and the C0P9 signalosome complex, J Biol Chem 277 (2002) 2302-2310.
    [17]X. Wang, D. Kang, S. Feng, G. Serino, C. Schwechheimer, N. Wei, CSN1 N-terminal-dependent activity is required for Arabidopsis development but not for Rubl/Nedd8 deconjugation of cullins:a structure-function study of CSN1 subunit of COP9 signalosome, Mol Biol Cell 13 (2002) 646-655.
    [18]J. A. Sullivan, K. Shirasu, X. W. Deng, The diverse roles of ubiquitin and the 26S proteasome in the life of plants, Nat Rev Genet 4 (2003) 948-958.
    [19]C. Schwechheimer, X. W. Deng, COP9 signalosome revisited:a novel mediator of protein degradation, Trends Cell Biol 11 (2001) 420-426.
    [20]H. Scheel, K. Hofmann, Prediction of a common structural scaffold for proteasome lid, C0P9-signalosome and eIF3 complexes, BMC Bioinformatics 6 (2005) 71.
    [21]G. Gusmaroli, P. Figueroa, G. Serino, X. W. Deng, Role of the MPN subunits in C0P9 signalosome assembly and activity, and their regulatory interact ion with Arabidops is Cullin3-based E3 ligases, Plant Cell 19 (2007) 564-581.
    [22]G. A. Cope, R. J. Deshaies, C0P9 signalosome:a multifunctional regulator of SCF and other cullin-based ubiquitin ligases, Cell114 (2003) 663-671.
    [23]S. Lyapina, G. Cope, A. Shevchenko, G. Serino, T. Tsuge, C. Zhou, D. A. Wolf, N. Wei, A. Shevchenko, R. J. Deshaies, Promotion of NEDD-CUL1 conjugate cleavage by C0P9 signalosome, Science 292 (2001) 1382-1385.
    [24]C. Schwechheimer, G. Serino, J. Callis, W. L. Crosby, S. Lyapina, R. J. Deshaies, W. M. Gray, M. Estelle, X. W. Deng, Interactions of the C0P9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response, Science 292 (2001) 1379-1382.
    [25]G. A. Cope, G. S. Suh, L. Aravind, S. E. Schwarz, S. L. Zipursky, E. V. Koonin, R. J. Deshaies, Role of predicted metalloprotease motif of Jabl/Csn5 in cleavage of Nedd8 from Cull, Science 298 (2002) 608-611.
    [26]X. Yang, S. Menon, K. Lykke-Andersen, T. Tsuge, X. Di, X. Wang, R. J. Rodriguez-Suarez, H. Zhang, N. Wei, The C0P9 signalosome inhibits p27(kipl) degradation and impedes G1-S phase progression via deneddylation of SCF Cull, Curr Biol 12 (2002) 667-672.
    [27]M. Seeger, R. Kraft, K. Ferrell, D. Bech-Otschir, R. Dumdey, R. Schade, C. Gordon, M. Naumann, W. Dubiel, A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits, Faseb J 12 (1998) 469-478.
    [28]D. Bech-Otschir, M. Seeger, W. Dubiel, The C0P9 signalosome:at the interface between signal transduction and ubiquitin-dependent proteolysis, J Cell Sci 115 (2002) 467-473.
    [29]W. Henke, K. Ferrell, D. Bech-Otschir, M. Seeger, R. Schade, P. Jungblut, M. Naumann, W. Dubiel, Comparison of human C0P9 signal some and 26S proteasome lid', Mol Biol Rep 26 (1999) 29-34.
    [30]M. P. Wilson, Y. Sun, L. Cao, P. W. Majerus, Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2, J Biol Chem 276 (2001) 40998-41004.
    [31]Z. X. Qin, Q. J. Chen, Z. Tong, X. C. Wang, The Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase, AtItpk-1, is involved in plant photomorphogenesis under red light conditions, possibly via interaction with COP9 signalosome, Plant Physiol Biochem 43 (2005) 947-954.
