致密陶瓷膜的稳定性和氧输运性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致密陶瓷透氧膜在纯氧制备及许多涉氧过程如钢铁冶炼、富氧燃烧、甲烷部分氧化制合成气等中具有广泛的应用前景。其氧渗透能力来自于在中高温条件下材料中的氧离子和电子混合电导。在实际应用中,透氧膜必须具有高的氧渗透能力同时又能在操作条件下保持结构完整。但目前绝大多数透氧膜材料都无法满足这个条件。本论文针对这个问题,对单相钙钛矿型(第二、三章)和双相复合的(第四-六章)透氧膜在不同条件下的稳定性以及氧输运性能展开了一系列研究。
     第一章简要介绍了混合导体透氧膜的氧渗透基本原理、研究概况以及本论文的研究目的。
     第二章对具有高氧渗透能力的钙钛矿氧化物SrCo_(1-x)Fe_xO_(3-δ)(x=0,0.05,0.1,0.2)中铁掺杂对相结构、电导和氧渗透性能的影响进行了研究。结果表明,随铁掺杂量的增加SrCo_(1-x)Fe_xO_(3-δ)的室温钙钛矿结构发生了六方→Brownmillerite→立方+Brownmillerite→立方的变化,而相应的电子电导率和氧渗透能力也逐渐增大。我们认为,这是由于随着晶体结构逐步趋向立方钙钛矿结构,晶格畸变程度逐渐降低、Co/Fe-O-Co/Fe键角逐渐增大、Co/Fe的3d轨道和O的2p轨道的重叠程度逐渐提高,氧空位从高度有序排列逐渐无序化所导致的。结果还表明,SrCo_(1-x)Fe_xO_(3-δ)的高温立方相的电子电导率和氧渗透能力反而随x的增大而下降,这可能是由Co-O和Fe-O键之间的差别引起的。
     钙钛矿混合导体中大多含有碱性的碱土金属和稀土元素,容易在工作条件下与气氛中的CO_2和水蒸气发生反应,导致材料结构分解或性能的下降。在第三章中以钙钛矿氧化物Sr_(0.95)Co_(0.8)Fe_(0.2)O_(3-δ)为模型体系,研究了它在含CO_2和H_2O的空气气氛中的氧渗透性能和结构稳定性。结果表明,与这两种气体在空气中单独存在时相比,5vol.%CO_2和4vol.%H_2O共存时对Sr_(0.95)Co_(0.8)Fe_(0.2)O_(3-δ)透氧膜的相组成、表面形貌和氧渗透能力的破坏作用要大得多,这种不利影响在较低的温度
Oxygen-permeable dense ceramic membranes hold promise of finding applications in separation of oxygen from air and upgrading of oxygen-involved processes such as production of syngas through the partial oxidation of methane and combustion of fossil fuels. The oxygen permeability of this type of membrane arises from its mixed oxygen ionic and electronic conductivity at elevated temperatures. For practical applications, the membrane is required to possess high oxygen permeability and retain its integrity under operation conditions. This thesis presents a number of studies on the stability and oxygen transport properties of single-phase perovskite-type (Chapters 2 & 3) and dual-phase ceramic membranes (Chapters 4-6).
    Chapter 1 introduces the concepts and theories of oxygen permeation for dense ceramic membranes, presents a brief overview of membrane materials, and describes the scope of this thesis.
    In Chapter 2, the effects of iron doping on the structure, electric and oxygen transport properties of SrCo_(1-x)Fe_xO_(3-δ) (x=0, 0.05, 0.1, 0.2) are investigated. The perovskite structure of the as-prepared SrCo_(1-x)Fe_xO_(3-δ) is shown to change in the sequence of hexagonal→Brownmillerite→cubic+Brownrnillerite→cubic as iron content x increases. Along with this structural evolution is the increase in the electric conductivity and oxygen permeability. This is explained as a result of reduced structural distortion, increased Co/Fe-O-Co/Fe bond angle, improved overlapping of the Co/Fe's 3d orbital and oxygen's 2p orbital and gradual disordering of oxygen vacancies with increasing x. It is also found that both the high-temperature electric conductivity and oxygen permeability of the cubic-perovskite SrCo_(1-x)Fe_xO_(3-δ) decrease as x increases, which is attributed to the difference between the Co-O and Fe-O bond.
    In Chapter 3, the oxygen transport and stability of perovskite-structured membranes are investigated in atmosphere containing CO_2 and H_2O. It is known that most of perovskite oxides contain basic alkaline earth metals and rare earth elements, and may react with CO_2 and H_2O in the atmosphere, leading to degradation of the
引文
[1] A.R. Smith, J. Klosek, A review of air separation technologies and their integration with energy conversion processes, Fuel Process Technol. 70(2001) 115.
    [2] D.J. Wilhelm, D.R. Simbeck, A.D. Karp, R.L. Dickenson, Syngas production for gas-to-liquids applications: technologies, issues and outlook, Fuel Process. Technol. 71(2001) 139.
    [3] P.N. Dyer, R.E. Richardsa, S.L. Russeka, D.M. Taylorb, Ion transport membrane technology for oxygen separation and syngas production, Solid State Ionics 134(2000)21.
    [4] T. Griffin, S.G. Sundkvist, K. Asen, T. Bruun, Advanced zero emissions gas turbine power plant, J. Engin. Gas Turb. Power 127(2005) 81.
    [5] Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature 431(2004) 170.
    [6] S.J. Skinner, Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes, Inter. J. Inorg. Mater. 3 (2001) 113.
    
    [7] L. Heyne, Electrochemistry of mixed ionic-electronic conductors, in Solid Electrolytes, eds. S. Geller, Springer-Verlag, Berlin Heidelberg New York 1977.
    
    
    
    
    [8] H.J.M. Bouwmeester, A.J. Burggraaf, Dense ceramic membranes for oxygen separation, in CRC Handbook of Solid State Electrochemstry, eds. P. J Gellings, H.J.M. Bouwmeester, CRC Press Boca Raton New York, 1997
    
    [9] C.S. Chen, Fine grained ziconia-metal dual phase composites, Ph.D. thesis, U. Twente, the Netherlands, 1994.
    
