SPLC杂化液晶及其衍生介孔材料的制备、结构表征与热致喷射效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪八十年代中期,纳米材料成了材料科学和凝聚态物理研究领域的研究热点。到九十年代中期,在纳米结构单元基础上的自组装体系又成了纳米材料研究的最前沿。介孔材料(Mesoporous Materials)是这类纳米自组装材料中的重要一类。介孔材料具有许多优异的特点,比如制备方法多是对环境友好的软溶液法,材料的孔径在2~30nm 之间可调,并且孔径尺寸、形状和排列规整,还有就是介孔材料具有较高的表面积和孔体积(如SiO_2 基MCM-41:1050m~2/g 和0.93cm~3/g)。这些特点使得介孔材料在化学、物理、材料、生物、医学及信息等领域里都展示出广阔的应用前景。到目前为止,介孔材料的工业应用已在催化和吸附方面取得了成功。在其他的应用方面中,大面积功能介孔材料具有非常高的价值。美国新墨西哥大学的C.J. Brinker 研究组成功地采用了浸渍涂层工艺(一次浸渍所形成的膜的厚度约为0.5 微米),通过控制溶剂的蒸发制备了具有各种微观对称结构和宏观形貌的大面积介孔薄膜材料。
    本研究工作采用SPLC(Silica-PE6400 Liquid Crystal)方法制备了厚度约1.2毫米的介孔薄膜和介孔块体产物PTO-1 等,并发现了此类较厚介孔产物的纳米新特性-“热致喷射效应”。此种介孔材料的新纳米效应在国内外均未见报导。
    热致喷射效应的机理为一定温度时,介孔孔道内部结构导向剂(PE6400)胶束在孔内部高温高压水蒸汽的作用下,快速喷射出孔道的物理失重过程,而并非由PE6400 的氧化分解所引起。该效应的发生温度受介孔材料的孔径尺寸、分布和胶束-孔壁界面层作用力影响,可以明显低于(薄膜:低于40.3℃;PTO-1:低于23.3℃)或高于(改性PTO-1:高过62.6℃)宏观PE6400 的氧化分解温度(256.1℃);另一方面,介孔薄膜、PTO-1 和KH580 改性PTO-1 的热致喷射效应的温度跨度较PE6400 的分解温度跨度分别窄了106.5℃、98.8℃和96.6℃。
    热致喷射效应是纳米效应的一种新的表现形式。其发生应当不仅仅局限于介孔材料,任何拥有纳米多孔结构的体系在适当的条件下都可能发生该效应,具有一定的普遍意义。热致喷射效应还具有重要的实用价值。它可以被用来作为一种通用的介孔材料孔径分布测试新方法;也可以用于研究客体分子的纳米效应(或行为);最后,还可以作为客体物质的一种存储-释放机制来使用。
    另外,本文以普通工业表面活性剂PE6400(EO10PO30EO10)为新型结构导向剂,成功地制备了SPLC 杂化液晶及其衍生透明介孔薄膜、块状PTO-1 和有机改性PTO-1 等一系列大面积杂化介孔产物。详细研究了各反应组分和合成条件对结构规整程度的影响规律。该研究成果为利用工业表面活性剂生产大面积介孔器件材料
In the middle eighties of the twentieth century, nano-materials had become the most advanced researching field of materials science and solid-state physics. And when it reached the middle of nineties, the self-assembled system with nano-building-block became the focus of the research on nano-materials. Mesoporous material is an important kind of such self-assembled materials. Mesoporous materials possess many excellent characteristics such as environmental benign preparing method of soft solution, adjustable pore diameter between 2 nm to 30 nm and high surface area and porosity (for silica based MCM-41: 1050m~2/g and 0.93cm~3/g, respectively). Benefiting from these advantages, mesoporous materials were considered having great potentials in the fields of chemistry, physics, materials science, biology, medicine and information. Nowadays, mesoporous materials have been found to be successful in catalysis and absorption applications. In other application fields, large area functional mesoporous materials possess great potential. C.J. Brinker group from University of New Mexico has successfully prepared large area membrane materials possessing various micro-symmetric structures and macro-morphologies by dip coating process (membrane thickness of 0.5 micrometer each time) through controlling the solvent evaporation.
    Mesoporous membrane and bulk mesoporous product PTO-1 with roughly 1.2 millimeter thickness was successfully prepared by using SPLC (Silica-PE6400 Liquid Crystal) method. A novel nano-effect from these mesoporous products, named “Thermal-Ejecting Effect”was firstly discovered and studied.
    The formation mechanism for Thermal-Ejecting Effect is identified as the fast physical ejection of PE6400 micelles from inside pore channels by the driven of high temperature and pressure steam under certain temperature. This effect is not induced by PE6400 decomposing in oxygen atmosphere. The temperature of Thermal-Ejection Effect is dominated by pore size and its distribution and the interactions between PE6400 micelles and pore wall, which may be lower (for membrane: 40.3℃lower; for PTO-1: 23.3℃lower) or higher (for KH580 modified PTO-1: 62.6℃higher) than that of PE6400 decomposing (256.1℃). On the other hand, the temperature ranges for mesoporous membrane, PTO-1 and KH580 modified PTO-1 are 106.5℃, 98.8℃and 96.6℃narrower than that of PE6400 decomposing.
引文
[1] 3rd International Mesostructured Materials Symposium (IMMS). Jeju. Korea. July 8-11, 2002. Available form Http: //www.imma.ca/imms2002.html
    [2] Including: Angew. Chem. Int. Ed., Chem. Mater., J Mater. Chem., Adv. Mater., Chem. Commun., Phys. Chem. Chem. Phys., J. Am. Chem. Soc., Langmuir and etc.
    [3] www. uspto. gov
    [4] IUPAC Manual of Symbols and Terminology. Pure Appl. Chem. 1972, 31: 578
    [5] Myong H. Lim. Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials. Chem. Mater. 1999, 11(11): 3285-3295
    [6] Corma A. Inorganic Solid State Acids and Their Use in Acid-Catalyzed Hydrocarbon Reaction. Chem. Rev. 1995, 95: 559-641
    [7] Corma A. From Microporous to mesoporous Molecular Sieve Materials and Their Uses in Catalysis. Chem. Rev. 1997, 97: 2373-2419
    [8] Mark E. D., Carlos S., Consuelo M., Juan G., Cyrus C. A molecular sieve with eighteen-membered rings. Nature 1988, 331: 698-699
    [9] McCusker LB. Baerlocher Ch., Jahn E., Bülow M. The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5. Zeolites. 1991, 11: 308-313
    [10] 参阅USP. No. 5, 057, 296 引用的专利和论文
    [11] Kresge C. T., M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature. 1992, 359: 710-712
    [12] Kresge C. T., Charles T., Leonowicz, Michael E., Roth. Wieslaw J., Vartuli, James C. Synthetic mesoporous crystaline material. USP. 1992. No. 5, 098, 684
    [13] Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., C. T-W. Chu, D. H. Olson, E. W. Scheppard, S. B. Mccullen, J. B. Higgins, J. L. Schlenker. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114: 10834-10843
    [14] Beck J. S., Jeffrey S. Method for synthesizing mesoporous crystalline material. USP. 1991. No. 5, 057, 296
    [15] Vincent Chiola, Joseph E. Ritsko, Clarence D. Vanderpool, Towanda Pa. Process for Producing Low-Bulk Density Silica. USP. 1971. No. 3, 556, 725
    [16] Francesco Di Renzo, Helene Cambon, Roger Dutartre. A 28-year-old Sunthesis of Micelle-templated Mesoporous Silica. Micoporous Materials. 1997, 10: 283-286
    [17] Manton M. R. S., Davidtz J. C. Controlled Pore Sizes and Active Site Spacings Determining Selectivity in Amorphous Silica-alumina Catalysts. J. Catal. 1979, 60: 156-166
    [18] Galen D. Stucky,美国加利福尼亚大学圣芭芭拉分校化学和生物化学系教授,介孔材料科学先驱者之一;他自1990 年开始从事多孔材料研究以来已发表相关论文350 篇,其中在“Nature”和“Science”上发表25 篇;培养了大批介孔材料科学领域里的优秀科研工作者,如Huo Q. S. 、Yang P. D. 和赵东元(98年回国于复旦大学化学系任教授,长江学者,2003 中国科学院院士增选候选人之一)等。
    [19] Mark E. Davis, 美国工程院院士(1997-今),致力于催化、化学传感、陶瓷和电子材料等方面的研究,是介孔材料研究的先驱者之一。到目前为止发表高质量论文225 篇以上, 出版专著六本, 拥有专利22 项。
    [20] Stacy A. Johnson, Patricia J. Ollivier, Thomas E. Mallouk. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science. 1999, 283: 963-965
    [21] Yang P, Zhao D, Margolese D I. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature. 1998, 396: 152-155
    [22] Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science. 1998, 281: 538-540
    [23] Valange S, Guth J-L, Gabelica Z. Synthesis strategies leading to pure alumina mesophases in aqueous solution. Stud Surf Sci Catal. 1998, 117: 517-518
    [24] Huang Y, Sachtler W M H. Preparation of mesostructured lamellar zirconia. J Chem Soc, Chem Commun. 1997, 1181-1182
    [25] Knowles J A, Hudson M J. Preparation and characterisation of mesoporous, high surface area zirconium ( Ⅳ) oxides. J Chem Soc, Chem Commun. 1995, 2083-2084
    [26] Ciesla U, Schacht S, Stucky G D. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew Chem Int Ed Engl. 1996, 35(5): 541-543
    [27] Reddy J S, Sayari A. Nanoporous zirconium oxide prepared using the supramolecular templating approach. Catal Lett, 1996, 38: 219-223
    [28] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science. 1995, 269: 1242-1244
    [29] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science. 1995, 267: 865-867
    [30] Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves. Angew Chem Int Ed Engl, 1996, 35(10): 1102-1105
    [31] Vaudry F, Khodabandeh S, Davis M E. Synthesis of pure alumina mesoporous materials. Chem Mater, 1996, 8: 1451-1464
    [32] Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew Chem Int Ed Engl, 1995, 34(18): 2014-2017
    [33] Wang K., Morris M. A., Holmes J. D. Preparation of Mesoporous Titania Thin Films with Remarkably High Thermal Stability. Chem. Mater. 2005, 17(6): 1269-1271
    [34] Antonelli D M, Nakahira A, Ying J Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves. Inorg Chem, 1996, 35: 3126-3136
    [35] Antonelli D M, Ying J Y. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew Chem Int Ed Engl, 1996, 35 (4): 426-430
    [36] Antonelli D M, Ying J Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves. Chem Mater, 1996, 8: 874-881
    [37] Luca V, MacLachlan D J, Hook J M. Synthesis and characterization of mesostructured vanadium oxide. Chem Mater, 1995, 7: 2220-2223
    [38] Liu P, Liu J, Sayari A. Preparation of porous hafnium oxide in the presence of a cationic surfactant. J Chem Soc, Chem Commun. 1997, 577-578
    [39] Tolbert H, Sieger P, Stucky G D. Control of inorganic layer thickness in self-assembled iron oxide/surfactant composites. J Am Chem Soc, 1997, 119(37): 8652-8661
    [40] Zheng Rong Tian, Wei Tong, Jin-yun Wang, Nian-Gao Duan, Venkatesan V. Krishnan, Steven L. Suib. Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science. 1997, 276: 926-930