    [32]Y. Sun, M. P. Wilson, P. W. Majerus, Inositol 1,3,4 trisphosphate 5/6-kinase associates with the COP9 signalosome by binding to CSN1, J Biol Chem 277 (2002) 45759-45764.
    [33]S. Uhle,O. Medalia, R. Waldron, R. Dumdey, P. Henklein, D. Bech-Otschir, X. Huang, M. Berse, J. Sperling, R. Schade, W. Dubiel, Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome, Embo J 22 (2003) 1302-1312.
    [34]R. Groisman, J. Polanowska, I. Kuraoka, J. Sawada, M. Saijo, R. Drapkin, A. F. Kisselev, K. Tanaka, Y. Nakatani, The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage, Cell 113 (2003) 357-367.
    [35]C. Zhou, S. Wee, E. Rhee, M. Naumann, W. Dubiel, D. A. Wolf, Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p, Mol Cell 11 (2003) 927-938.
    [36]J. Smalle, R. D. Vierstra, The ubiquitin 26S proteasome proteolytic pathway, Annu Rev Plant Biol 55 (2004) 555-590.
    [37]C. Schwechheimer, K. Schwager, Regulated proteolysis and plant development, Plant Cell Rep 23 (2004) 353-364.
    [38]R. D. Vierstra, The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins, Trends Plant Sci 8 (2003) 135-142.
    [39]M. H. Glickman, A. Ciechanover, The ubiqui tin-proteasome proteolytic pathway:destruction for the sake of construction, Physiol Rev 82 (2002) 373-428.
    [40]M. Groll, L. Ditzel, J. Lowe, D. Stock, M. Bochtler, H.D. Bar tunik, R. Huber, Structure of 20S proteasome from yeast at 2.4 A resolution, Nature 386 (1997) 463-471.
    [41]F. G. Whitby, E.I. Masters, L. Kramer, J. R. Knowlton, Y. Yao, C. C. Wang, C. P. Hill, Structural basis for the activation of 20S proteasomes by 11S regulators, Nature 408 (2000) 115-120.
    [42]F. Kopp, L. Kuehn, Orientation of the 19S regulator relative to the 20S core proteasome:an immunoclectron microscopic study, J Mol Biol 329 (2003) 9-14.
    [43]I. Nagy, T. Tamura, J. Vanderleyden, W. Baumeister, R. De Mot, The 20S proteasome of Streptomyces coelicolor, J Bacteriol 180 (1998) 5448-5453.
    [44]M.H. Glickman, D. M. Rubin,0. Coux, I. Wefes, G. Pfeifer, Z. Cjeka, W. Baumeister, V. A. Fried, D. Finley, A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the C0P9-signalosome and eIF3, Cell 94 (1998) 615-623.
    [45]X. Huang, B. K. Hetfeld, U. Seifert, T. Kahne, P.M. Kloetzel, M. Naumann, D. Bech-Otschir, W. Dubiel, Consequences of COP9 signalosome and 26S proteasome interaction, Febs J 272 (2005) 3909-3917.
    [46]W. Wimuttisuk, J. D. Singer, The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer, Mol Biol Cell 18 (2007) 899-909.
    [47]A. R. Willems, T. Goh, L. Taylor, I. Chernushevich, A. Shevchenko, M. Tyers, SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis, Philos Trans R Soc Lond B Biol Sci 354 (1999) 1533-1550.
    [48]D. Bech-Otschir, R. Kraft, X. Huang, P. Henklein, B. Kapelari, C. Pollmann, W. Dubiel, C0P9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system, Embo J 20 (2001) 1630-1639.
    [49]C. Liu, K. A. Powell, K. Mundt, L. Wu, A.M. Carr, T. Caspari, Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms, Genes Dev 17 (2003) 1130-1140.