    [10] J.A.Kilner, Fast oxygen transport in acceptor doped oxides, Solid State Ionics 129(2000)13
    
    [11] H. Hayashi, H. Inaba, M. Matsuyama, N.G Lan, M. Dokiya, H. Tagawa, Structural Consideration on the Ionic Conductivity of Perovskite-type oxides, Solid State Ionics 122 (1998)1
    
    [12] M. Mogensen, D.Lybye, N.Bonanos, P.V. Hendriksen, F.W. Poulsen, Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides, Solid State Ionics 174 (2004) 279.
    
    [13] V.V. Kharton, F.M.B. Marques, Mixed ionic-electronic conductors: effects of ceramic microstructure on transport properties, Curr. Opin. Solid State Mater. Sci. 6 (2002)261
    
    [14] K. Zhang, Y.L. Yang, D. Ponnusamy, A.J. Jacobson, K. Salama, Effect of microstructure on oxygen permeation in SrCo_(0.8)Fe_(0.2)O_(3-δ), J. Mater. Sci. 34 (1999) 1367
    
    [15] M. Aoki, Y. M. Chiang, I. Kosacki, J. R. Lee, H. Tuller, Y. P. Liu, Solute segregation and grain-boundary impedance in high-purity stabilized zirconia, J. Am. Ceram. Soc. 79(1996)1169.
    
    [16] B.C.H. Steele, Appraisal of Ce_(1-y)Gd_yO_(2-y/2) electrolytes for IT-SOFC operation at 500℃, Solid State Ionics 129 (2000) 95-110
    
    [17] L. Minervini, R.W. Grimes, J.A. Kilner, K.E. Sickafus, Oxygen migration in La_2NiO_(4+δ), J. Mater. Chem. 10 (2000) 2349
    [18] C.N.R. Rao, B. Raveau, Transition metal oxides, 2nd Edition, Wiley-VCH, New York, 1998.
    
    [19] A.S. Bhalla, R.Y. Guo, R. Roy, The perovskite structure -a review of its role in ceramic science and technology, Mat Res Innovat 4 (2000) 3.
    
    [20] C.N.R. Rao, J. Gopalakrishnan, K. Vikyasagar, Superstructures, ordered defects & nonstoichiometry in metal oxides of perovskite & related structures, Indian J. Chem.23A (1984) 265.
    
    [21] S.P. Jiang, J.G. Love, J.P. Zhang, M. Hoang, Y. Ramprakash, A.E. Hughes, S.P.S. Badwal, The electrochemical performance of LSM/zirconia-yttria interface as a function of a-site non-stoichiometry and cathodic current treatment, Solid State Ionics 121 (1999) 1
    
    [22] H. Yokokawa, Understanding materials compatibility, Annu. Rev. 33 (2003) 581
    
    [23] A.F. Sammells, R,L. Cook, J.H. White, J.J. Osborne; R.C. MacDuff; Rational selection of advanced solid electrolytes for intermediate temperature fuel cells, Solid State Ionics 48 (1992) 207
    
    [24] M.Cherry, M.S.Islam, C.R.A.Catlow, Oxygen migration in perovskite-type oxides, J. Solid State Chemistry118 (1995) 125
    
    [25] Y. Teraoka; H.M. Zhang; S. Furukawa; N, Yamazoe. Oxygen permeation through perovskite-type oxides. Chem. Lett. 1985, 1743-1746.
    
    [26] Y. Teraoka, H.M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ) perovskite oxides, Mater. Res. Bull. 23 (1988) 51.
    
    [27] H. Kruidhof, H.J.M. Bouwmeester, R.H.E. v. Doorn, A.J. Burggraaf, Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics 63-65 (1993) 816
    
    [28] L. Qiu; T.H. Lee; L.M. Liu; Y.L Yang; A.J. Jacobson, Oxygen permeation studies of SrCo_(0.8)Fe_(0.2)O_(3δ), Solid State Ionics 76 (1995) 321
    
    [29] Composition, structure and transport properties of perovskite-type oxides, H. Ullmann, N. Trofimenko, Solid State Ionics 119 (1999) 1
    [30] V. V. Kharton; E. N. Naumovich; A. A. Vecher; A. V. Nikolaev, Oxide ion conduction in solid solutions Ln_(1-x)Sr_xCoO_(3-δ) (Ln=La, Pr, Nd), J. Solid State Chem. 120(1995)128-136
    
    [31] A.V. Kovalevsky, V. V. Kharton, V.N. Tikhonovich, E. N. Naumovich; A. A. Tonoyan, O.P. Reut, L.S. Boginsky, Oxygen permeation through Sr(Ln)CoO_(3-δ) (Ln=La, Nd, Sm, Gd) ceramic membranes, Mater. Sci. Engin. B52 (1998) 105
    [32] Z.P. Shao, W.S. Yang, Y. Cong, H. Dong, J.H. Tong, G.X. Xiong, Investigation of the permeation behavior and stability of a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_3 oxygen membrane, J. Membrane Sci. 172 (2000) 177
    
    [33] J.H. Tong, W.S. Yang, B.C. Zhu, R. Cai, Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation, J. Membrane Sci. ,203 (2002) 175
    
    [34] A.C. van Veen, M. Rebeilleau, D. Farrusseng, C. Mirodatos, Studies on the performance stability of mixed conducting BSCFO membranes in medium temperature oxygen permeation, Chem. Commun. (2003) 32
    
    [35] A cobalt-free oxygen permeable membrane based on the perovskite-type oxide Ba_(0.5)Sr_(0.5)Zn_(0.2)Fe_(0.8)O_(3-δ) H.H. Wang, C. Tablet, A. Feldhoff, J. Caro, Adv. Mater. 17 (2005)1785
    
    [36] S.M. Liu, G.R. Gavalas, Oxygen selective ceramic hollow fiber membranes, J. Membrane Sci., 246 (2004) 103
    
    [37] H.H. Wang, S. Werth, T. Schiestel, J. Caro, Perovskite Hollow-Fiber Membranes for the Production of Oxygen-Enriched Air, Angew. Chem. Int. Ed. 44 (2005) 2.
    
