火焰筒多斜孔壁传热特性研究及一维壁温设计程序开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高现代燃气轮机的比功率,在材料强度允许的情况下应尽可能提高燃烧室内燃气温度。目前发动机火焰筒壁面采用的高温合金材料最高许用温度约为1300K,而先进发动机火焰筒内燃气最高温度已经达到2400K。为了保证火焰筒的安全,必须对火焰筒壁面采用有效的冷却。
     全覆盖气膜冷却是目前一种先进的壁面冷却方式,多斜孔壁冷却是实现全覆盖气膜冷却的一种方法。目前国内外已经对多斜孔壁冷却展开了大量的研究,但进一步提高冷却效果仍然是一个富于挑战和创新的研究课题。
     本文针对火焰筒多斜孔壁的冷却,主要开展了两方面的研究:
     一、通过数值模拟研究了掺混角对气膜冷却效果的影响。在相同的流动边界条件下,入射角为20°时,计算分析了不同掺混角的火焰筒壁的气膜冷却效果。分析了掺混角对主流温度、压力、密度、速度等参数的影响。研究结果证明,当掺混角为60°时,综合冷却效果最好。
     二、根据已有的研究结果,编制了一个计算火焰筒多斜孔气膜冷却壁面温度分布的一维设计程序。该程序可用于火焰筒初步设计阶段的壁温估算。
In order to improve the specific power of modern gas turbine, temperature in combustion chamber must be improve as much as possible under the circumstances permitted by the strength of the material. Launched the flame tube wall is currently used in high-temperature alloy materials, the maximum allowable temperature is about 1300K, while the maximum temperature of gas in flame tube reached 2400K. In order to ensure the safety of flame tube, an effective cooling must be use on it.
     Full-coverage film cooling is a more advanced wall cooling method. It has already started a lot of research on Full-coverage film cooling interiorly and abroad, but the innovative technique enhancing the film cooling efficiency is also regarded as a challenging problem.
     In connection with Film Cooling of Multi-Inclined holes wall, this paper mainly research on two aspects:
     Firstly, at the same circumstances, this paper did a numerical research on Film Cooling Effectiveness by different mixing angles while the inject angle is 20°. By systematically analyzed the influences by mixing angles on mainstream's temperature, pressure, density, velocity, and Film Cooling Effectiveness, that when the mixing angle is 60°, the integrated Cooling Effect is the best.
     Secondly, based on the recognized concludes, this paper composed a semi-theoretical and semi-empirical One-dimensional program to calculate the temperatures of flame tube wall.
引文
[1] Wieghardt, K., Hot-Air Discharge for De-icing, AAF Translation, Report No.FTS-919-Re, 1946, pp.1-44
    [2] Goldstein, R.J., et al, Film Cooling Following Injection through Inclined Circular Tubes, NASA Rep.CR-73612, 1969
    [3] Eriksen, V.L., Film Cooling Effectiveness and Heat Transfer With Injection Through Holes, NASA Rep.CR-72991, 1971
    [4] Maule, R.E., Camarata, F.J., Mutihole Cooling Film Effectiveness and Heat Transfer, ASME Journal of Heat Transfer, 1975, Vol.97, pp.534-538
    [5] Ammari, H.D., Hay, N., Lampard, D., The Effect of Density Ratio on Heat Transfer Coefficient from a Film-Cooled Flat Plate, ASME Journal of Turbo machinery, 1990, Vol.112, pp.444-450
    [6] Petersen, D.R., Eckert, E.R.G., Goldstein, R.J., Film Cooling With Large Density Differences Between the Mainstream and Secondary Fluid Measured by Heat-Mass Transfer Analogy, ASME Journal of Heat Transfer, 1977, Vol.99, pp.620-627
    [7] Foster, N.W., Lampard, D., The flow and Film Cooling Effectiveness Following Injection Through a Row of Holes, ASME Journal of Engineering for Power, 1980, Vol.102, pp.584-588
    [8] Forth, C.J.P., Loftus, P.J., Hones, T.V, The Effect of Density Ratio on the Film Cooling of a Flat Plate, AGARD-CP-390, 1985, Paper No.10
    [9] Forth, C.J.P., Joes, T.V., Scaling Parameters in Film Cooling, Proc.8 th International Heat Transfer Conference, 1986, Vol.3, pp.1271-1276
    [10] Sinha, A.K., Bogard, D.G., Crawford, M.E., Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio, ASME Journal of Turbomachinery, 1991, Vol.13, pp441-449
    [11] Ammari, H.D., Hay, N., Lampard, D., Simulation of Cooling Film Density Ratio in a Mass Transfer Tecnique”, ASME Paper No.89-GT-200, 1989
    [12] Bazdidi-Tehrani, F., Andrews, G.E., Full-Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio, ASME Journal of Engineering for Gas Turbines and Power, 1994, Vol.116, pp.587-596
    [13] Le Brocq P.V., Launder B.E., Priddin C.H., Discrete Hole Injection as a Means of Transpiration Cooling-An Experimental Study, 1971, Imp.Coll.Rep.HTS/71/37.