    [50]K. E. Mundt, J. Porte, J. M. Murray, C. Brikos, P. U. Christensen, T. Caspari, I. M. Hagan, J. B. Millar, V. Simanis, K. Hofmann, A.M. Carr, The C0P9/signalosome complex is conserved in fission yeast and has a role in S phase, Curr Biol 9 (1999) 1427-1430.
    [51]S. Mahalingam, V. Ayyavoo, M. Patel, T. Kieber-Emmons, G. D. Kao, R. J. Muschel, D.B. Weiner, HIV-1 Vpr interacts with a human 34-kDa mov34 homologue, a cellular factor linked to the G2/M phase transition of the mammalian cell cycle, Proc Natl Acad Sci U S A 95 (1998) 3419-3424.
    [52]S. Doronkin, I. Djagaeva, S. K. Beckendorf, CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint, Development 129 (2002) 5053-5064.
    [53]K. Lykke-Andersen, L. Schaefer, S. Menon, X. W. Deng, J. B. Miller, N. Wei, Disruption of the C0P9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death, Mol Cell Biol 23 (2003) 6790-6797.
    [54]S. Menon, H. Chi, H. Zhang, X. W. Deng, R. A. Flavell, N. Wei, C0P9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence, Nat Immunol 8 (2007) 1236-1245.
    [55]K. Tomoda, N. Yoneda-Kato, A. Fukumoto, S. Yamanaka, J. Y. Kato, Multiple functions of Jabl are required for early embryonic development and growth potential in mice, J Biol Chem 279 (2004) 43013-43018.
    [56]E. M. Dohmann, M. P. Levesque, L. De Veylder,I. Reichardt, G. Jurgens, M. Schmid, C. Schwechheimer, The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability, Development 135 (2008) 2013-2022.
    [57]Q. He, P. Cheng, Q. He, Y. Liu, The C0P9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex, Genes Dev 19 (2005) 1518-1531.
    [58]S. Busch, S. E. Eckert, S. Krappmann, G. H. Braus, The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans, Mol Microbiol 49 (2003) 717-730.
    [59]M. Panattoni, F. Sanvito, V. Basso, C. Doglioni, G. Casorati, E. Montini, J. R. Bender, A. Mondino, R. Pardi, Targeted inactivation of the C0P9 signalosome impairs multiple stages of T cell development, J Exp Med 205 (2008) 465-477.
    [60]M. Bjorklund, M. Taipale, M. Varjosalo, J. Saharinen, J. Lahdenpera, J. Taipale, Identification of pathways regulating cell size and cell-cycle progression by RNAi, Nature 439 (2006) 1009-1013.
    [61]K. E. Mundt, C. Liu, A.M. Carr, Deletion mutants in C0P9/signalosome subunits in fission yeast Schizosaccharomyces pombe display distinct phenotypes, Mol Biol Cell 13 (2002) 493-502.
    [62]G. A. Cope, R. J. Deshaies, Targeted silencing of Jabl/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels, BMC Biochem 7 (2006) 1.
    [63]A. S. Adler, L. R. Littlepage, M. Lin, T. L. Kawahara, D. J. Wong, Z. Werb, H. Y. Chang, CSN5 isopeptidase activity links C0P9 signalosome activation to breast cancer progression, Cancer Res 68 (2008) 506-515.
    [64]S. Y. Kim, A. Herbst, K. A. Tworkowski, S. E. Salghetti, W. P. Tansey, Skp2 regulates Myc protein stability and activity, Mol Cell 11 (2003) 1177-1188.
    [65]N. von der Lehr, S. Johansson, S. Wu, F. Bahram, A. Castell, C. Cetinkaya, P. Hydbring,I. Weidung, K. Nakayama, K. I. Nakayama,O. Soderberg, T.K. Kerppola, L. G. Larsson, The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription, Mol Cell 11 (2003) 1189-1200.
    [66]E. Chae, Q. K. Tan, T. A. Hill, V. F. Irish, An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development, Development 135 (2008) 1235-1245.