    [38] C. Tablet, G. Grubert, H.H. Wang, T. Schiestel, M. Schroeder, B. Langanke, J. Caro, Oxygen permeation study of perovskite hollow fiber membranes, Catalysis Today 104 (2005) 126
    
    [39] T. Schiestel, M. Kilgus, S. Peter, K.J. Caspary, H. Wang, J. Caro, Hollow fibre perovskite membranes for oxygen separation, J. Membrane Sci. 258 (2005) 1
    [40] T. Ishihara, T.i Yamada, H. Arikawa, H. Nishiguchi, Y. Takita, Mixed electronic-ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO_3 perovskite oxides, Solid State Ionics 135 (2000) 631
    [41] V.V. Kharton, A.P. Viskup, A.A. Yaremchenkoa, R.T. Baker, B. Gharbage, G.C. Mather, F.M. Figueiredo, E.N. Naumovich, F.M.B. Marques, Ionic conductivity of La(Sr)Ga(Mg,M)O_(3-δ) (M=Ti, Cr, Fe, Co, Ni): effects of transition metal dopants, Solid State Ionics 132 (2000) 119
    
    [42] T. Ishihara, Y. Tsuruta, C.Y. Yu, T. Todaka, H. Nishiguchi, Y. Takita, La(Sr)Ga(Fe)O_3 perovskite oxide as a new mixed ionic-electronic conductor for oxygen permeating membrane, J. Electrochem. Soc. 150 (2003) E17.
    
    [43] B.C.H. Steele, Oxygen ion conductors and their technological applications, Mater. Sci. Engin. B13 (1992) 79
    
    [44] M. Schwartz, J.H. White, A.F. Sammells, Catalytic membrane reactor with two component three-dimensional catalysis, Inter. Patent WO 99/21649, 1999
    
    [45] A.F. Sammells, M. Schwartz, R.A. Mackay, T.F. Barton, D.R. Peterson, Catalytic membrane reactors for spontaneous synthesis gas production, Catalysis Today 56 (2000) 325
    
    [46] S.J. Skinner, J.A. Kilner, Oxygen diffusion and surface exchange in La_(2-x)Sr_xNiO_(4+δ), Solid State Ionics 135 (2000) 709
    
    [47] V.V. Kharton, A.P. Viskup, E.N. Naumovicha, F.M.B. Marques, Oxygen ion transport in La_2NiO_4-based ceramics, J. Mater. Chem. 9 (1999) 2623
    
    [48] V.V. Kharton, A.P. Viskup, A.V. Kovalevsky, E.N. Naumovich, F.M.B. Marques, Ionic transport in oxygen-hyperstoichiometric phases with K_2NiF_4-type structure, Solid State Ionics 143 (2001) 337
    
    [49] U. Balachandran, J.T. Dusek, P.S. Maiya, B. Ma, R.L. Mieville, M.S. Kleefisch, C.A. Udovich, Ceramic membrane reactor for converting methane to syngas, Catal. Today 36 (1997) 265.
    
    [50] B.J. Mitchell, J.W. Richardson Jr., C. D. Murphy, B. Ma, U. Balachandran, J.P. Hodges, J.D. Jorgensen, Phase stability of SrFeCo_(0.5)O_y under synthesis and annealing conditions, J. Eur. Ceramic Soc.22 (2002) 661
    
    [51] B. Ma, U. Balachandran, Phase Stability of SrFeCo_(0.5)O_x in Reducing Environments, Mater. Res. Bull. 33 (1998) 223
    
    [52] C.S. Chen, W. Liu, S. Xie, G.G. Zhang, H. Liu, G.Y. Meng, D.K. Peng, A novel intermediate-temperature oxygen-permeable membrane based on the high-Tc superconductor Bi_2Sr_2CaCu_2O_8, Adv. Mater. 12 (2000) 1132
    
    [53] C.S. Chen, S. Ran, W. Liu, P.H. Yang, D.K. Peng, H.J.M. Boumeester, "YBa_2Cu_3O_(6+d) as Oxygen Separation Membrane", Angew. Chim. Int. Ed., 40 (2001) 784
    
    [54] S. J. Benson, D. Waller, and J. A. Kilner, Degradation of La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-d) in Carbon Dioxide and Water Atmospheres, J. Electrochem. Soc, 146 (1999) 1305
    [55] M. F. Carolan, P. N. Dyer, J. M. LaBar and R. M. Thorogood, Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture, US Patent 5, 240, 473, 1993.
    
    [56] K. Yamaji, H. Negishi, T. Horita, N. Sakai, H. Yokokawa, Vaporization process of Ga from doped LaGaO_3 electrolytes in reducing atmospheres, Solid State Ionics 135(2000)389
    
    [57] T.J. Mazanec, T.L. Cable, J.G. Frye, Jr., Electrocatalytic cells for chemical reaction, Solid State Ionics 53-56 (1992) 111.
    
    [58] C.S. Chen, A.J. Burggraaf, Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes, J. Appl. Electrochem. 29 (1999) 355.
    
    [59] K. Wu, S. Xie, G.S. Jiang, W. Liu, C.S. Chen, Oxygen permeation through (Bi_2O_3)_(0.74)(SrO)_(0.26)-Ag (40% v/o) composite, J. Membrane Sci. 188 (2001) 189.
    
    [60] K.Q. Huang, M. Schroeder, J.B. Goodenough, Oxygen permeation through composite oxide-ion and electronic conductors, Electrochem. Solid-State Lett. 2 (1999)375.
    
    [61] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, A.L. Shaula, F.M. Figueiredo, E.N. Naumovich, F.M.B. Marques, Oxygen transport in Ce_(0.8)Gd_(0.2)O_(2-δ)-based composite membranes, Solid State Ionics 160 (2003) 247.
    
    
    [62] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, A.A. Yaremchenko, E.N. Naumovich, F.M.B. Marques, Oxygen permeability of site membranes, J. Electrochem Soc. 147 (2000) 2814.
    
    [63] U. Nigge, H.-D. Wiemhofer, E.W.J. Romer, H.J.M. Bouwmeester, T.R. Schulte, Composites of Ce_(0.8)Gd_(0.2)O_(1.9) and Gd_(0.7)Ca_(0.3)CoO_(3-δ) as oxygen permeable membranes for exhaust gas sensors, Solid State Ionics 146 (2002) 163.
    
    [64] H. Takamura, K. Okumura, Y. Koshino, A. Kamegawa, M. Okada, Oxygen permeation properties of ceria-ferrite-based composites, J. Electroceram. 13 (2004) 613.
    