    [41] Shen Y F, Zerger R P, DeGuzman R N. Manganese oxide octahedral molecular sieves: preparation, characterization and applications. Science. 1993, 260: 511-515
    [42] Cieslia U, Demuth D, Leon R. Surfactant controlled preparation of mesostructured transition-metal oxide compounds. J Chem Soc, Chem Commun. 1994, 1387-1388
    [43] Carbon R.J., Tiemann M. Ordered Mesoporous Magnesium Oxide with High Thermal Stability Synthesized by Exotemplating Using CMK-3. J. Am. Chem. Soc. 2005, 127(4): 1096-1097
    [44] Sinha A. K., Suzuki K. Preparation and Characterization of Novel Mesoporous Ceria-Titania. J. Phys. Chem. B. 2005, 109(5): 1708-1714
    [45] Corma A, Fornés V, Navarro M T. Acidity and stability of MCM-41 crystalline aluminosilicates. J Catal. 1994, 148: 569-574
    [46] Chen X Y, Huang L M, Ding G Z. Characterization and catalytic performance of mesoporous molecular sieves Al-MCM-41 materials. Catal Lett, 1997, 44:
    123-128
    [47] Tuel A, Gontier S. Synthesis and characterization of trivalent metal containing mesoporous silicas obtained by a neutral templating route. Chem Mater, 1996, 8: 114-122
    [48] Romero A A, Alba M D, Klinowski J. Aluminosilicate mesoporous molecular sieve MCM-48. J Phys Chem B. 1998, 102: 123-128
    [49] Eswaramoorthy M N, Rao C N R. High catalytic efficiency of transition metal complexes encapsulated in a cubic mesoporous phase. J Chem Soc, Chem Commun. 1998, 615-616
    [50] Corma A, Navarro M T, Pariente J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J Chem Soc, Chem Commun. 1994, 147-148
    [51] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature. 1994, 368: 321-323
    [52] Zhang W-Z, Pinnavaia T J. Transition metal substituted derivatives of cubic MCM-48 mesoporous molecular sieves. Catal Lett. 1996, 38: 261-265
    [53] Yuan Z Y, Liu S Q, Chen T H. Synthesis of iron-containing MCM-41. J Chem Soc, Chem Commun. 1995, 973-974
    [54] Kosslick H, Lischke G, Landmesser H. Acidity and catalytic behavior of substituted MCM-48. J Catal. 1998, 176: 102-114
    [55] Reddy K M, Moudrakovski I, Sayari A. Synthesis of mesoporous vanadium silicate molecular sieves. J Chem Soc, Chem Commun. 1994, 1059-1060
    [56] Tuel A, Gontier S, Teissier R. Zirconium containing mesoporous silicas: new catalysts for oxidation reactions in the liquid phase. J Chem Soc. Chem Commun. 1996, 651-652
    [57] Zhao D, Goldfarb D. Synthesis of mesoporous manganosilicates Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L at low surfactant/Si ratio. Stud Surf Sci Catal. 1995, 97: 181-188
    [58] Das T K, Chaudhari K, Chandwadkar A J. Synthesis and catalytic properties of mesoporous tin silicate molecular sieves. J Chem Soc, Chem Commun. 1995, 2495-2496
    [59] Ulagappan N, Rao C N R. Synthesis and characterization of the mesoporous chromium silicates, Cr-MCM-41. J Chem Soc. Chem Commun. 1996, 1047-1048
    [60] Ziolek M, Nowak I. Synthesis and characterization of niobium-containing MCM-41. Zeolites, 1997, 18: 356-360
    [61] Takeguchi T, Kim J-B. Kang M. Synthesis and characterization of alkali-free, Ga-substituted MCM-41 and its performance for n-hexane conversion. J Catal. 1998, 175: 1-6
    [62] Rana R K, Viswanathan B. Mo incorporation in MCM-41 type zeolite. Catal Lett, 1998, 52: 25-29
    [63] Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies. Nature. 1996, 380: 325-328
    [64] Froba M, Oberender N. First synthesis of mesostructured thiogermanates. Chem Commun. 1997, 1729-1730
    [65] MacLachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4-clusters. Nature. 1999, 397: 681-684
    [66] Tewodros Asefa, Mark J. MacLachlan, Neil Coombs, Geoffrey A. Ozin. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature. 1999, 402: 867 -871
    [67] Shinji Inagaki, Shiyou Guan, Tetsu Ohsuna, Osamu Terasaki. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature. 2002, 416: 304 -307
    [68] Kai Landskron, Benjamin D. Hatton, Doug D. Perovic, and Geoffrey A. Ozin. Periodic Mesoporous Organosilicas Containing Interconnected [Si(CH2)]3 Rings. Science. 2003, 302: 266-269
    [69] Olkhovyk O., Jaroniec M. Periodic Mesoporous Organosilica with Large Heterocyclic Bridging Groups. J. Am. Chem. Soc. 2005, 127(1): 60-61
    [70] Kapoor M. P., Setoyama N., Yang Q., Ohashi M., Inagaki S .Oligomeric Polymer Surfactant Driven Self-Assembly of Phenylene-Bridged Mesoporous Materials and Their Physicochemical Properties. Langmuir. 2005, 21(1): 443-449
    [71] Attard G S, Bartlett P N, Coleman N R B. Mesoporous platinum films from lyotropic liquid crystalline phases. Science. 1997, 278: 838-840
    [72] Raman, N. K., Anderson, M. T., Brinker, C. J. Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater. 1996, 8(8): 1682-1701
    [73] Chi-Feng Cheng, Zhaohua Luan, Jacek Klinowski. The role of surfactant micelles in the synthesis of the mesoporous molecular sieve MCM-41. Langmuir. 1995, 11: 2815-2819
    [74] Chen C. Y., Burkett S. L., Li H. X., Davis M. E Microporous Mater. 1993, 2: 27-34
    [75] Monnier A., Schuth F., Huo Q., Kumar D. Margolese D., Maxwell R. S., Stucky G. D., Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chemlka B. F., Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science. 1993, 261: 1299-1303
    [76] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to
    microporous materials. Bull. Chem. Soc. Jpn. 1990, 63: 988-992
    [77] S. Inagaki, Y. Fukushima, K. Kuroda., Synthesis of highly Ordered Mesoporous Materials from a Layered Polysilicate. J. Chem. Soc. Chem. Commun. 1993, 8: 680-682
    [78] Y. Fukushima, S. Inagaki. Nano-scale structure control of mesoporous silica. Mater. Sci. Eng. A. 1996, 217-218: 116-118
    [79] Steel A., Carr S. W., Anderson M. W., 14 N NMR study of surfactant mesophases in the synthesis of mesoporous silicates. J. Chem. Soc. Chem. Commun. 1994: 1571-1572
    [80] Firouzi A., Kumar D., Bull L. M., Besier T., Sieger P., Huo Q., Walker S. A., Zasadzinski J. A., Glinka C., Nicol J., Margolese D. I., Stucky G. D., Chmelka B. F. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science. 1995, 267: 1138-1143
    [81] Colin A. Fyfe, Guoyi Fu. Structure Organization of Silicate Polyanions with Surfactants: A New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials. J. Am. Chem. Soc. 1995, 117: 9709-9714
    [82] David C. Calabro, Ernest W. Valyocsik, Frank X. Ryan. In situ ATR/FTIR study of mesoporous silicate syntheses. Microporous Materials. 1996, 7: 243-259
    [83] Huo, Q., DI Margolese, U. Ciesla, P. Feng, TE Gier, P. Sieger, R. Leon, PM Petroff, F. Schuth, GD Stucky. Generalized Syntheses of Periodic Surfactant/Inorganic Composite Materials. Nature. 1994. 368: 317-321
    [84] Qisheng Huo, David I. Margolese, Ulrike Ciesla, Dirk G. Demuth, Pingyun Feng, Thurman E. Gier, Peter Sieger, Ali Firouzi, Bradley F. Chmelka, F. Schuth, G. D. Stucky. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 1994, 6(8): 1176-1191
    [85] Oren Regef. Nucleation events during the synthesis of mesoporous materials using liquid crystalline templating. Langmuir. 1996, 12: 4940-4944
    [86] George S. Attard, Joanna C. Glyde, Christine G. G?ltner. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature. 1995, 378, 366-368
    [87] A. Firouzi, F. Atef, A. G. Oertli, G. D. Stucky, B. F. Chmelka. Alkaline Lyotropic Silicate-Surfactant Liquid Crystals. J. Am. Chem. Soc. 1997, 119: 3596-3610
    [88] Sarah H. Tolbert, Ali Firouzi, Galen D. Stucky, Bradley F. Chmelka. Magnetic field alignment of ordered silicate-srufactant composites and mesoporous silica. Science. 1997, 278: 264-268
    [89] Pingyun Feng, Xiaohui Bu, Galen D. Stucky, David J. Ping. Monolithic mesoporous silica templated by microemulsion liquid crystals. J. Am. Chem. Soc. 2000, 122, 994-995
    [90] Markus A., Daibin K., Bernd S., Yong Zhou. Ionic Liquids for the Convenient Synthesis of Functional Nanoparti cles and Other Inorganic Nanostructures I. Angewandte Chemie. 2004, 43(38): 4988-4992
    [91] Zhou Y., Antonietti M. Preparation of Highly Ordered Monolithic Super-Microporous Lamellar Silica with a Room-Temperature Ionic Liquid as Template via the Nanocasting Technique. Advanced Materials. 2003, 15(17): 1452-1455
    [92] Zhou Y., Antonietti M. Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. J. Am. Chem. Soc. 2003,125(49); 14960-14961
    [93] Zhou Y., Schattka J. H., Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique. Nano Lett. 2004, 4(3): 477-481
    [94] Zhou Y., Antonietti M. A Series of Highly Ordered, Super-Microporous, Lamellar Silicas Prepared by Nanocasting with Ionic Liquids. Chem. Mater. 2004, 16(3): 544-550
    [95] Lee, B.; Luo, H.; Yuan, C. Y.; Lin, J. S.; Dai, S. Synthesis And Characterization Of Organic Inorganic Hybrid Mesoporous Silica Materials With New Templates. Chem. Commun.2004, 240-241