    [67]A. S. Adler, M. Lin, H. Horlings, D. S. Nuyten, M. J. van de Vijver, H. Y. Chang, Genetic regulators of large-scale transcriptional signatures in cancer, Nat Genet 38 (2006) 421-430.
    [68]S. Denti, M. E. Fernandez-Sanchez, L. Rogge, E. Bianchi, The COP9 signalosome regulates Skp2 levels and prol iferation of human cells, J Biol Chem 281 (2006) 32188-32196.
    [69]X. Wang, S. Feng, N. Nakayama, W. L. Crosby, V. Irish, X. W. Deng, N. Wei, The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development, Plant Cell 15 (2003) 1071-1082.
    [70]Z. Ullah, M.S. Buckley, D. N. Arnosti, R. W. Henry, Retinoblastoma protein regulation by the COP9 signalosome, Mol Biol Cell 18 (2007) 1179-1186.
    [71]S. P. Tenbaum, M. Papaioannou, C. A. Reeb, F. Goeman, N. Escher, R. Kob, F. von Eggeling, C. Melle, A. Baniahmad, Alien inhibits E2F1 gene expression and cell proliferation, Biochim Biophys Acta 1773 (2007) 1447-1454.
    [72]S. Menon, T. Tsuge, N. Dohmae, K. Takio, N. Wei, Association of SAP130/SF3b-3 with Cullin-RING ubiquitin ligase complexes and its regulation by the COP9 signalosome, BMC Biochem 9 (2008) 1.
    [73]M. Eckey, W. Hong, M. Papaioannou, A. Baniahmad, The nucleosome assembly activity of NAP1 is enhanced by Alien, Mol Cell Biol 27 (2007) 3557-3568.
    [74]C. Holmberg,O. Fleck, H. A. Hansen, C. Liu, R. Slaaby, A.M. Carr, 0. Nielsen, Ddbl controls genome stability and meiosis in fission yeast, Genes Dev 19 (2005) 853-862.
    [75]L. A. Higa, I. S. Mihaylov, D. P. Banks, J. Zheng, H. Zhang, Radiation-mediated proteolysis of CDT1 by CUL4-R0C1 and CSN complexes constitutes a new checkpoint, Nat Cell Biol 5 (2003) 1008-1015.
    [76]L. Ma, H. Zhao, X. W. Deng, Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development, Development 130 (2003) 969-981.
    [77]S. Mi sera, A. J. Muller, U. Weiland-Heidecker, G. Jurgens, The FUSCA genes of Arabidopsis:negative regulators of light responses, Mol Gen Genet 244 (1994) 242-252.
    [78]S. F. Kwok, R. Solano, T. Tsuge, D. A. Chamovitz, J. R. Ecker, M. Matsui, X.W. Deng, Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the C0P9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations, Plant Cell 10 (1998) 1779-1790.
    [79]Z. Peng, G. Serino, X. W. Deng, Molecular characterization of subunit 6 of the C0P9 signalosome and its role in multifaceted developmental processes in Arabidopsis, Plant Cell 13 (2001) 2393-2407.
    [80]Z. Peng, G. Serino, X. W. Deng, A role of Arabidopsis C0P9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3, Development 128 (2001) 4277-4288.
    [81]C. Schwechheimer, G. Serino, X. W. Deng, Multiple ubiquitin ligase-mediated processes require C0P9 signalosome and AXR1 function, Plant Cell 14 (2002) 2553-2563.
    [82]S. Feng, L. Ma, X. Wang, D. Xie, S. P. Dinesh-Kumar, N. Wei, X. W. Deng, The C0P9 signalosome interacts physically with SCF C0I1 and modulates jasmonate responses, Plant Cell 15 (2003) 1083-1094.
    [83]Y. Liu, M. Schiff, G. Serino, X. W. Deng, S. P. Dinesh-Kumar, Role of SCF ubiquitin-ligase and the C0P9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus, Plant Cell 14 (2002) 1483-1496.