    [65] H. Takamura, T. Kobayashi, T. Kasahara, A. Kamegawa, M. Okada, Oxygen permeation and methane reforming properties of ceria-based composite membranes, J. Alloys Comp. 408-412 (2006) 1084
    
    [66] A.L. Shaula, V.V. Kharton, F.M.B. Marques, Phase interaction and oxygen transport in La_(0.8)Sr_(0.2)Fe_(0.8)Co_(0.2)O_3-(La_(0.9)Sr_(0.1))_(0.98)Ga_(0.8)Mg_(0.2)O_3 composites, J. Eur. Ceram. Soc. 24(2004)2631.
    
    [67] H.H. Wang, W.S. Yang, Y. Cong, X.F. Zhu, Y.S. Lin, Structure and oxygen permeability of a dual-phase membrane, J. Membrane Sci. 224 (2003) 107.
    
    [68] Y.S. Shen, A. Joshi, M.L. Liu, K. Krist, Structure, microstructure and transport properties of mixed ionic-electronic conductors based on bismuth oxide Part I. Bi-Y-Cu-O system, Solid State Ionics 72 (1994) 209
    
    [69] P.V. Hendriksen, P.H. Larsen, M. Mogensen, F.W. Poulsen, K. Wiik, Prospects and problems of dense oxygen permeable membranes, Catal. Today 56 (2000) 283.
    
    [70] H.H. Wang, Y. Cong, W.S. Yang, Investigation on the partial oxidation of methane to syngas in a tubular Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) membrane reactor, Catal. Today 82 (2003) 157.
    
    [71] A.L. Shaula, V.V. Kharton, F.M.B. Marques, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, Oxygen permeability of mixed-conducting composite membranes: effects of phase interaction, Solid State Electrochem 10 (2006) 28
    
    [72] J.B. Goodenough, Oxide ion electrolytes, Annu. Rev. Mater. Res. 33 (2003) 91
    
    [73] J.C. Boivin and G. Mairesse, Recent Material Developments in Fast Oxide Ion conductors, Chem. Mater. 1998, 10,2870
    
    [74] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 83 (1996) 1
    
    [75] V.V. Kharton, E.N. Naumovich, A.A. Yaremchenko, F.M.B. Marques, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union IV. Bismuth oxide-based ceramics, J. Solid State Electrochem. 5 (2001) 160
    
    [76] K. Kakinuma, H. Yamamura, H. Haneda, T. Atake, Oxide ion conductivity of (Ba_(1-x)La_x)_2In_2O_(5+x) system based on brownmillerite structure, Solid State Ionics 140 (2001) 301
    
    [77] G.B. Zhang, D.M. Smyth, Protonic conduction in Ba_2In_2O_5, Solid State Ionics 82(1995)153
    
    [78] T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO_3 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc. 116 (1994) 3801
    
    [79] T. Ishihara, H. Matsuda, Y. Takita, Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO_3-based perovskite type oxide, Solid State Ionics 79 (1995) 147
    
    [80] T. Ishihara, Y. Tsuruta, T. Todaka, H. Nishiguchi, Y. Takita, Fe-doped LaGaO_3 perovskite oxide as an oxygen separating membrane for CH_4 partial oxidation, Solid State Ionics 152-153 (2002) 709
    
    [81] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Designing fast oxide-ion conductors based on La_2Mo_2O_9, Nature 404 (2000) 856
    
    [82] S. Basu, P.S. Devi, H.S. Maiti, A potential low temperature oxide ion conductor La_(2-x)Ba_xMo_2O_9, Appl. Phys. Lett. 85 (2004) 3486
    
    [83] S. Georges, F. Goutenoire, Y. Laligant, P. Lacorre, Reducibility of fast oxide-ion conductors La_(2-x)R_xMo_(2-y)W_yO_9 (R=Nd,Gd), J. Mater. Chem. 13 (2003) 2317)
    
    [84] P. Lacorre, The LPS concept, a new way to look at anionic conductors, Solid State Sci. 2 (2000) 755
    
    [85] K.R. Kendall, C. Navas, J.K. Thomas, H.-C. zur Loye, Recent Developments in Oxide Ion Conductors: Aurivillius Phases, Chem. Mater. 8 (1996) 642
    
    [86] P.R. Slater, J.E.H. Sansom, J.R. Tolchard, Development of apatite-type oxide ion conductors, Chem. Rec. 4 (2004) 373
    [87] J.E.H. Sansom, J.R. Tolchard, P.R. Slater, M.S. Islam, Synthesis and structural characterisation of the apatite-type phases La_(10-x)Si_6O_(26+z) doped with Ga, Solid State Ionics 167 (2004) 17
    
    [88] H. Arikawa, H. Nishiguchi, T. Ishihara, Y. Takita, Oxide ion conductivity in Sr-doped La-Ge-0 apatite oxide, Solid State Ionics 136 (2000) 31
    
    [89] L. Leon-Reina, E.R. Losilla, M. Martinez-Lara, M. Carmen Martin-Sedeno, S. Bruque, P. Nunez, D.V. Sheptyakov, M.A.G. Aranda, High Oxide Ion Conductivity in Al-Doped Germanium Oxyapatite, Chem. Mater. 17 (2005) 596
    
    [90] V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics 174 (2004) 135
    
    [91] O. Porat, C. Heremans, H.L. Tuller, Stability and mixed ionic electronic conduction in Gd_2(Ti_(1-x)Mo_x)_2O_7 under anodic conditions, Solid State Ionics 94 (1997) 75
    