    [96] Brian G. T., Chad M. W., Victor S.-Y. Lin. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Letters. 2004, 4(11): 2139-2143
    [97] B. Chu, Z. Zhou. Physicl Chemistry of Polyoxyalkylene Block Copolymer Srufactants, in Nonionic Srufactants-Polyoxyalkylene Block Copolymers. V. M. Nace, Editor. Marcel Dekker, Inc: New York. 1996. P67
    [98] G. Wanka, H. Hoffmann, W. Ulbricht. Phase diagrams and aggregation behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyentylene) triblock copolymers in aqueous solutions. Macromolecules. 1994, 27: 4145-4159
    [99] Zhao D., Feng J., Huo Q. N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998, 279: 548-552
    [100] Zhao D., Huo Q., Feng J., Chemlka B. F., Stucky G. D., Nonionic triblock and star diblock copolymer and oligomeric srufactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structure. J. Am. Chem. Soc. 1998, 120: 6024-6036
    [101] Ivanova R. Alexandridis P., Lindmann B., Interaction of poloxamer block copolymers with cosolvents and surfactants. Colloids Sruf. A. 2001, 183-185: 41-53
    [102] Ivanova R. Alexandridis P., Lindmann B., Modification of the lyotropic liquid crystalline microstructure of amphiphilic block copolymers in the presence of cosolvents. Adv. Colloid. Inter. Sci. 2001, 89-90: 351-382
    [103] Kim J. M., Han Y. J., Chmelka B. F., Stucky G. D., One-strp synthesis of ordered mesocomposites with non-ionic amphiphile block copolymers: implications of isoelectric piont, hydrolysis rate and fluoride. Chem. Commun. 2000: 2437-2438
    [104] Alexandridis P, Holzwarth J. F., Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). Langmuir. 1997, 13: 6074-6082
    [105] Leontidis E., Hofmeister anion effects on surfactant self-assemble and the formation of mesoporous solids. Curr. Opin. Colloid. Interf. Sci. 2002, 7: 81-91
    [106] Zhang W, Glomski B. Pauly T. R. Pinnavaia T. J. A new nonionic surfactant pathway to mesoporous molecular sieve silicas with long range framework order. Chem Commun. 1999: 1083-1084
    [107] Bagshw S. A., The effect of dilute electrolytes on the formation of non-ionically templated [Si]-MSU-X mesoporous silica molecular sieves. J. Mater. Chem. 2001, 11: 831-840
    [108] Velev O. D., Jede T. A., Lbo R. F., Lenhoff A. M. Porous silica via colloidal crystallization. Nature. 1997, 389: 447-448
    [109] Imhof A., Pine D, J. Ordered macroporous materials by emulsion templating. Nature. 1997, 389: 948-951
    [110] Velev O. D., Tessier P. M., Lenhoff A. M., Kaler E. W A class of porous metallic nanostructures. Nature. 1999, 401: 548-548
    [111] Kristen M. Kulinowski, Peng Jiang, Harsha Vaswani, Vicki L. Colvin. Porous metals from colloidal templates. Adv. Mater. 2000, 12(11), : 833-839
    [112] Younan Xia, Byron Gates, Yadong Yin, Yu Lu. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12(10): 693-713
    [113] Ziyi Z., Yadong Y., Byron G., Younan X Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templationg against crystalline arrays of Polystyrene beads. Adv. Mater. 2000, 12(3): 206-209
    [114] Microscopy & Histology Catalog. Polysciences. Warrington. PA 1993-1994
    [115] Osseo-Asare K., Arriagada F. J., Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids and Surfaces. 1990, 50: 321
    [116] http: //www. matse. psu. edu/people/faculty/osseo-asare. html
    [117] Massimo Lazzari, M. Arturo López-Quintela. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater. 2003, 15: 1583-1594
    [118] Guarini W., Black C. T., Stephanie H. I. Y Optimization of diblock copolymer thin film self assembly. Adv. Mater. 2002, 14(18): 1290-1294
    [119] Bates F. S. Polymer-polymer phase behavior. Science. 1991, 251: 898-905
    [120] Bates F. S., Fredrickson GH. Annu. Rev. Phys. Chem. 1990, 41: 525
    [121] Miri Park, Christopher Harrison, Paul M. Chaikin, Richard A. Register, Douglas H. Adamson. Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter. Science. 1997, 276: 1401-1404
    [122] Seung Hyun Kim, Matthew J. Misner, Ting Xu, Masahiro Kimura, Thomas P. Russell. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 2004, 16: 226-231
    [123] Hideaki Yokoyama, Thomas E. Mates, Edward J. Kramer. Structure of asymmetric diblock copolymers in thin films. Macromolecules. 2000, 33: 1888-1898
    [124] Mansky P., Derouchey J., Russell T. P., Mays J., Pitsikalis M., Morkved T., Jaeger H Large-Area domain alignment in block copolymer thin films using electric fields. Macromolecules. 1998, 31: 4399-4401
    [125] Thurn-Albrecht T., Schotter J., Kastle G. A., Emley N., Shibauchi T., Krusin-Elbau L., Guarini K., Black C. T., Tuominen M. T., Russell T. P. Ultrahigh-Density nanowire arrays grown in self-Assembled diblock copolymer templates. Science. 2000, 290: 2126-2129
    [126] Richard D. Peters, Xiao M. Yang, Qiang Wang, Juan J. de Pablo, Paul F. Nealey. Combining advanced lithographic techniques and self-assembly of thin films of diblock copolymers to produce templates for nanofabrication. Journal of Vacuum Science and Technology B. 2000, 18(6): 3530-3534
    [127] Joy Y. Cheng, C. A. Ross, Edwin L. Thomas, Henry I. Smith, Julius Vancso. Templated self-assembly of block copolymers: effect of sbustrate topography. Adv. Mater. 2003, 15: 1599-1602
    [128] TL Morkved, M. Lu, AM Urbas, EE Ehrichs, HM Jaeger, P. Mansky, TP Russell. Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. Science. 1996, 273: 931-933
    [129] Karl Amundson, Eugene Helfand, Xina Quan, Steven D. Smith. Alignment of lamellar block copolymer microstructure in an electric field. 1. Alignment kinetics. Macromolecules. 1993, 26: 2698-2703
    [130] Karl Amundson, Eugene Helfand, Xina Quan, Steven D. Hudson, Steven D. Smith. Alignment of lamellar block copolymer microstructure in an electric field. 2. Mechanisms of alignment. Macromolecules. 1994, 27: 6559-6570
    [131] Thurn-Albrecht T., Derouchey J., Russell T. P Overcoming interfacial interactions with electric fields. Macromolecules. 2000, 33: 3250-3253
    [132] Mansky P., Liu Y., Huang E., Russell T. P., Hawker C Controlling polymer-sruface interactions with random copolymer burshes. Science. 1997, 275: 1458-1460
    [133] Reiser A. Photoreactive Polymers. The Science and Technology of Resists, Wiley, New York. 1989
    [134] Ranby B., Rabek J. F Photodegradation. Photo-Oxidation and Photo-stabilization of Polymers. Wiley. New York. 1975
    [135] Thomas Thurn-Albrecht, Rachel Steiner, Jason DeRouchey, Christopher M. Stafford, Elbert Huange, Mustafa Bal, Mark Tuominen, Craig J. Hawker, Thomas P. Russell. Nanoscopic templates from oriented block copolymer films. Adv. Mater. 2000, 12(11): 787-791
    [136] Medina M. E., Iglesias M., Snejko N., Gutierrez-Puebla E., Monge M. A Chiral germanium zeotype with interconnected8-, 11-, and 11-ring channels. Catalytic properties. Chem. Mater. 2004, 16: 594-599
    [137] Israelachvili J. N., Mitchell K. J., Ninham B. W., Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J. Chem Soc. Faraday Trans. 1976, II 72: 1525-1568
    [138] Israelachvili J. N., Mitchell K. J., Ninham B. W., Theory of self-as-sembly of lipid bilayers and vesicles. Biochim. Biophys. Acta 1977, 470: 185-201
    [139] Gruner SM. Stability of lyotropic phases with curved interfaces. J. Phys. Chem. 1989, 93, 7562-7570
    [140] Hyde S. T. Pure Appl. Chem. 1992, 64(11): 1617-1622
    [141] Henriksson, U., Blackmore, E. S., Tiddy, G. J. T., Soderman O. J. Phys. Chem. 1992, 96: 3894
    [142] Huo, Q., Margolese, D. I., Stucky, G. D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater. 1996, 8(5): 1147-1160
    [143] Alexandra Navrotsky, Ivan Petrovic, Yatao Hu, Cong-yan Chen, Mark E. Davis. Energetics of microporos materials. Journal of Non-Crystalline Solids. 1995, 192-193: 474-477
    [144] J. L. Blin, C. Otjacques, G. Herrier, B. L. Su. Pore size engineering of mesoporous silicas using alkanes as swelling agents. Nanoporous Materials II. Stud. Surf. Sci. Catal. 2000, 129: 75-84
    [145] N. Ulagappan, C. N. R. Rao. Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica. JCS Chem. Commun. 1996, 24: 2759-2760
    [146] Coombs N., Metamorphic Materials-Restructuring Siliceous Mesoporous Materials. Adv. Mater. 1995, 7(10): 842-846
    [147] Sayari A., Liu P., Kruk M., Jaroniec M Characterization of Large-Pore MCM-41 Molecular Sieves Obtained via Hydrothermal Restructuring. Chem. Mater. 1997, 9: 2499-2506
    [148] Kruk, M., Jaroniec, M., Sayari, A., Application of large pore mcm-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir. 1997, 13(23): 6267-6273
    [149] Abdelhamid Sayari, Michal Kruk, Mietek Jaroniec, Igor L. Moudrakovski. New Approaches to Pore Size Engineering of Mesoporous Silicates. Advanced Materials. 1998, 10(16): 1376-1379
    [150] Corma A., Kan, Q., Navarro M. T., Perez-Pariente J., Rey, F. Synthesis of MCM-41 with Different Pore Diameters without Addition of Auxiliary Organics. Chem. Mater. 1997, 9(10): 2123-2126.