    [84]T. Tsuge, M. Matsui, N. Wei, The subunit 1 of the C0P9 signalosome suppresses gene expression through its N-terminal domain and incorporates into the complex through the PCI domain, J Mol Biol 305 (2001) 1-9.
    [85]W. R. Briggs, M. A. Olney, Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome, Plant Physiol 125 (2001) 85-88.
    [86]L. H. Ang, S. Chattopadhyay, N. Wei, T. Oyama, K. Okada, A. Batschauer, X. W. Deng, Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development, Mol Cell 1 (1998) 213-222.
    [87]M. Holm, L. G. Ma, L. J. Qu, X. W. Deng, Two interacting bZIP proteins are direct targets of COPl-mediated control of light-dependent gene expression in Arabidopsis, Genes Dev 16 (2002) 1247-1259.
    [88]M. T. Osterlund, C. S. Hardtke, N. Wei, X. W. Deng, Targeted destabilization of HY5 during light-regulated development of Arabidopsis, Nature 405 (2000) 462-466.
    [89]T. Oyama, Y. Shimura, K. Okada, The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl, Genes Dev 11 (1997) 2983-2995.
    [90]J. Kim, H. Yi, G. Choi, B. Shin, P. S. Song, G. Choi, Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction, Plant Cell 15 (2003) 2399-2407.
    [91]M. Ni, J. M. Tepperman, P.H. Quail, PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein, Cell 95 (1998) 657-667.
    [92]P. D. Duek, C. Fankhauser, HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling, Plant J 34 (2003) 827-836.
    [93]C.D. Fairchild, M. A. Schumaker, P. H. Quail, HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction, Genes Dev 14 (2000) 2377-2391.
    [94]J. Yang, R. Lin, J. Sullivan, U. Iloecker, B. Liu, L. Xu, X. W. Deng, H. Wang, Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis, Plant Cell 17 (2005) 804-821.
    [95]M. L. Ballesteros, C. Bolle, L.M. Lois, J. M. Moore, J. P. Vielle-Calzada, U. Grossniklaus, N. H. Chua, LAF1, a MYB transcription activator for phytochrome A signaling, Genes Dev 15 (2001) 2613-2625.
    [96]H. S. Seo, J. Y. Yang, M. Ishikawa, C. Bolle, M. L. Ballesteros, N. H. Chua, LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1, Nature 423 (2003) 995-999.
    [97]N. Wei, X. W. Deng, The role of the COP/DET/FUS genes in light control of arabidopsis seedling development, Plant Physiol 112 (1996) 871-878.
    [98]Y. Saijo, J. A. Sullivan, H. Wang, J. Yang, Y. Shen, V. Rubio, L. Ma, U. Hoecker, X. W. Deng, The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity, Genes Dev 17 (2003) 2642-2647.
    [99]G. Suzuki, Y. Yanagawa, S. F. Kwok, M. Matsui, X. W. Deng, Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis, Genes Dev 16 (2002) 554-559.
    [100]C. Yi, X. W. Deng, COP1-from plant photomorphogenesis to mammalian tumorigenesis, Trends Cell Biol 15 (2005) 618-625.
    [101]A.G. von Arnim, X. W. Deng, Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning, Cell 79 (1994) 1035-1045.
    [102]M. G. Stacey, S. N. Hicks, A. G. von Arnim, Discrete domains mediate the light-responsive nuclear and cytoplasmic local ization of Arabi dopsis COP1, Plant Cell 11 (1999) 349-364.
    [103]M. G. Stacey,O. R. Kopp, T. H. Kim, A. G. von Arnim, Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in planta, Plant Physiol 124 (2000) 979-990.
    [104]A. G. von Arnim, M. T. Osterlund, S. F. Kwok, X. W. Deng, Genetic and developmental control of nuclear accumulation of C0P1, a repressor of photomorphogenesis in Arabidopsis, Plant Physiol 114 (1997) 779-788.