    [92] S.A. Kramer, H.L. Tuller, A novel titanate-based oxygen ion conductor Solid State Ionics 82 (1995) 15
    [1] A.I. Becerro, F. Langenhorst, R.J. Angel, S. Marion, C.A. McCammon, F. Seifert, The transition from short-range to long-range ordering of oxygen vacancies in CaFe_xTi_(1-x)O_(3-x/2) perovskites, Phys. Chem. Chem. Phys., 2(2000) 3933
    [2] C.N.R. Rao, J. Gopalakrishnan, K. Vikyasagar, Superstructures, ordered defects & nonstoichiometry in metal oxides of perovskite & related structures, Indian J. Chem.23A(1984) 265.
    [3] H. Kruidhof, H.J.M. Bouwmeester, R.H.E.v. Doorn, A.J. Burggraaf, Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics 63-65(1993) 816
    [4] E.D. Wachsman, Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides, J. Euro. Ceram. Soc. 24(2004) 1281
    [5] B.C.H. Steele, Appraisal of Ce_(1-y)Gd_yO_(2-y/2) electrolytes for IT-SOFC operation at 500℃, Solid State Ionics 129(2000) 95-110
    [6] S. Adler, S. Russek, J. Reimer, M. Fendorf, A. Stacy, Q.Z. Huang, A. Santoro, J. Lynn, J. Baltisberger, U. Werner, Solid State Ionics 68(1994) 193
    [7] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Designing fast oxide-ion conductors based on La_2Mo_2O_9, Nature 404(2000) 856
    [8] J.B. Goodenough, Oxide ion electrolytes, Annu. Rev. Mater. Res. 33(2003) 91
    [9] H.J.M. Bouwmeester, A.J. Burggraaf, Dense ceramic membranes for oxygen separation, in CRC Handbook of Solid State Electrochemstry, eds. P. J Gellings, H.J.M. Bouwmeester, CRC Press Boca Raton New York, 1997
    [10] Y. Ito, R.F. Klie, N.D. Browning, T.J. Mazanec, Atomic Resolution Analysis of the Defect Chemistry and Microdomain Structure of Brownmillerite-Type Strontium Cobaltite. J. Am. Ceram. Soc. 85 (2002) 969
    
    [11] Y. Takeda, R. Kanno, T. Takada, O. Yamamoto, M. Takano, Y. Bando, Phase relation and oxygen-non-stoichiometry of perovskite-like compound SrCoOx (2.29    
    [12] T.C. Gibb, Magnetic exchange interactions in perovskite solid solutions. Part 8. A study of the solid solution SrFe_(1-x)Co_xO_(3-y) by iron-57 Mossbauer spectroscopy, J. Chem. Soc. Dalton Trans. (1987) 1419
    
    [13] L.V. Kokhanovskii, V.V. Vashuk, O.P. Ol'shevskaya, O.I. Kirilenko, Oxygen stoichiometry and phase transitions of SrCo_(1-x)Fe_xO_(3-δ), Inorg. Mater. 37 (2001) 730
    
    [14] V. V. Vashook, M.V. Zinkevich, Yu.G. Zonov, Phase relations in oxygen-deficient SrCoO_(2.5-δ), Solid State Ionics, 116(1999)129.
    
    [15] W.T.A.Harrison, S.L.Hegwood, A . J.Jacobson, A powder neutron diffraction determination of the structure of Sr_6Co_5O_(15), formerly described as the low-temperature Hexagonal form of SrCoO_(3-x), J. Chem. Soc. Chem.Commun. (1995)1953
    
    [16] W.T.A. Harrison, T.H. Lee, Y.L. Yang, D.P. Scarfe, L.M. Liu, A.J. Jacobson, A neutron diffraction study of two strontium cobalt iron oxides, Mater. Res. Bull. 30 (1995)621
    
    [17] Z.Q. Deng, W.S. Yang, W. Liu, C.S. Chen, Relationship between transport properties and phase transformations in mixed-conducting oxides, J. Solid State Chem. 179(2006)362
    
    [18] L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La_(1-x)Sr_xCo_(1-y)Fe_yO_3. Part 1. The system La_(0.8)Sr_(0.2)Co_(1-y)Fe_yO_3, Solid State Ionics 76 (1995) 259
    [1] Y. Teraoka, H.M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of La_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ) perovskite oxides, Mater. Res. Bull. 23 (1988) 51.
    
    [2] H. Kruidhof, H.J.M. Bouwmeester, R.H.E. v. Doom, A.J. Burggraaf, Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics 63-65 (1993) 816
    
    [3] L. Qiu; T.H. Lee; L.M. Liu; Y.L Yang; A.J. Jacobson, Oxygen permeation studies of SrCo_(0.8)Fe_(0.2)O_(3-δ), Solid State Ionics 76 (1995) 321
    
    [4] H.J.M. Bouwmeester, A.J. Burggraaf, Dense ceramic membranes for oxygen separation, in CRC Handbook of Solid State Electrochemstry, eds. P. J Gellings, H.J.M. Bouwmeester, CRC Press Boca Raton New York, 1997
    
    [5] S. J. Benson, D. Waller, and J. A. Kilner, Degradation of La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-d) in Carbon Dioxide and Water Atmospheres, J. Electrochem. Soc, 146 (1999) 1305
    
    [6] M. F. Carolan, P. N. Dyer, J. M. LaBar and R. M. Thorogood, Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture, US Patent 5,240, 473,1993.
    
    [7] Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J.H. Tong, G. X. Xiong, Investigation of the permeation behavior and stability of a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) oxygen membrane, J. Membrane Sci. 172 (2000) 177.
    
    [8] K. H. Ryu, S. M. Haile, Chemical stability and proton conductivity of doped BaCeO_3 -BaZrO_3 solid solutions, Solid State Ionics 125 (1999) 355
    
    [9] W. Gunther, R. Schollhom, H. Siegle, C. Thomsen, Topotactic reactions of superconducting YBa_2Cu_3O_7 thin films with water vapour, Solid State lonics 84 (1996) 23.12
    
    [10] K. Borowiec, J. Przyluski, K. Kolbrecka, Intrinsic kinetics of carbon dioxide degradation of YBa_2Cu_3O_(7-x) , J. Am. Ceram. Soc. 74 (1991) 2007-2010
    
    [11]. H. Zheng, O. T. S(?)RENSEN, X. Q. Liu and H. Jensen, Influence of Water Vapor on the Response of Mg-Doped SrTiO_3 Ceramic Oxygen Sensors, Journal of Electroceramics 3 (1999) 301.
    
    [12] H. Zheng, O. T. S(?)renson, Influence of CO_2 in dry and wet atmospheres on the response of Mg-doped SrTiO_3 ceramic oxygen sensors, J. Eur. Ceram. Soc. 19 (1999) 1987
    
    [13] M. F. Carolan, P. N. Dyer, Motika, A. Stephen, Alba, B. Patrick, Coompositions capable of operating under high carbon dioxide partial pressures for use in solid-state oxygen producing devices, US Patent 5, 712, 220, 1996.
    
    [14] S. P. Jiang, J. P. Zhang, Y. Ramprakash, D. Milosevic, K. Wilshier, An investigation of shelf-life of strontium doped LaMnO_3 materials, J. Mater. Sci. 35 (2000) 2735.
    