    [151] Cheng CF., Zhou WZ., Klinowski J., Park DH, Hargreaves M., Gladden LF. Controlling the channel diameter of the mesoporous molecular sieve MCM-41. J. Chem. Soc. Faraday Trans. 1997, 93: 359–363
    [152] Bates FS., Fredrickson GH. Block copolymers-designer soft materials. Phys. Today. 1999, 32-38
    [153] Klok HA, Lecommandoux S., Supramolecular materials via block copolymer self-assembly. Adv. Mater. 2001, 13: 1217-1229
    [154] Boissiere C., Larbot A., Van dr Lee A., Kooyman P., Prouzet E., A new sunthesis of mesoporous MSU-X silica controlled by a two-step pathway. Chem Mater. 2000, 12: 2902-2913
    [155] Chengzhong Yu, Yonghao Yu, Dongyuan Zhao. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chem Commun. 2000: 575-576
    [156] Eun-Bum Cho, Kwan-Wook Kwon, Kookheon Char. Mesoporous Organosilicas Prepared with PEO-Containing Triblock Copolymers with Different Hydrophobic Moieties. Chem. Mater. 2001, 13: 3837-3839
    [157] Firouzi A., Schaefer D. J., Tolbert S. H., Stucky G. D., Chmelka B. F Magnetic-field-induced orientational ordering of alkaline lyotropic silicate-surfactant liquid crystals. J. Am. Chem. Soc. 1997, 119: 9466-9477
    [158] Maria E. Raimondi, Thomas Maschmeyer, Richard H. Templer, John M. Seddon. Synthesis of direct templated aligned mesoporous silica coatings within capillaries. Chem. Commun. 1997: 1843-1844
    [159] Chen B.C., Lin H.P., Chao M.C., Mou C.Y., Tang C.Y. Mesoporous Silica Platelets with Perpendicular Nanochannels via a Ternary Surfactant System. Advanced Materials. 2004, 16(18): 1657-1661
    [160] Schacht S., Huo Q., Voigt-Martin IG., Stucky GD., Schüth F Oil-Water Interface Templating of Mesoporous Macroscale Structures. Science. 1996, 273: 768-771
    [161] Li W., Sha X., Dong W., Wang Z. Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion. Chem. Commun. 2002: 2434-2435
    [162] Fowler C. E., Khushalant D., Mann S. Interfacial synthesis of hollow microspheres of mesostructured silica. Chem. Commun. 2001: 2028-2029
    [163] Yu C., Tian B., Fan J., Stucky G. D., Zhao D. Y Synthesis of siliceous hollow spheres with ultra large mesopore wall structures by reverse emulsion templating. Chem. Lett. 2002: 62-63
    [164] Bruinsma P J, Kim A Y, Liu J. Mesoporous silica synthesized by solvent evaporation: spun fibers and spray-dried hollow spheres. Chem Mater, 1997, 9(11): 2507-2512
    [165] Qisheng Huo, Jianglin Feng, Ferdi Schu?t, Galen D. Stucky. Preparation of Hard Mesoporous Silica Spheres. Chem. Mater. 1997, 9: 14-17
    [166] Grün M., Lauer I., Unger KK The synthesis of micrometer-and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 1997, 9(3): 254-257
    [167] Rao G. V. R López G. P., Bravo J., Pham H., Datye A. K., Xu H., Ward T. L, Monodisperse mesoporous silica microspheres formed by evaporation-induced self assembly of surfactant templates in aerosols. Adv. Mater. 2002, 14: 1301-1304
    [168] Brinker C. J., Lu Y., Sellinger A., Fan H. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 1999, 11: 579-585
    [169] Kim S. S., Zhang W. Z., Pinnavaia T. J Ultrastable mesostructured silica vesicles. Science. 1998, 282: 1302-1305
    [170] Liu P, Moudrakovski I L, Liu J. Mesostructured vanadium oxide containing dodecylamine. Chem Mater, 1997, 9: 2513-2520
    [171] Oliver S, Kuperman A, Coombs N. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature. 1995, 378: 47-50
    [172] Yang H, Coombs N, Ozin G A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature. 1997, 386: 692-695
    [173] Yang H., Coombs N., Dag ?., Sokolov I., Ozin GA. Freestanding mesoporous silica films: morphogenesis of channel and surface patterns. J. Mater. Chem. 1997, 7: 1755-1761
    [174] Yang H., Coombs N., Sokolov I., Ozin GA. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature. 1996, 381: 589-592
    [175] Yang H., Kuperman A., Coombs N., Mamiche-Afara N., Ozin GA. Synthesis of oriented mesoporous silica on mica. Nature. 1996, 379: 703-705
    [176] Aksay IA, Trau M., Manne S., Honma I., Yao N., Zhou L., Fenter P., Eisenberger, PM., Gruner, SM. Biomimetic Pathways for Assembling Inorganic Thin Films. Science 1996, 273: 892-898
    [177] Yang H., Coombs N., Sokolov I., Ozin GA. Registered growth of mesoporous silica films on graphite. J. Mater. Chem. 1997, 7: 1285-1290
    [178] Ogawa M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J Am Chem Soc, 1994, 116: 7941-7942
    [179] Martin, J. E., Anderson, MT, Odinek, JG, Newcomer, PP. Synthesis of Periodic Mesoporous Silica Thin Films. Langmuir. 1997, 13: 4133-4141
    [180] Makoto Ogawa. A simple sol-gel route for the preparation of silica surfactant mesostructured materials. Chemical Communications. 1996, 10: 1149–1150
    [181] Sellinger A, Weiss P M, Nguyen A. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature. 1998, 394: 256-260
    [182] Gimon-Kinsel M E, Balkus K J Jr. Mesoporous molecular sieve thin films. Stud Surf Sci Catal. 1998, 117: 111-118
    [183] SH Tolbert, TE Schaffer, J. Feng, PK Hansma, GD Stucky. A New Phase of Oriented Mesoporous Silicate Thin Films. Chem. Mater. 1997, 9: 1962-1967
    [184] Yang H., Coombs N., Ozin GA. Mesoporous silica with micron scale designs. Adv. Mater. 1997, 9: 811-814
    [185] Huo Q., Zhao D., Feng J., Weston K., Buratto SK, Stucky GD, Schacht S., Schüth F Room Temperature Growth of Mesoporous Silica Fibers: A New High Surface-Area Optical Waveguide. Adv. Mater. 1997, 9(12): 974-978
    [186] Singh C. P., Yousuf M., Qadri S. B., Turner D. C., Gaber B. P., Ratna B. R Transparent monolithic cubic mesoporous silica synthesized by structure-directing surfactant. Applied Physics A: Materials Science & Processing. 2003, 77(3-4): 585-589
    [187] Anderson M. T., Martin J. E., Odinek J. G., Newcomer P. P., Wilcoxon J. P. Monolithic periodic mesoporous silica gels. Microporous Mater. 1997, 10: 13-24
    [188] Mark E. Davis. Ordered porous materials for emerging applications. Nature. 2002, 417: 813-821
    [189] Peter T. Tanev, Thomas J. Pinnavaia. Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties. Chem. Mater. 1996, 8: 2068-2079
    [190] Ryoo R., Jun S Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process. J. Phys. Chem. B. 1997, 101: 317-320.
    [191] Das D., Tsai C. M., Cheng S Improvement of hyudrothermal stability of MCM-41 mesoporous molecular sieve. Chem. Commun. 1999: 473-474.
    [192] Kloetstra K. R., Jansen J. C., Bekkum H. Van. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chem. Commun. 1997: 2281-2282.
    [193] On D. T., Kaliaduine S Large-pore mesoporous materials with semi-crystalline zeolitic frameworks. Angew. Chem. Int. Ed. 2001, 40: 3248-3251
    [194] Michael Grün, Klaus K. Unger, Akihiko Matsumoto, Kazuo Tsutsumi. Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous and Mesoporous Materials. 1999, 27: 207–216
    [195] Liu Y., Zhang W., Pinnavaia T. J Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds. J. Am. Chem. Soc. 2000, 122: 8791-8792
    [196] Liu Y., Zhang W., Pinnavaia T. J Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds. Angew.Chem. Int. Ed. 2001, 40: 1255-1258
    [197] Liu Y., Pinnavaia T. J., Assembly of Hydrothermally Stable Aluminosilicate Foams and Large-Pore Hexagonal Mesostructures from Zeolite Seeds under Strongly Acidic Conditions, Chem. Mater. 2002, 14: 3-5
    [198] Zhang Z., Han Y., Zhu L., Wang R., Yu Y., Qiu S., Zhao D., Xiao F Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew. Chem. Int. Ed. 2001, 40: 1258-1262
    [199] Zhang Z., Han Y., Xiao F., Qiu S., Zhu L., Wang R., Yu Y., Zhang Z., Zou B., Wang Y., Sun H., Zhao D Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J. Am. Chem. Soc. 2001, 123: 5014-5021
    [200] On D. T., Kaliaguine S Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates. Angew. Chem. Int. Ed. 2002, 41: 1036-1040
    [201] Koyano K. A., Tatsumi T., Tanaka Y., Nakata S Stabilization of meaoporousmolecular sieves by trimethylsilylation. J. Phys. Chem. B. 1997, 101:9436-9440
    [202] Zhao X. S., Lu G. Q Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study. J. Phys. Chem. B. 1998, 102: 1556-1561
    [203] Mokaya R Influence of pore wall thickness on steam stability of Al-graftedMCM-41. Chem. Commun. 2001: 633-634
    [204] Mokaya R., Zhou W., Jones W A method for the synthesis of high quality large crystal MCM-41. Chem. Commun. 1999: 51-52
    [205] Mokaya R., Improving the stability of mesoporous MCM-41 silica via thicker more highly condensed pore walls. J. Phys. Chem. B. 1999, 103: 10204-10208
    [206] Zhao X. S., Lu G. Q., Whittaker A. K., Millar G. J., Zhu H. Y Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA. J. Phys. Chem. B. 1997, 101: 6525-6531
    [207] Thomas M., Fernando R., Gopinathan S., John M.T Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Natuer. 1995, 378: 159-162
    [208] Thomas M., Richard D. O., Gopinathan S., John M. T., Ian J. S., C. Richard A. C., John A. K., Anthony F. M., James K. B Designing a Solid Catalyst for the Selective Low-Temperature Oxidation of Cyclohexane to Cyclohexanone. Angew. Chem. Inte. Ed. 1997, 36(15): 1639-1642
    [209] Sherphard D. S., Maschmeyer T., Johnson B. F. G., Thomas J. M., Sankar G., Ozkaya D., Zhou W., Oldroyd R. D., Bell R. G Bimetallic nanoparticles catalysts anchored inside mesoporous silica. Angew. Chem. Int. Ed. 1997, 36: 2242-2244
    [210] Zhou W., Thomas J. M., Shephard D. S., Johnson B. F. G., Ozkaya D., Maschmeyer T., Bell R. G., Ge Q Ordering of ruthenium, cluster carbonyls in mesoporous silica. Science. 1998, 280: 705-708
    [211] Robert M Ultrastable mesoporous aluminosilicates by grafting routs. Angew. Chem. Int. Ed. 1999, 38: 2930-2934
    [212] Robert M., William J Aluminosilicate mesoporous molecular sieves with enhanced stability obtained by reacting MCM-41 with aluminium chlorohydrate. Chem. Commun. 1998: 1839-1840
    [213] James H. Clark and Duncan J. Macquarrie. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem. Commun., 1998, (8): 853-860
    [214] Anwander, R., Nagl, I., Widenmeyer, M., Engelhardt, G., Groeger, O., Palm, C., Roser, T. Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation. J. Phys. Chem. B. 2000, 104(15): 3532-3544
    [215] Anwander R., Palm C., Stelzer J., Groeger O., Engelhardt G Silazane-Silylation Of Mesoporous Silicates: Towards Tailor-Made Support Materials. Stud. Surf. Sci. Catal. 1998, 117: 135-142
    [216] Moller, K., Bein, T. Inclusion Chemistry in Periodic Mesoporous Hosts. Chem. Mater. 1998, 10(10): 2950-2963
    [217] Stein A., Melde B. J., Schroden R. C Hybrid Inorganic-Organic Mesoporous Silicates -Nanoscopic Reactors Coming of Age. Advanced Materials. 2000, 12 (19): 1403-1419
    [218] Antochshuk, V., Jaroniec, M. Functionalized Mesoporous Materials Obtained via Interfacial Reactions in Self-Assembled Silica-Surfactant Systems. Chem. Mater. 2000, 12(8): 2496-2501
    [219] Valentyn A. Mietek J Simultaneous modification of mesopores and extraction of template molecules from MCM-41 with trialkylchlorosilanes. Chem. Commun. 1999, (23): 2373-2374
    [220] Yamamoto K., Tatsumi I., Chem. Lett. 2000, 6: 624
    [221] Yongsoon S., Jun L., Li-Qiong W., Zimin N., William D. S., Glen E. F., Gregory J. E Ordered Hierarchical Porous Materials: Towards Tunable Size-and Shape-Selective Microcavities in Nanoporous Channels. Angew. Chem. Int. Ed. 2000: 2702-2707
    [222] Reiner A., Rainer R Grafting of versatile lanthanide silylamide precursors onto mesoporous MCM-41. J. Chem. Soc. Dalton Trans. 1997, (2): 137-138
    [223] Hong-Ping L., Lu-Yi Y., Chung-Yuan M., Shang-Bin L., Huang-Kuei L A Direct Surfcae Silyl Modification of Acid-Synthesized Mesoporous Silica. New J.