    [105]E. Pick,O. S. Lau, T. Tsuge, S. Menon, Y. Tong, N. Dohmae, S. M. Plafker, X. W. Deng, N. Wei, Mammalian DET1 regulates Cu14A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes, Mol Cell Biol 27 (2007) 4708-4719.
    [106]I.E. Wertz, K. M.O'Rourke, Z. Zhang, D. Dornan, D. Arnott, R. J. Deshaies, V. M. Dixit, Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase, Science 303 (2004) 1371-1374.
    [107]V. Rubio, Y. Shen, Y. Saijo, Y. Liu, G. Gusmaroli, S. P. Dinesh-Kumar, X.W. Deng, An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation, Plant J 41 (2005) 767-778.
    [108]A. G. von Arnim, X. W. Deng, M. G. Stacey, Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants, Gene 221 (1998) 35-43.
    [109]K. U. Torii, T. W. McNellis, X. W. Deng, Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development, Embo J 17 (1998) 5577-5587.
    [110]U. Hoecker, P. H. Quail, The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis, J Biol Chem 276 (2001) 38173-38178.
    [111]D. Dornan, H. Shimizu, A. Man, T. Dudhela, M. Eby, K.O'Rourke, S. Seshagiri, V. M. Dixit, ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage, Science 313 (2006) 1122-1126.
    [112]P. Malec, A. Yahalom, D. A. Chamovitz, Identification of a light-regulated protein kinase activity from seedlings of Arabidopsis thaliana, Photochem Photobiol 75 (2002) 178-183.
    [113]A. Fukumoto, K. Tomoda, M. Kubota, J. Y. Kato, N. Yoneda-Kato, Small Jab1-containing subcomplex is regulated in an anchorage-and cell cycle-dependent manner, which is abrogated by ras transformation, FEBS Lett 579 (2005) 1047-1054.
    [114]J. M. Staub, N. Wei, X. W. Deng, Evidence for FUS6 as a component of the nuclear-localized C0P9 complex in Arabidopsis, Plant Cell 8 (1996) 2047-2056.
    E. Bianchi, S. Denti, R. Catena, G. Rossctti, S. Polo, S. Gasparian, S. Putignano, L. Rogge, R. Pardi, Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity, J Biol Chem 278 (2003) 19682-19690.
    [116]K. Farras, A. Ferrando, J. Jasik, T. Kleinow, L. Okresz, A. Tiburcio, K. Salchert, C. del Pozo, J. Schell, C. Koncz, SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin 1 igase, Embo J 20 (2001) 2742-2756.
    [117]Z. Peng, Y. Shen, S. Feng, X. Wang, B. N. Chitteti, R. D. Vierstra, X. W. Deng, Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo, Curr Biol 13 (2003) R504-505.
    [118]T. Suzuki, S. Nakajima, A. Morikami, K. Nakamura, An Arabidopsis protein with a novel calcium-binding repeat sequence interacts with TONSOKU/MGOUN3/BRUSHY1 involved in meristera maintenance, Plant Cell Physiol 46 (2005) 1452-1461.
    [119]S. Guyomarc'h, M. Benhamed, G. Lemonnier, J. P. Renou, D. X. Zhou, M. Delarue, MGOUN3:evidence for chromatin-mediated regulation of FLC expression, J Exp Bot 57 (2006) 2111-2119.
    [120]T. Suzuki, S. Inagaki, S. Nakajima, T. Akashi, M. A. Ohto, M. Kobayashi, M. Seki, K. Shinozaki, T. Kato, S. Tabata, K. Nakamura, A. Morikami, A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristems, Plant J 38 (2004) 673-684.
    [121]T. Suzuki, S. Nakajima, S. Inagaki, M. Hirano-Nakakita, K. Matsuoka, T. Demura, H. Fukuda, A. Morikami, K. Nakamura, TONSOKU is expressed in S phase of the cell cycle and its defect delays cell cycle progression in Arabidopsis, Plant Cell Physiol 46 (2005) 736-742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700