    [15] M. J. L. (?)sterg(?)rd, C. Clausen, C. Bagger, M. Mogensen, Manganite-zirconia composite cathodes for SOFC: influence of structure and composition, Electrochimica Acta, 40 (1995) 1971.
    
    [16] C. H. Zheng, Chemical analysis and physical property study of composite oxides, Master Thesis, USTC, 2003.
    
    [17] R. H. E. van Doorn, H. J. M. Bouwmeester, A. J. Burggraaf, Kinetic decomposition of La_(0.3)Sr_(0.7)CoO_(3-δ) perovskite membranes during oxygen permeation, Solid State Ionics 111 (1998) 263.
    
    [18] K. M. Merz, Jr., Gas-phase and solution-phase potential energy surfaces for CO_2+nH_2O (n=1,2), J. Am. Chem. Soc, 112 (1990) 7973.
    
    [19] K. I. Peterson, W. Klemperer, Structure and internal rotation of H2O-CO2, HDO-CO_2, and D_2O-CO_2 van der Waals complexes, J. Chem. Phys., 80 (1984) 2439.
    
    [20] M. Primet, P. Pichat, M. V. Mathieu, Infrared study of the surface of titanium dioxides. II. Acidic and basic properties, J. Phys. Chem., 75 (1971) 1221.
    
    [21] K. Tanaka, J. M. White, Characterization of species adsorbed on oxidized and reduced anatase J. Phys. Chem., 86 (1982) 4708.
    
    
    [22] M. A. Henderson, Evidence for bicarbonate formation on vacuum annealed TiO_2 (110) resulting from a precursor-mediated interaction between CO_2 and H_2O, Surf. Sci., 400 (1998) 203.
    [23] P.N. Dyer, R.E. Richardsa, S.L. Russeka, D.M. Taylorb, Ion transport membrane technology for oxygen separation and syngas production, Solid State Ionics 134 (2000) 21.
    
    [24] T. Griffin, S.G. Sundkvist, K. Asen, T. Bruun, Advanced zero emissions gas turbine power plant, J. Engin. Gas Turb. Power 127 (2005) 81.
    
    [25] G. Juhasz, Z. Homonnay, K. Nomura, T. Hayakawa, S. Hamakawa and A. Vertes, Microstructural study of the CO_2 absorption in Sr_xCa_(1-x)Fe_(0.5)Co_(0.5)O_(3-δ), Solid State Ionics 139 (2001) 219.
    [1] Y. Teraoka, H.M. Zhang, S. Furukawa, N. Yamazoe, Oxygen permeation through perovskite-type oxides, Chem. Lett.(1985) 1743.
    [2] H. Kruidhof, H.J.M. Bouwmeester, R.H.E.v. Doorn, A.J. Burggraaf, Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics 63-65(1993) 816.
    [3] T. Ishihara, Y. Tsuruta, C. Y. Yu, T. Todaka, H. Nishiguchi, Y. Takita, La(Sr)Ga(Fe)O_3 perovskite oxide as a new mixed ionic-electronic conductor for oxygen permeating membrane, J. Electrochem. Soc. 150(2003) E17.
    [4] H. H. Wang, Y. Cong, W.S. Yang, Investigation on the partial oxidation of methane to syngas in a tubular Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) membrane reactor, Catal. Today 82(2003) 157.
    [5] P. V. Hendriksen, P. H. Larsen, M. Mogensen, F.W. Poulsen, K. Wiik, Prospects and problems of dense oxygen permeable membranes, Catal. Today 56(2000) 283.
    [6] S. Pei, M.S. Kleefisch, T.P. Kobylinski, J. Faber, C.A. Udovich, V. Zhang-McCoy, B. Dabrowski, U. Balachandran, R.L. Mieville, R.B. Poeppel, Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett. 30(1995) 201.
    [7] K. Yamaji, H. Negishi, T. Horita, N. Sakai, H. Yokokawa, Vaporization process of Ga from doped LaGaO_3 electrolytes in reducing atmospheres, Solid State Ionics 135(2000)389
    
    [8] C.S. Chen, A.J. Burggraaf, Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes, J. Appl. Electrochem. 29 (1999) 355.
    
    [9] K. Wu, S. Xie, G.S. Jiang, W. Liu, C.S. Chen, Oxygen permeation through (Bi_2O_3)_(0.74)(SrO)_(0.26)-Ag (40% v/o) composite, J. Membrane Sci. 188 (2001) 189.
    
    [10] K.Q. Huang, M. Schroeder, J.B. Goodenough, Oxygen permeation through composite oxide-ion and electronic conductors, Electrochem. Solid-State Lett. 2 (1999)375.
    
    [11] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, A.A. Yaremchenko, E.N. Naumovich, F.M.B. Marques, Oxygen permeability of Ce_(0.8)Gd_(0.2)O_(2-δ)-La_(0.7)Sr_(0.3)MnO_(3-δ) composite membranes, J. Electrochem Soc. 147 (2000) 2814.
    
    [12] U. Nigge, H.-D. Wiemhofer, E.W.J. Romer, H.J.M. Bouwmeester, T.R. Schulte, Composites of Ce_(0.8)Gd_(0.2)O_(1.9) and Gd_(0.7)Ca_(0.3)CoO_(3-δ) as oxygen permeable membranes for exhaust gas sensors, Solid State Ionics 146 (2002) 163.
    
    [13] A.L. Shaula, V.V. Kharton, F.M.B. Marques, Phase interaction and oxygen transport in La_(0.8)Sr_(0.2)Fe_(0.8)Co_(0.2)O_3-(La_(0.9)Sr_(0.1))_(0.98)Ga_(0.8)Mg_(0.2)O_3 composites, J. Eur. Ceram. Soc. 24 (2004) 2631.
    
    [14] A.L. Shaula, V.V. Kharton, F.M.B. Marques, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, Oxygen permeability of mixed-conducting composite membranes: effects of phase interaction, Solid State Electrochem 10 (2006) 28
    
    [15] H. Takamura, T. Kobayashi, T. Kasahara, A. Kamegawa, M. Okada, Oxygen permeation and methane reforming properties of ceria-based composite membranes, J. Alloys Comp. 408-412 (2006) 1084
    
    [16] H.H. Wang, W.S. Yang, Y. Cong, X.F. Zhu, Y.S. Lin, Structure and oxygen permeability of a dual-phase membrane, J. Membrane Sci. 224 (2003) 107.
    [17] M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics 129 (2000) 63.
    