    Chem. 2000, 24: 253
    [224] Jaroniec, C. P., Kruk, M., Jaroniec, M., Sayari, A. Tailoring Surface and Structural Properties of MCM-41 Silicas by Bonding Organosilanes. J. Phys. Chem. B. 1998, 102(28): 5503-5510
    [225] Douglas S. Shephard, Wuzong Zhou, Thomas Maschmeyer, Justin M. Matters, Caroline L. Roper, Simon Parsons, Brian F. G. Johnson, Melinda J. Duer. Site-Directed Surface Derivatization of MCM-41: Use of High-Resolution Transmission Electron Microscopy and Molecular Recognition for Determining the Position of Functionality within Mesoporous Materials. Angew. Chem. Int. Ed. 1998, 37(19): 2719-2723
    [226] Kimura T., Saeki S., Sugahara Y., Kuroda K Organic Modification of FSM-type Mesoporous Silicas by Silylation. Langmuir, 1999, 15: 2794-2798
    [227] Tatsumi T., Koyano KA., Tanaka Y., Nakata S Stabilization of M41S molecular sieves by trimethylsilylation. Stud. Surf. Sci. Catal. 1998, 117: 143-150
    [228] Ryoo, R., Ko, C. H., Kruk, M., Antochshuk, V., Jaroniec, M. Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore-Micropore Network. J. Phys. Chem. B. 2000, 104(48): 11465-11471
    [229] Takashi T., Keiko A. K., Naoko I Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H2O2 catalyzed by titanium-containing mesoporous molecular sieves. Chem. Commun. 1998, (3): 325-326
    [230] Avelino C., Marcelo D., JoséA. G., JoséL. ., María T. N., Fernando R., Joaquin Pérez-Pariente, Junpei T., Beth McCulloch, Laszlo T. N Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chem. Commun., 1998, (20): 2211-2212
    [231] Corma, A., Garcia, H., Navarro, M. T., Palomares, E. J., Rey, F. Observation of a 390-nm Emission Band Associated with Framework Ti in Mesoporous Titanosilicates. Chem. Mater. 2000, 12(10): 3068-3072
    [232] Corma A., Jorda J.L., Navarro M.T., Perez-Pariente J., Rey F., Tsuji J Influence of silylation on the catalytic activity of Ti-MCM-41 during epoxidation of olefins Nanoporous Materials II. Stud. Surf. Sci. Catal. 2000, 129: 169-178
    [233] Evans, J., Zaki, A. B., El-Sheikh, M. Y., El-Safty, S. A. Incorporation of Transition-Metal Complexes in Functionalized Mesoporous Silica and Their Activity toward the Oxidation of Aromatic Amines. J. Phys. Chem. B. 2000, 104(44): 10271-10281
    [234] Simon K., Hendrikus C. L. A., Rob W. J. M. H., Jan H. C. van Hooff, Rutger A. van Santen. Solid-Phase Immobilization of a New Epoxidation Catalyst. Angew. Chem. Int. Ed. 1998, 37(3): 356-358
    [235] Michael B. D'Amore, Stephan S Trimethylsilylation of ordered and disordered titanosilicates: improvements in epoxidation with aqueous H2O2 from micro-to meso-pores and beyond. Chem. Commun. 1999, (2): 121-122
    [236] Jie Bu, Hyun-Ku Rhee. Silylation of Ti-MCM-41 by trimethylsilyl-imidazole and its effect on the olefin epoxidation with aqueous H2O2. Catal. Lett. 2000, 66(4): 245-249
    [237] Bu J., Hyun-Ku R Synthesis and Modification of Ti-containing Catalysts for Epoxidation of Alkene. Stud. Surf. Sci. Catal. 2000, 129: 179-186
    [238] Tuel A. Metallophthalocyanine functionalized silicas : catalysts for the selective oxidation of organic compounds AB Sorokin. Catalysis Today 2000, 57: 45-59
    [239] Oldroyd R. D., Sankar G., Thomas J. M., Hunnius M., Maier W. F Creation, characterization and performance of vanadyl active sites in microporous and mesoporous silica-based catalysts for the selective oxidation of hydrocarbons. J. Chem. Soc. Faraday Trans. 1998, 94: 3177-3182
    [240] Clark JH., Macquarrie DJ., Wilson K Functionalised mesoporous materials for green chemistry. Nanoporous Materials II, Stud. Surf. Sci. Catal., 2000, 129: 251-264
    [241] Yarlagadda V. Subba R., Dirk E. De Vos, Pierre A. Jacobs. 1,5,7-Triazabicyclo[4. 4. 0]dec-5-ene Immobilized in MCM-41: A Strongly Basic Porous Catalyst. Angew. Chem. Int. Ed. Engl. 1997, 36(23): 2661-2663
    [242] Anne C., Gilbert R., Daniel B Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with amino groups J. Org. Chem. 1997, 62(3): 749-751
    [243] Choudary B. M., Kantam M. L., Sreekanth P., T. Bandopadhyay, F. Figueras, A. Tuel. Knoevenagel and aldol condensations catalysed by amino functionalized mesoporous material. J. Mol. Catal. A, 1999, 142: 361-365
    [244] Jaenicke, S., Chuah, G. K., Lin, X. H., Hu, X. C. Organic–inorganic hybrid catalysts for acid-and base-catalyzed reactions. Micropor Mesopor Mater. 2000, 35-36: 143-153
    [245] Derrien A., Renard G., Brunel D Guanidine linked to micelle-templated mesoporous silicates as base catalyst for transesterification Mesoporous Molecular Sieves. 1998, Stud. Surf. Sci. Catal. 1998, 117: 445-452
    [246] Bossaert WD., Voos DE De., Rhijn WM Van, Bullen J., Wouters B., Grobet PJ., Jacobs PA. J. Catal. 1999, 182: 156
    [247] Kantam M. L., Sreekanth P One-pot synthesis of conjugated nitroalkenes by diamino-functionalised mesoporous material. Catal. Lett. 1999, 57(4): 227-231
    [248] Mdoe JEG, Clark JH, Macquarrie DJ Michael Additions Catalysed by N, N-dimethyl-3-aminopropyl derivatised Amorphous Silica and Hexagonal Mesoporous silica (HMS). Synlett. 1998, (6): 625-627
    [249] Burkett S. L., Sims S. D., Mann S Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 1996, 1367-1368
    [250] Fowler C. E., Burkett S. L., Mann S Synthesis and characterizatioin of ordered organosilica-surfactant mesophases with functionalized MCM-41-type architecture. Chem. Commun. 1997: 1769-1770
    [251] Christopher w. J., Katsuyuki T., Mark E. Davis. Organic-functionalized molecular sieves as shape-selective catalysts. Nature. 1998, 393: 52 –54
    [252] Macquarrie DJ. Direct preparation of organically modified MCM-type materials: preparation and characterization of aminopropyl-MCM and 2-cyanoethyl-MCM. Chem. Commun. 1996: 1961-1962
    [253] Macquarrie DJ, Jackson DB, Tailland S, Wilson K., Clark JH. New Organically Modified Hexagonal Mesoporous Silicas: Preparation and Applications in Catalysis. Stud Surf Sci, Catal. 2000, 129: 275-282
    [254] Lim, M. H., Blanford, C. F., Stein A., Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41: Probing the Internal Pore Structure by a Bromination Reaction. J. Am. Chem. Soc. 1997, 119(17): 4090-4091
    [255] Simon R. Hall, Christabel E. Fowler, Benedicte Lebeau and Stephen Mann. Template-directed synthesis of bi-functionalized organo-MCM-41 and phenyl-MCM-48 silica mesophases. Chem. Commun. 1999, (2): 201-202
    [256] Lim, M. H., Blanford, C. F., Stein A. Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts. Chem. Mater. 1998, 10(2): 467-470
    [257] Grobet PJ., Jacobs PA. J. Catal. 1999, 182: 156
    [258] Rhijn W. Van, Vos D. De, Bossaert W., Bullen J., Wouters B., Grobet P., Jacobs P., Stud. Surf. Sci. Catal., 1998, 117: 183
    [259] Wim M. Van Rhijn, Dirk E. De Vos, Bert F. Sels, Wim D. Bossaert, Pierre A. Jacobs. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem. Commun. 1998, (3): 317-318
    [260] Díaz I., Márquez-Alvarez C., Mohino F., Pérez-Pariente J., Sastre E. Combined alkyl and sulfonic acid functionalization of MCM-41-type silica Part 1. Synthesis and characterization. J. Catal. 2000, 193(2): 283-294
    [261] Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F., Stucky, G. D. Direct Syntheses of Ordered PTO-1 Mesoporous Silica Containing Sulfonic Acid Groups. Chem. Mater. 2000, 12(8): 2448-2459
    [262] Mercier, L., Pinnavaia, T. J., Direct Synthesis of Hybrid Organic-Inorganic Nanoporous Silica by a Neutral Amine Assembly Route: Structure-Function Control by Stoichiometric Incorporation of Organosiloxane Molecules. Chem. Mater. 2000, 12(1): 188-196
    [263] Jin J., Taeghwan H., Jingyu Hyeon-Lee. Fabrication of novel mesoporous dimethylsiloxane-incorporated silicas. Chem. Commun., 2000, (16): 1487-1488
    [264] Roger R., Louis M. Direct synthesis of functionalized mesoporous silica by non-ionic alkylpolyethyleneoxide surfactant assembly. Chem. Commun. 1998,
    (16): 1775-1777
    [265] Markowitz M. A., Klaehn J., Hendel R. A., Qadriq S. B., Golledge S. L., Castner D. G., Gaber B. P. Direct Synthesis of Metal-Chelating Mesoporous Silica: Effects of Added Organosilanes on Silicate Formation and Adsorption Properties. J. Phys. Chem. B. 2000, 104(46): 10820-10826
    [266] Chu C. T, Husain A., Huss J. A., Kresge C. T., Roth W. J., Isoparaffin-olefin alkylation process with zeolite MCM-36. 1993, USP No. 5258569
    [267] Armengol E., Cano ML, Corma A., García H., Navarro MT., J Chem. Soc. Chem. Commun. 1995: 519
    [268] Shin-Guang S., Sheau-Wen Ch., Der-Lii T. Immobilization of Rh(PPh_3)_3Cl on phosphinated MCM-41 for catalytic hydrogenation of olefins. Chem. Commun. 1999, (23), 2337-2338
    [269] Anwander R., Palm C., Gerstberger G., Groeger O., Engelhardt G Enhanced catalytic activity of MCM-41-grafted aluminium isopropoxide in MPV reductions. Chem. Commun. 1998, 17: 1811-1812
    [270] Xiao F., Han Y., Yu Y., Meng X., Yang M., Wu S Hydrothermal stable oedered mesoporous titanosilicates with highly active catalytic sites. J. Am. Chem. Soc. 2002, 124: 888-889
    [271] Miyayuki T., Wu P., Tatsumi T Selective oxidation of propylene to propylene oxide over Ti-MCM-41 supporting metal nitrate. Catal. Today. 2001, 71: 169-176.