    [18] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics 52 (1992) 165.
    
    [19] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, Electrical properties and microstructure in the system ceria-alkaline earth oxide, J. Mater. Sci. 23 (1988) 1036.
    
    [20] Z.L. Zhan, T.L. Wen, H.Y. Tu, Z.Y. Lu, AC impedance investigation of samarium-doped ceria, J. Electrochem Soc. 148 (2001) A427.
    
    [21] H. Yahiro, K. Eguchi, H. Arai, Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell, Solid State Ionics 36 (1989) 71.
    
    [22] T. Nakamura, G. Petzow, L.J. Gauckler, Stability of the perovskite phase LaBO_3 (B=V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere, Mater. Res. Bull. 14 (1979) 649.
    
    [23] J.W. Fergus, Lanthanum chromite-based materials for solid oxide fuel cell interconnects, Solid State Ionics 171 (2004) 1.
    
    [24] C.E. Hatchwell, N.M. Sammes, G.A. Tompsett, I.W.M. Brown, Chemical compatibility of chromium-based interconnect related materials with doped cerium oxide electrolyte, J. Eur. Ceram. Soc. 19 (1999) 1697.
    
    [25] M. Mori, Y. Hiei, N.M. Sammes, Sintering behavior of Ca- or Sr-doped LaCrO_3 perovskites including second phase of AECrO_4 (AE=Sr, Ca) in air, Solid State Ionics 135(2000)743.
    
    [26] S. Sameshima, T. Ichikawa, M. Kawaminami, Y. Hirata, Thermal and mechanical properties of rare earth-doped ceria ceramics, Mater. Chem. Phys. 61 (1999)31.
    
    [27] S. Kim, Y.L. Yang, R. Christoffersen, A.J. Jacobson, Determination of oxygen permeation kinetics in a ceramic membrane based on the composition SrFeCo_(0.5)O_(3.25-δ), Solid State Ionics 109 (1998) 187.
    
    [28] M. Suzuki, H. Sasaki, A. Kajimura, Oxide ionic conductivity of doped lanthanum chromite thin film interconnectors, Solid State Ionics 96 (1997) 83
    
    [29] M. Aoki, Y. M. Chiang, I. Kosacki, J. R. Lee, H. Tuller, Y. P. Liu, Solute segregation and grain-boundary impedance in high-purity stabilized zirconia, J. Am. Ceram. Soc. 79(1996)1169.
    
    [30] B.C.H. Steele, Appraisal of Ce_(1-y)Gd_yO_(2-y/2) electrolytes for IT-SOFC operation at 500℃, Solid State Ionics 129 (2000) 95.
    
    [31] J. Sfeir, J. van herle, A.J. McEvoy, Stability of calcium substituted lanthanum chromites used as SOFC anodes for methane oxidation, J. Eur. Ceram. Soc. 19 (1999) 897.
    
    [32] H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Chemical thermodynamic considerations in sintering of LaCrO_3-based perovskites, J. Electrochem. Soc. 138 (1991)1018.
    
    [33] N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, Chemical stability of perovskite interconnects in solid oxide fuel cell, in: S.P.S.Badwal, M.J. Bannister, R.H.J. Hannink (Eds.), Science and Technology of Zirconia V, Technomic Publishing, Lancaster, PA, 1993, pp. 764.
    
    [34] N. Sakai, K. Yamaji, T. Horita, H. Negishi, H. Yokokawa, Chromium diffusion in lanthanum chromites, Solid State Ionics 135 (2000) 469.
    
    [35] T. Horita , M. Ishikawa, K. Yamaji, N. Sakai, H. Yokokawa, M. Dokiya, Cation diffusion in (La,Ca)CrO_3 perovskite by SIMS, Solid State Ionics 108 (1998) 383.
    
    [36] D.H. Peck, M. Miller, K. Hilpert, Phase diagram studies in the SrO-Cr_2O_3 -La_2O_3 system in air and under low oxygen pressure, Solid State Ionics 123 (1999) 59.
    
    [37] S. Miyoshi, S. Onuma, A. Kaimai, H. Matsumoto, K. Yashiro, T. Kawada, J. Mizusaki, H. Yokokawa, Chemical stability of La_(1-x)Sr_xCrO_3 in oxidizing atmospheres, J. Solid State Chem. 177 (2004) 4112.
    [1] P.V. Hendriksen, P.H. Larsen, M. Mogensen, F.W. Poulsen, K. Wiik, Prospects and problems of dense oxygen permeable membranes, Catal. Today 56 (2000) 283.
    
    [2] S. Pei., M.S. Kleefisch, T.P. Kobylinski, J. Faber, C.A. Udovich, V. Zhangmccoy, B. Dabrowski, U. Balachandran, R.L. Mieville, R.B. Poeppel, Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett. 30(1995)201.
    
    [3] U. Balachandran, J.T. Dusek, P.S. Maiya, B. Ma, R.L. Mieville, M.S. Kleefisch, C.A. Udovich, Ceramic membrane reactor for converting methane to syngas, Catal. Today 36 (1997) 265.
    
    [4] T. Ishihara, Y. Tsuruta, C.Y. Yu, T. Todaka, H. Nishiguchi, Y. Takita, La(Sr)Ga(Fe)O_3 perovskite oxide as a new mixed ionic-electronic conductor for oxygen permeating membrane, J. Electrochem. Soc. 150 (2003) E17.
    
    [5] Y. Teraoka, H.M. Zhang, S. Furukawa, N. Yamazoe, Oxygen permeation through perovskite-type oxides, Chem. Lett. (1985) 1743.
    
    [6] H. Kruidhof, H.J.M. Bouwmeester, R.H.E. v. Doorn, A.J. Burggraaf, Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics 63-65 (1993) 816.
    
    [7] H.H. Wang, Y. Cong, W.S. Yang, Investigation on the partial oxidation of methane to syngas in a tubular Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) membrane reactor, Catal. Today 82(2003)157.
    
    [8] U. Balachandran, J.T. Dusek, S.M. Sweeney, R.B. Poeppel, R.L. Mieville, P.S. Maiya, M.S. Kleefisch, S. Pei, T.P. Kobylinski, C.A. Udovich, A.C. Bose, Methane to syngas via ceramic membranes, Am. Ceram. Soc. Bull. 74 (1995) 71
    
    [9] C.Y. Tsai, A.G. Dixon, Y.H. Ma, W.R. Moser, M.R. Pascucci, Dense perovskite La_(1-x)A_xFe_(1-y)Co_yO_(3-δ) (A=Ba,Sr,Ca), membrane synthesis, applications, and characterization, J. Am. Ceram. Soc. 81 (1998) 1437
    
    [10] K. Yamaji, H. Negishi, T. Horita, N. Sakai, H. Yokokawa, Vaporization process of Ga from doped LaGaO_3 electrolytes in reducing atmospheres, Solid State Ionics 135(2000)389
    
    [11] R. Doshi, C.B. Alcock, N. Gunasekaran, J.J. Carberry, Carbon Monoxide and Methane Oxidation Properties of Oxide Solid Solution Catalysts, J. Catal. 140 (1993) 557.
    
    [12] J. Sfeir, P.A. Buffat, P. Mockli, N. Xanthopoulos, R. Vasquez, H.J. Mathieu, J. Van herle, K.R. Thampi, Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes, J. Catal. 202 (2001) 229.
    
    [13] S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nature Mater. 2 (2003) 320. [9] T.J. Mazanec, T.L. Cable, J.G. Frye, Jr., Electrocatalytic cells for chemical reaction, Solid State Ionics 53-56 (1992) 111.
    
    [14] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, A.A. Yaremchenko, E.N. Naumovich, F.M.B. Marques, Oxygen permeability of Ce_(0.8)Gd_(0.2)O_(2-δ)-La_(0.7)Sr_(0.3)MnO_(3-δ) composite membranes, J. Electrochem Soc. 147 (2000) 2814.
    
    [15] H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials, Solid State Ionics 52 (1992) 43-56.
    
    [16] T. Kobayashi, S.R. Wang , M. Dokiya, H. Tagawa, T. Hashimoto, Oxygen nonstoichiometry of Ce_(1-y)Sm_yO_(2-0.5y-x) (y=0.1, 0.2), Solid State Ionics 126 (1999) 349
    
    [19] J.C.C. Abrantes, D. Perez-Coll, P. Nunez, J.R. Frade, Electronic transport in Ce_(0.8)Sm_(0.2)O_(1.9-δ) ceramics under reducing conditions, Electrochimica Acta 48 (2003) 2761
    
    [17] M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics 129 (2000) 63.
    
    [18] S.P.S. Badwal, F.T. Ciacchi, J. Drennan, Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments, Solid State Ionics 121(1999)253.
    
    
    [19] S. Sameshima, T. Ichikawa, M. Kawaminami, Y. Hirata, Thermal and mechanical properties of rare earth-doped ceria ceramics, Materials Chemistry and Physics 61 (1999) 31
    [20] A. Mineshige, T. Taji, Y. Muroi, M. Kobune, S. Fujii, N. Nishi , M. Inaba, Z. Ogumi, Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy, Solid State Ionics 135 (2000) 481
    
    [21] A. Zuev, L. Singheiser, K. Hilpert, Defect structure and isothermal expansion of A-site and B-site substituted lanthanum chromites, Solid State Ionics 147 (2002) 1
    
    [22] T.R. Armstrong, J.W. Stevenson, L.R. Pederson, P.E. Raney, Dimensional Instability of Doped LaCrO_3, J. Electrochem. Soc, 143 (1996) 2919
    
    [23] S.W. Paulik, S. Baskaran, T.R. Armstrong, Mechanical properties of calcium- and strontium-substituted lanthanum chromite, J. Mater. Sci. 33 (1998) 2397
    [1] E.P. Murray, M.J. Sever, S.A. Barnett, Electrochemical performance of(La, Sr)(Co,Fe)O_3-(Ce,Gd)O_3 composite cathodes, Solid State Ionics 148(2002) 27
    [2] Z.L. Zhan, T.L. Wen, H.Y. Tu, Z.Y. Lu, AC impedance investigation of samarium-doped ceria, J. Electrochem Soc. 148(2001) A427
    [3] J.E. ten Elshof, H.J.M. Bouwmeester, H. Verweij, Oxygen transport through La_(1-x)Sr_xFeO_(3-δ) membranes. I. Permeation in air/He gradients, Solid State Ionics, 81(1995) 97
    [4] U. Balachandran, J.T. Dusek, S.M. Sweeney, R.B. Poeppel, R.L. Mieville, P.S. Maiya, M.S. Kleefisch, S. Pei, T.P. Kobylinski, C.A. Udovich, A.C. Bose, Methane to syngas via ceramic membranes, Am. Ceram. Soc. Bull. 74(1995) 71
    [5] C. Y. Tsai, A.G. Dixon, Y.H. Ma, W.R. Moser, M.R. Pascucci, Dense perovskite La_(1-x)A_xFe_(1-y)Co_yO_(3-δ)(A=Ba, Sr, Ca), membrane synthesis, applications, and characterization, J. Am. Ceram. Soc. 81(1998) 1437
    [6] S. J. Feng, S. Ran, D. C. Zhu, W. Liu, C.S. Chen, Synthesis Gas Production from Methane with SrFeCo_(0.5)O_y Membrane Reactor, Energy & Fuels 18,(2004) 385
    [7] C.S. Chen, Fine grained ziconia-metal dual phase composites, Ph.D. thesis, U. Twente, the Netherlands, 1994
    
    [8] S.B. Adler, Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes, Chem. Rev. 104 (2004) 4791
    
    [9] O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells, Solid State Ionics 22 (1987) 241
    
    [10] K.Q. Huang, M. Schroeder, J.B. Goodenough, Oxygen permeation through composite oxide-ion and electronic conductors, Electrochem. Solid-State Lett. 2 (1999) 375.
    
    [11] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, A.L. Shaula, F.M. Figueiredo, E.N. Naumovich, F.M.B. Marques, Oxygen transport in Ce_(0.8)Gd_(0.2)O_(2-δ)-based composite membranes, Solid State Ionics 160 (2003) 247.
    
    [12] V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, A.A. Yaremchenko, E.N. Naumovich, F.M.B. Marques, Oxygen permeability of Ce_(0.8)Gd_(0.2)O_(2-δ)-La_(0.7)Sr_(0.3)MnO_(3-δ) composite membranes, J. Electrochem Soc. 147 (2000) 2814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700