    [272] Yu J., Feng Z., Xu L., Li M., Xin Q., Liu Z., Li C Ti-containing synthesized from colloidal silica and titanium trichloride: synthesis, characterization, and catalysis. Chem. Mater. 2001, 13: 994-998
    [273] Bhaumik Asim, Tatsumi Takashi. Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions. J. Catal. 2000, 189: 31-39
    [274] Walker J. V., Morey M., Carlsson H., Davidson A., Stucky G. D., Butler A Peroxidative halgenation catalyzed by transition-metal-ion-grafted mesoporous silicate materials. J. Am. Chem. Soc. 1997, 119: 6921-6922
    [275] Zheng S., Gao L., Zhang Q. H., Guo J. K Synthesis, characterization and photocatalytic properties of titanium-modified mesoporous. silica MCM-41. J. Mater. Chem. 2000, 10: 723-727
    [276] Han Y., Wu S., Suo Y., Li D., Xiao F. Hydrothermally stable ordered hexagonal mesoporus aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chem. Mater. 2002, 14: 1144-1148
    [277] Hartmann M., Vinu A., Elangovan S. P., Murugesan V., B?hlmann W Direct synthesis and catalytic evaluation of AlSBA-1. Chem. Commun. 2002, 1238-1239
    [278] Flego C., Carluccio L., Rizzo C., Perego C Synthesis of mesoporous SiO2-ZrO2 mixed oxides by sol-gel method. Catal. Commun. 2001, 2: 43-48
    [279] Kloetstra R. K, Van Bekkum HJ., Chem. Soc. Chem. Commun. 1995: 1005
    [280] Zhang W. H., Lu J., Han B., Li M., Xiu J., Ying P., Li C, Direct synthesis and characterization of titanium-substitute mesoporous molecular sieve PTO-1. Chem. Mater. 2002, 14: 3413-3421
    [281] Mobapatra S. K., Sahoo B., Keune W., Selvam P Synthesis, characterization and catalytic properties of trivalent iron substituted hexagonal mesoporous aluminophosphates. Chem. Commun. 2002: 1466-1467
    [282] Stockenhuber M., Joyner R. W., Dixon J. M., Hudson M. J., Grubert G Transition metal containing mesoporous silicas —redox properties, structure and catalytic activity. Microporous Mesoporous Mater. 2001, 44-45: 367-375
    [283] Nozaki C., Lugmair C. G., Bell A. T., Tilley T. D. Synthesis, characterization, and catalytic performance of single-site iron centers on the surface of PTO-1 silica. J. Am. Chem. Soc. 2002, 124: 13194-13203
    [284] Bhattacharyya K. G., Talukdar A. K., Das P., Sivasanker S Acetylation of phenol with Al-MCM-41. Catal. Commun. 2001, 2: 105-111
    [285] Climent M. J., Corma A., Iborra S., Miquel S., Primo J., Rey F Mesoporous materials as catalysts for the production of chemicals: synthesis of alkyl glucosides on MCM-41. J. Catal. 1999, 183: 76-82
    [286] A. L. V. de P., E. Alarc ón, C. M. de Correa. Synthesis of nopol over MCM-41 catalysts. Chem. Commun. 2002: 2654-2655
    [287] Ziolek M., Sobezak I., Lewandowska A., Nowak I., Decyk P., Renn M., Jankowska B Oxidation properties of niobium-containing mesoporous silica catalysts. Catal. Today, 2001, 70: 169-181
    [288] Ziolek M., I Sobezak., Nowak I., Decyk P., Lewandowska A., Kujawa J Nb-containing mesoporous molecular sieves -a possible application in the catalytic process. Microporous Mesoporous Mater. 2000, 35-36: 195-207
    [289] Kim S. W., Son S. U., Lee S. I., Hyeon T., Chung Y. K Cobalt on mesoporous silica: the first heterogeneous Pauson-Khand Catalyst. J. Am. Chem. Soc. 2000, 122: 1550-1551
    [290] Yonemitsu M., Tanaka Y., Iwamoto M Metal ion-planted MCM-41: 2. catalytic epoxidation of stilbene and its derivatives with tert-butyl hydroperoxide on Mn-MCM-41. J. Catal. 1998, 178: 207-213
    [291] Chatterjee M., Iwasaki T., Onodera Y., Nagase T., Hayashi H., Elina T Characterization of ordered mesoporous Gallium MCM-41 synthesized at room temperature. Chem. Mater. 2000, 12: 1654-1659
    [292] Liu Y. M., Cao Y., Zhu K. K., Yan S. R., Dai W. L., He H. Y., Fan K. N Highly efficient VOx/PTO-1 mesoporous catalysts for oxidative dehydrogenation of propane. Chem. Commun. 2002: 2832-2833
    [293] Zhang Z. T., Konduru M., Dai S., Overbury S. H Uniform formation of uranium oxide nanocrystals inside ordered mesoporous hosts and their potential applications as oxidative catalysts. Chem. Commun. 2002: 2406-2407
    [294] Schüth F., Wingen A., Sauer J Oxide loaded ordered mesoporous oxides for catalytic applications. Microporous Mesoporous Mater. 2001, 44-45: 465-476
    [295] Jentys A., Schieber W., Vinek H Unique catalytic properties of Pt and tungstophosphoric acid support on MCM-41 for the reduction of NOx in the presence of water vapour. Chem. Commun. 1999: 335-336
    [296] Diaz I., Marquez-Alvarez C., Mohino F., Perez-Pariente J., Sastre E A novel synthesis route of well ordered, sulfur-bearing MCM-41 catalysts involving mixtures of neutral and cationic surfactants. Microporous Mesoporous Mater. 2001, 44-45: 295-302.
    [297] Das D., Lee J., Cheng S Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for bisphenol-A synthesis. Chem. Commun. 2001: 2178-2179
    [298] Shimizu K., Suzuki H., Hayashi E., Kodama T., Tsuchiya Y., Hagiwara H., Kitayama Y Catalytic direct 1,4-conjugate addition of aldehydes to vinylketones on secondary-amines immobilized in FSM-16 silica. Chem. Commun. 2002: 1068-1069.
    [299] Inaki Y., Kajita Y., Yoshida H., Ito K., Hattori T New basic mesoporous silica catalyst obtained by ammonia grafting. Chem. Commun. 2001: 2358-2359
    [300] Macquarrie D. J., Jackson D. B Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica. Chem. Commun. 1997: 1781-1782
    [301] I Rodriguez., Iborra S., Corma A., Rey F., J. L. Jord á. MCM-41-quaternary organic tetraalkylammonium hydroxide composites as strong and stable Bronsted base catalysts. Chem. Commun. 1999: 593-594
    [302] Bae S. J., Kim S. W., Hyeon T., Kim B. M New chiral heterogeneous catalysts based on mesoporous silica: asymmetric diethylzinc addition to benzadehyde. Chem. Commun. 2000: 31-32
    [303] Corma A., Garcia H., Moussaif A., Sabater M. J., Zniber R., Redouane A Chiral copper bisoxazoline covalently anchored to silica and mesoporous MCM-41 as a heterogeneous catalyst for the enantioselective Fridel-Crafts hydroxyalkylation. Chem. Commun. 2002: 1058-1059
    [304] Clarke R. J., Shannon I. J Mesopore immobilized copper bis(oxazoline) complexes for enantioselective catalysis. Chem. Commun. 2001: 1936-1937
    [305] Bigi F., Moroni L., Maggi R., Sartori G Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(III) complexes supported on amorphous MCM-41 silica through a new triazine-based linker. Chem. Commun. 2002: 716-717
    [306] Xiang S., Zhang Y., Xin Q., Li C Enantioselective epoxidation of olefins catalysed by Mn(salen)/MCM-41 synthesized with a new anchoring method. Chem. Commun. 2002: 2696-2697
    [307] Lee C. W., Ahn D. H., Wang B., Hwang J. S., Park S. E Hydroxylation of phenol over surface functionalzed MCM-41 supported metal catalyst. Microporous Mesoporous Mater. 2001, 44-45: 587-594
    [308] Jia M., Thiel W. R Oxidiperoxo molybdenum modified mesoporous MCM-41 materials for the catalytic epoxidation of cyclooctene. Chem. Commun. 2002: 2392-2393
    [309] Zhang J. L., Liu Y. L., Che C. M Chiral ruthenium porphyrin encapsulated in ordered mesoporous molecular sieves(MCm-41 and MCM-48) as catalysts for asymmetric alkene epoxidation and cyclopropanation. Chem. Commun. 2002: 2906-2907
    [310] Xiang S., Zhang Y., Xin Q., Li C Asymmetric epoxidation of allyl alcohol on organic-inorganic hybrid chiral catalysts grafted onto the surface of silica and in the mesopores of MCM-41. Angew. Chem. Int. Ed. Engl. 2002, 41: 821-824
    [311] Corma A., Jorda J. L., Navarro M. T., Rey F One step synthesis of highly active and selective epoxidation catalysts formed by organic-inorganic Ti containing mesoporous composites. Chem. Commun. 1998: 1899-1900
    [312] Kantam M. L., Bandyopadhyay T., Ranman A., Mahender N., Choudary B. M Reduction of nitroaromatics with a new heterogenised MCm-silylamine palladium catalyst. J. Molecul. Catal. A: Chemical, 1998, 133: 293-295
    [313] Wang Y., Caruso F. Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation. Chem. Mater. 2005, 17(5): 953-961
    [314] Han Y. J., Watson J. T., Stucky G. D., Butler A Catalytic activity of mesoporous silicate-immobilized chloroperoxidation. J. Catal. B: Enzymatic, 2002, 17: 1-8
    [315] Larsen G., Lotero E. Mark. Surfacttant-assisted synthesis of mesoporous zirconia powders with high sruface areas. J. Catal. 1996, 164: 246-248
    [316] Vettraino M., Trudeau M., Lo A. Y. H., Schurko R. W., Antonelli D Room-temperature ammonia formation from dinitrogen on a reduced mesoporous titanium oxide surface with metallic properties. J. Am. Chem. Soc. 2002, 124: 9567-9673
    [317] Kapoor M. P., Raj A., Matsumura Y Methanol decomposition over palladium supported mesoporous CeO_2-ZrO_2 mixed oxides. Mocroporous Mesoporous Mater. 2001, 44-45: 565-572
    [318] Sayari A., Hamoudi S., Yang Y. Applications of Pore-Expanded Mesoporous Silica. 1 Removal of Heavy Metal Cations and Organic Pollutants from Wastewater. Chem. Mater. 2005, 17(1): 212-216
    [319] Feng X., Fryxell G. E., Wang L.-Q., Kim A. Y., Liu J., Kemner K. M Functionalized Monolayers on Ordered Mesoporous Supports. Science. 1997, 276: 923-926
    [320] Liu J., Feng X.D., Fryxell G. E., Wang L.-Q., Kim A. Y., Gong M Hybrid Mesoporous Materials with Functionalized Monolayers. Adv. Mater. 1998, 10: 161-165
    [321] Mercier L., Pinnavaia T. J Access in Mesoporous Materials: Advantages of a Uniform Pore Structure in the Design of a Heavy Metal Ion Adsorbent for Environmental Remediation. Adv. Mater. 1997, 9: 500
    [322] Jennifer B., Louis M., Pinnavaia T.J Selective adsorption of Hg~(2+) by thiol-functionalized nanoporous silica. Chem. Commun. 1999, (1): 69-70
    [323] Walcarius A., Luthi N., Blin J.-L., Su B.-L., Lamberts L Electrochi. Acta. 1999, 44: 4601
    [324] Fryxell G. E., Liu J., Hauser T. A., Nie Z., Ferris K. F., Mattigod S., Gong M., Hallen R. T., Design and Synthesis of Selective Mesoporous Anion Traps. Chem. Mater. 1999, 11(8): 2148-2154
    [325] Feng X., Rao L., Mohs TR, J Xu., Xia Y., Fryxell GE., Liu J., Raymond KN. In Environental Issues and Waste Management Technologyies in the Ceramic and Nuclear Industries IV. American Ceramic Society. Westerville. OH 1998, 93: 34-42
    [326] Izumi J Mitsubishi, VOC Recovery Process. Mitsubishi Heavy Industries Ltd. 1996
    [327] Beck J. S., Calabro D. C., McCullen S. B., Pelrine B. P., Schmitt K.D., Vartuli J. C. Sorption separation over modified synthetic mesoporous crystalline material. USP No. 5, 220, 101, 1993
    [328] Bambrough CM, Slade RCT, Williams RT, Burkett SL., Sims SD., Mann S J. Colloid Interace Sci. 1998, 201: 220
    [329] Claire M. B., Robert C. T. S., Ruth T. W Synthesis of a large pore phenyl-modified mesoporous silica and its characterization by nitrogen and benzene sorption. J. Mater. Chem. 1998, 8 (3): 569-571
    [330] Brieler F. J., Grundmann P., Froba M., Chen L., Klar P. J., Heimbrodt W., Krug von Nidda H.-A., Kurz T., Loidl A. Size Dependence of the Magnetic and Optical Properties of Cd1-xMnxS Nanostructures Confined in Mesoporous Silica. Chem. Mater. 2005, 17(4): 795-803
    [331] Anedda A., Carbonaro C. M., Clemente F., Corpino R., Ricci P. C. Time Resolved Ultraviolet Photoluminescence of Mesoporous Silica. J. Phys. Chem. B. 2005, 109(3): 1239-1242
    [332] Zhou H. S., Honma I Synthesis of Chlorophyll Doped Silica-mesostructure Materials. Chem. Lett. 1998: 973-974
    [333] Zhou H. S., Sasabe H., Honma I Synthesis of phthalocyanine-doped silica mesostructured materials by ferrocenyl surfactant. J. Mater. Chem. 1998, 8: 515-516
    [334] Zhou H. S., Honma I Dye-doped photosensitive mesostructure materials. Adv. Mater. 1999, 11: 683-685
    [335] Scott B. J., Wirnsberger G., Stucky G. D Mesoporous and mesostructured materials for optical applications. Chem. Mater. 2001, 13: 3140-3150
    [336] Fowler C. E., Lebeau B., Mann S Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation. Chem. Commun. 1998: 1825-1826
    [337] Lebeau B., Fowler C. E., Hall S. R., Mann S Transparent thin films and monoliths prepared from dye-functionalized ordered silica mesostructures. J. Mater. Chem. 1999, 9: 2279-2281
    [338] Ganschow M., Wark M., Wohrle D., Schulz-Ekloff G Anchoring of functional dye molecules MCM-41 by microwave-assisted hydrothermal cocondensation. Angeew. Chem. Int. Ed. Engl. 2000, 39: 161-163
    [339] Shibata M., Hotta H., Suzuki T., Valange S., Gabelica Z Light Fastness Properties of Acid Dye and Mesoporous Ca-Aluminosilicate Composite. Chem. Lett. 1999: 1291-1292
    [340] Srdanov V. I., Alxneit I., Stucky G. D., Denbaars C. M Optical Properties of GaAs Confined in the Pores of MCM-41. J. Phys. Chem. B. 1998, 102: 3341-3344
    [341] Agger J. R., Anderson M. W., Pemble M. E., Terasaki O., Nozue Y Growth of Quantum-Confined Indium Phosphide inside MCM-41. J. Phys. Chem. B. 1998, 102: 3345-3353
    [342] Dag O., Ozin G. A., Yang H., Reber C., Bussiere G photoluminescent silicon clusters in oriented hexagonal mesoporous silica film. Adv. Mater. 1999, 11: 474-480
    [343] Leon R., Margolese D., Stucky G. D., Pertroff P. M Nanocrystalline Ge filement in the pore of a mesosilicate. Phys. Rev. B: Condense. Matter Mater. Phys. 1995, 52: 2285-2288
    [344] Zhang W. H., Shi J. L., Wang L. Z., Yan D. S Preparation and Characterization of ZnO Clusters inside Mesoporous Silica. Chem. Mater. 2000, 12: 1408-1413
    [345] Winkler H., Birkner A., Hagen V., Wolf I., Schmechel R., Seggern H. von, Fischer R. A Quantum-Confined Gallium Nitride in MCM-41. Adv. Mater. 1999, 11: 1444-1448
    [346] Parala H., Winkler H., Kolbe M., Wohlfart A., Fischer R. A., Schmechei R., Seggern H Confinement of CdSe Nanoparticles Inside MCM-41. Adv. Mater. 2000, 12: 1050-1055
    [347] Hirai T., Okubo H., Komasawa I. J Size-Selective Incorporation of CdS Nanoparticles into Mesoporous Silica. J. Phys. Chem. B. 1999, 103: 4228-4230
    [348] Ogawa M., Nakamura T., Mori J., Kurada K Luminescence of Tris(2, 2'-bipyridine) ruthenium(II) Cations ([Ru(bpy)~3]~(2+)) Adsorbed in Mesoporous Silica. J. Phys. Chem. B. 2000, 104: 8554-8556
    [349] Xu Q. H., Li L. S., Li B., Yu J. H., Xu R. R Encapsulation and luminescent property of tetrakis (1-(2-thenoyl)-3, 3, 3-trifluoracetate) europium N-hexadecyl pyridinium in modified Si–MCM-41. Microporous Mesoporous Mater. 2000, 38: 351-358
    [350] Tolbert S. H., Firouzi A., Stucky G. D., Chmelka B. F Magnetic Field Alignment of Ordered Silicate-Surfactant Composites and Mesoporous Silica. Science. 1997, 278: 264-268
    [351] Nguyen T. Q., Wu J. J., Doan V., Schwartz B. J., Tolbert S. H Control of Energy Transfer in Oriented Conjugated Polymer-Mesoporous Silica Composites. Science. 2000, 288: 652-656
    [352] Kinski I., Gies H., Marlow F Ordered and disordered pNA molecules in mesoporous MCM-41. Zeolites. 1997, 19: 375-381
    [353] Gu J.-L., Shi J.-L., You G.-J., Xiong L.-M., Qian S.-X., Hua Z.-L., Chen H.-R. Incorporation of Highly Dispersed Gold Nanoparticles into the Pore Channels of Mesoporous Silica Thin Films and their Ultrafast Nonlinear Optical Response. Advanced Materials. 2005, 17(5): 557-560
    [354] Wirnsberger, G., Stucky, G. D. Microring Lasing from Dye-Doped Silica/Block Copolymer Nanocomposites. Chem. Mater. 2000, 12(9): 2525-2527
    [355] Guido I., Ferdi S., Oliver K., Uwe V., Franco L. Alignment of a Laser Dye in the Channels of the AlPO4-5 Molecular Sieve. Adv. Mater. 1999, 10: 1117-1119
    [356] Peidong Y., Gernot W., Howard C. H., Steven R. C., Michael D. McGehee, Brian S., Tao D., George M. W., Bradley F. C., Steven K. B., Stucky G. D Mirrorless Lasing from Mesostructured Waveguides Patterned by Soft Lithography. Science. 2000, 287: 465-467
    [357] Marlow F., McGehee M. D., Zhao D. Y., Chmelka B. F., Stucky G. D Doped Mesoporous Silica Fibers: A New Laser Material. Adv. Mater. 1999, 11: 632-636
    [358] Wiensberger G., Scott B. J., B. F. Stucky G. D Fast Response Photochromic Mesostructures. Adv. Mater. 2000, 12: 1450-1454
    [359] Wirnsberger G., Scott B. J., Stucky G. D pH Sensing with mesoporous thin films. Chem. Commun. 2001: 119-120
    [360] Fan H. Y., Lu Y. F., Stump A., Reed S. T., Baer T., Schunk R., Perez-Luna V., Lopez G. P., Brinker C. J Rapid prototyping of patterned functional nanostructures. Nature. 2000, 405: 56-60
    [361] Yui T., Tsuchino T., Itoh T., Ogawa M., Fukushima Y., Takagi K. Photoinduced One-Electron Reduction of MV~(2+) in Titania Nanosheets Using Porphyrin in Mesoporous Silica Thin Films. Langmuir. 2005, 21(7): 2644-2646
    [362] McCoy M. Completing the circuit. Chem. Eng. News. 2000, 78: 13-24
    [363] Yang C. M., Cho A. T., Pan F. M., Tsai T. G., Chao K. J Spin-on Mesoporous Silica Films with Ultralow Dielectric Constants, Ordered Pore Structures, and Hydrophobic Surfaces. Adv. Mater. 2001, 13: 1099-1102
    [364] Baskaran S., Liu J., Domansky K., Kohler N., Li X., Coyle C., Fryxell G. E., Thevuthasan S., Williford R. E Low Dielectric Constant Mesoporous Silica Films Through Molecularly Templated Synthesis. Adv. Mater. 2000, 12: 291-294
    [365] http: //www. schumacher. com/products/DESCRIP/CHEM/Meso. htm
    [366] Peng Z., Shi Z., Liu M. L Mesoporous Sn-TiO2 composite electrodes for lithium Batteries. Chem. Commun. 2000, 2125-2126
    [367] Liu P., Lee S. H., Tracy E., Yan Y., Turner J. A Preparation and lithium insertion properties of mesoporous vanadium oxide. Adv. Mater. 2002, 14: 27-30
    [368] Mamak M., Coombs N., Ozin G Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions for Fuel Cells. Adv. Mater. 2000, 12: 198-202
    [369] Mamak M., Coombs N., Ozin G Self-Assembling Solid Oxide Fuel Cell Materials: Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions. J. Am. Chem. Soc. 2000, 122: 8932-8939
    [370] Mamak M., Coombs N., Ozin G Electroactive Mesoporous Yttria Stabilized Zirconia Containing Platinum or Nickel Oxide Nanoclusters: A New Class of Solid Oxide Fuel Cell Electrode Materials. Adv. Funct. Mater. 2001, 11: 59-63
    [371] Wang Y. Q., Chen S. G., Tang X. H., Palchik O., Zaban A., Koltypin Y., Gedanken A Mesoporous titanium dioxide: sonochemical synthesis and application in dye-sensitized solar cells. J. Mater. Chem. 2001, 11: 521-526
    [372] Emons T. T., Li J., Nazar L. F Synthesis and characterization of mesoporous indium tinoxide possessing an electronically conductive framework. J. Am. Chem. Soc. 2002, 124: 8516-8517
    [373] He X., Trudeau M., Antonelli D Electronic Properties of Novel Mixed Oxidation-State Bis-Arene Chromium Nanowires Supported by a Mesoporous Niobium Oxide Host. Adv. Mater. 2000, 12: 1036-1040
    [374] He X., Trudeau M., Antonelli D. Bis(cyclopentadienyl)chromium and Bis-(cyclopentadienylvanadium) Composites of Mesoporous Niobium Oxide with Pseudo-One-Dimensional Organometallic Wires in the Pores. Chem. Mater. 2001, 13: 4808-4816
    [375] Ye B., Trudeau M., Antonelli D Synthesis and Electronic Properties of Potassium Fulleride Nanowires in a Mesoporous Niobium Oxide Host. Adv. Mater. 2001, 13: 29-33
    [376] Ye B., Trudeau M., Antonelli D Observation of a Double Maximum in the Dependence of Conductivity on Oxidation State in Potassium Fulleride Nanowires Supported by a Mesoporous Niobium Oxide Host Lattice. Adv. Mater., 2001, 13: 561-565
    [377] He X., Antonelli D Recent Advances in Synthesis and Applications of Transition Metal Containing Mesoporous Molecular Sieves. Angew. Chem. Int.
    Ed. Engl., 2002, 41: 214-229
    [378] Shi J.L., Hua Z.L Zhang L.X Nanocomposites from ordered mesoporous materials. J. Mater. Chem. 2004: 14
    [379] Lee K. B., Lee S. M., Cheon J Size-controlled synthesis of Pd nanowires using mesoporous silica template via chemical vapour infiltration. Adv. Mater., 2001, 13: 517-520
    [380] Yang C., Sheu H., Chao K Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48. Adv. Funct. Mater. 2002, 12: 143-148
    [381] Guo X.-J., Yang C.-M., Liu P.-H., Cheng M.-H., Chao K.-J. Formation and Growth of Platinum Nanostructures in Cubic Mesoporous Silica. Cryst. Growth Des. 2005, 5(1): 33-36
    [382] Huang M. H., Choudrey A., Yang P Ag nanowires formation within mesoporous silica. Chem. Commun., 2000: 1063-1064
    [383] F. Gao, Q. Lu, D. Zhao. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous PTO-1 silica template technique. Adv. Maters. 2003, 15(9): 739-742
    [384] Yang H., Shi Q., Tian B., Lu Q., Gao F., Xie S., Fan J., Yu C., Tu B., Zhao D One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J. Am. Chem. Soc. 2003, 125: 4724-4725
    [385] Shi K., Chi Y., Yu H., Xin B., Fu H. Controlled Growth of Mesostructured Crystalline Iron Oxide Nanowires and Fe-Filled Carbon Nanotube Arrays Templated by Mesoporous Silica SBA-16 Film. J. Phys. Chem. B. 2005, 109(7): 25.46-2551
    [386] Wu C., Bein T Conducting polyaniline filaments in a mesoporous channel host. Science. 1994, 264: 1757-1759
    [387] Wu C., Bein T Conducting carbon wires in ordered nanometer-size channels. Science. 1994, 266: 1013-1015
    [388] Kageyama K., Tamazawa J., Aida T Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science. 1999, 285: 2113-2115
    [389] Wang N., Tang Z. K., Li G. D., Chen J. S. Materials science: Single-walled 4 ? carbon nanotube arrays. Nature. 2000, 408: 50-51
    [390] Tang Z. K., Zhang Lingyun, Wang N., Zhang X. X., Wen G. H., Li G. D., Wang J. N., Chan C. T., Sheng P Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes. Science. 2001, 292: 2462-2465
    [391] Han Y., Stucky G. D., Butter A Mesoporous Silicate Sequestration and Release of Proteins. J. Am. Chem. Soc. 1999, 121: 9897-9898
    [392] Zhao J., Gao F., Fu Y., Jin W., Yang P., Zhao D Biomolecule separation using large pore mesoporous PTO-1 as a sunstrate in high performance liquid chromatography, Chem. Commun. 2002: 752-753
    [393] Gao F., Zhao J., S Zhang., Zhou F., Zhang X., Yang P., Zhao D. Y The application of mesoporous PTO-1 to separate thiol complexes as static phase in liquid chromatogram. Chem. J. Chin. Univ. 2002, 23: 1494-1599
    [394] Balkus K. J. Jr, Sherry A. D, Young S. W., Zeolite-enclosed transition and rare earth metal ions as contrast agents for the gastrointestinal tract. USP, No. 5122363, 1992
    [395] Balkus K. J. Jr, Bresinska L. Kowalak S. Young S. W. The application of molecular seives as magnetic resonance image contrast agents. Mater. Res. Soc. Symp. Ser. Proc. 1991, 223: 225-230
    [396] Mal N., Fujiwara M., Tanaka Y Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature. 2003, 421: 350-353
    [397] Lai C. Y., Trewyn B. G., Jeftinija D. M., Jeftinija K., Xu S., Jeftinija S., Lin V. S. Y A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003, 125: 4451-4459
    [398] Wang Z., Haasch R. T., Lee G. U. Mesoporous Membrane Device for Asymmetric Biosensing. Langmuir. 2005, 21(4): 1153-1157
    [399] Davidson A. Modifying the walls of mesoporous silicas prepared by supramolecular templating. Curr. Opinion Colloid Interf. Sci. 2002, 7: 92-106
    [400] Melosh NA, Lipic P, Bates FA, Wudl F, Stucky GD, Chmelka BF. Molecular and mesoscopic structures of transparent block copolymer-silica monoliths. Macromolecules 1999, 32: 4332
    [401] Simon PFW, Ulrich R, Spiess H, Wiesner U. Block copolymer-ceramic hybrid materials from organically modified ceramic precursors. Chem Mater 2001, 13: 3464-3486
    [402] Kruk M, Jaroniec M, Ko CH, Ryoo R. Characterization of the porous structure of PTO-1. Chem. Mater. 2000, 12: 1961-1968
    [403] Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11: 2813-2826
    [404] Soler-Illia GJAA, Scolan E, Louis A, Albouy PA, Sanchez C. Design of mesostructured titanium oxo based hybrid organic. inorganic networks. New J Chem2001, 25: 156-165
    [405] Kriesel JW, Tilley TD. General route to homogeneous, mesoporous, multicomponent oxides based on the thermolytic transformation of molecular precursors in non-polar media. Adv. Mater 2001, 13: 331-335
    [406] Grosso D, Soler-Illia GJAA, Babonneau F. Highly organised mesoporous titania thin films showing monooriented 2D hexagonal channels. Adv. Mater. 2001, 13: 1085
    [407] Crepaldi EL., Soler-Illia GJAA., Grosso D, Albouy PA, Sanchez C. Design and post-functionalisation of highly ordered mesoporous zirconia thin films. Chem. Commun. 2001: 1582-1583
    [408] Kim SS., Pauly TR., Pinnavaia TJ. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem. Commun. 2000: 1661-1662
    [409] Grosso D., Soler-Illia GJAA., Babonneau F. Highly organised mesoporous titania thin films showing monooriented 2D hexagonal channels. Adv. Mater. 2001, 13: 1085-1090
    [410] Yu C., Tian B., Fan J. Stucky GD, Zhao D. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc. 2002, 124: 4556-4557
    [411] Yang P., Deng T. Zhao D. Hierarchically ordered oxides. Science. 1998, 282: 2244-2246
    [412] Zhao D., Yang P., Chmelka BF., Stucky GD. Multiphase assembly of mesoporous-macroporous membranes. Chem. Mater. 1999, 11: 1174-1178
    [413] Grosso D., Balkenende AR., Albouy PA. Ayral A. Amenitsch H., Babonneau F. Two-dimensional hexagonal mesoporous silica thin films prepared from block copolymers : detailed characterization and formation mechanism. Chem. Mater. 2001, 13: 1848-1856
    [414] Patarin J., Lebeau B., Zana R. Recent advances in the formation mechanisms of organized mesoporous materials. Curr. Opinion Colloid Sruf. Xci. 2002, 7: 107-115
    [415] Suzuki H. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and process for production thereof. US Patent No. 4699892, 1987
    [416] Seki K. Design of an absorbent with an ideal pore structure for methane adsorption using metal complexes. Chem. Commun. 2001: 1496-1497
    [417] Annen M. J., Davis M. E., Higgins J. B., Schlenker J. L., VPI-7: The first zincosilicate molecular sieve containing three-membered T-atom rings. J. Chem. Soc. Chem. Commun. 1991: 1175-1176
    [418] Annen M. J., Davis M. E., Higgins J. B., Schlenker J. L., The physicochemical properties of VPI-7: A microporous zincosilicate with three-membered rings. Mater. Res. Soc. Symp. Ser. Proc. 1991, 233: 245-253
    [419] Lu D., Katou T., Uchida M., Kondo J. N., Domen K. In Situ TEM Observation of Crystallization of Amorphous Ordered Mesoporous Nb-Ta and Mg-Ta Mixed Oxides. Chem. Mater. 2005, 17(3): 632-637
    [420] Scopps M., Leist H., DuChesne A., Wiesner U Salt-induced switching of microdomain morphology of ionically fumctionalized diblock copolymers. Macromolecules. 1999, 32: 2806-2809
    [421] Colfen H. Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid Commun. 2001, 22: 219-252
    [422] Davis ME. Evolution of extra-large pore materials. Stud. Sruf. Sci. Catal. 2001, 135: 29-36
    [423] Benitez M., Bringmann G., Dreyer M., Garcia H., Ihmels H., Waidelich M., Wissel K. Design of a Chiral Mesoporous Silica and Its Application as a Host for Stereoselective Di-methane Rearrangements. J. Org. Chem. 2005, 70(6): 2315-2321
    [424] Bouchara A, Soler-Illia GJAA, Chane-Ching JY, Sanchez C. Nanotectonic approach of the texturation of CeO -based nanomaterials. Chem Commun 2002: 1234-1235
    [425] Dujardin E, Mann S. Bio-inspired materials chemistry. Adv. Mater 2002, 14: 775-788
    [426] Ono Y, Kanekiyo Y, Inoue K, Hojo J, Nango M, Shinkai S. Preparation of novel hollow fiber silica using collagen fibers as a template. Chem. Lett. 1999: 475-476
    [427] Coradin T, Giraud-Guille MM, Helary C, Livage J, Sanchez C. A novel route to collagen-silica biohybrids. Mater Res. Soc. Symp. Proc. 2002, 766 (paper Q5. 2. )
    [428] Ogasawara W, Shenton W, Davis SA, Mann S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chem. Mater. 2000, 12: 2835-2837
    [429] Pedroni V, Schulz PC, Gschaider de Ferreira ME, Morini MA. A chitosan-templated monolithic siliceous mesoporous, macroporous material. Colloid Polym. Sci. 2000, 278: 964-971
    [430] Wong MS, Cha JN, Choi KS, Deming TJ, Stucky GD. Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano. Lett. 2002, 2: 583-587
    [431] Nakanishi K. Pore structure control of silica gels based on phase separation. J. Porous Mater. 1997, 4: 67-111
    [432] Yang H, Ozin GAO, Kresge CT. The role of defect in the formation of mesoporous silica fibers, films and curved shapes. Adv. Mater. 1998, 10: 883-887
    [433] Christine G., GOltner Beate Berton, Eckart Kramer, Markus Antonietti. Nanoporous silicas by casting the aggregates of amphiphilic block copolymers: the transition from cylinders to lamellae and vesicles. Adv. mater. 1999, 11: 395-398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700