    [14] Goldstein R.J., Film Cooling, Advances in Heat Transfer, 1971, Vol.7, pp.321-379, Academic Press, New York and London.
    [15] Afejuku, W.O., Hay, N., Lampard, D., Film Cooling Effectiveness of Double Rows of Holes, ASME Journal of Engineering for Power, 1980, Vol.102, pp.601-606
    [16] Bergeles, G., Gosman, A.D., Launder, B.E., Double-Row Discrete Holes Cooling: an Experimental and Numerical Study, ASME Journal of Engineering for Power, 1980, Vol.102, pp.498-503
    [17] Choe, H., Kays, W.M., Mlffat, R.J., Turbulent Boundary Layer on a Full-coverage Film-Cooled Surface An Experimental Heat Transfer Study with Normal Injection, Rep.HMT-22.Thermosciences Div., Dept.of Mech.Engrg, Stanford University, 1973
    [18] Foster, N.W., Lampard, D., Effects of Density and Velocity Ratio on Discrete Hole Film Cooling, AIAA J.Vol.13, pp.1112-1114, 1975
    [19] Andrews, G.E., Asere, A.A., Gupta, M.L., Mkpadi, M.C., Full Coverage Discrete Hole Film Cooling:The Influence of Hole Size, ASME Paper No.85-GT-47, 1985
    [20] Andrews, G.E., Gupta, M.L., and Mkpadi, M.C., Full Converage Discrete Hole Cooling: Cooling Effectiveness, Int.J.Turbo Jet Engines, 1985, Vol.2, pp.199-212
    [21] Andrews, G.E., Bazdidi-Tehrani, F., Small Diametre Film Cooling Hole Heat Transfer: The Influence of the Number of Holes, ASME Paper No.89-GT-7, 1989
    [22] Andrews, G.E., Asere, A.A., Gupta, M.L., Mkpadi, M.C., Tirmahi, A., Full Coverage Discrete Hole Cooling:the Influence of the Number of Holes and Pressure Loss, ASME Paper No.90-GT-61, 1990
    [23] Taylor, A.M.K.P., Whitelaw, J.H., Effectiveness lf Leading-Edge Cooling Arrangements.6th Int.Heat Transfer Conf., Toronto, 1980
    [24]吴伟民,张青藩,李亚峰,全离散孔气膜冷却实验研究,航空动力学报, 1994, Vol.9, pp.387-390
    [25]李锋,张青藩,何家德等,离散孔板冷却效率及其换热规律的研究,航空动力学报, 1997, Vol.12, pp.66-90
    [26] Crawford, M.E., Kays, W.M., Moffat, R.J., Full-Coverage Film Cooling-PartⅠ: Comparison of Heat Transfer Data for Three Injection Angles, ASME Journal Engineering for Power, 1980, Vol.102, pp.1000-1005
    [27] Kim, H.K., Moffat, R.J., Kays, W.M., Heat Transfer to a Full-Coverage, Film-Cooled Surface With Compound-Angle(30°×40°)Hole Injection, NASA Rep.CR-3103, 1979
    [28] Ligrani, P.M., Ciriello, S., and Bishop, D.T., Heat Transfer, Adiabatic Effectiveness, and Inject and Distribution Downstream of a Single Row and Two Staggered Rows of Compound Angle Film-Cooling Holes, ASME Journal of Turbo machinery, 1994, Vol.114, pp.687-700
    [29] Ligrani, P.M., Wigle, J.M., Ciriello, S., Jackson, S.M., Film Cooling From Holes With Compound Angle Orientations:Part 1-ResultsDownstream of Two Staggered Rows of Holes With 3D Spanwise Spacing, ASME Journal of Turbo machinery, 1994, Vol.116, pp.341-352,
    [30] Ligrani, P.M., Wigle, J.M., Jackson, S.M., Film Cooling From Holes With Compound Angle Orientations:Part 2-Results Downstream of a Single Row of Holes With 6D Spanwise Spacing, ASME Journal of Turbo machinery, 1994, Vol.116, pp.353-362
    [31]宋波,林宇震,刘高恩,王华芳,不同排列方式多斜孔壁气膜冷却绝热温比研究,航空动力学报, 1999, Vol.14, pp.91-94
    [32] Goldstein, R.J., Eckert, E.R., Burggraf, F., Effects of Hole Geometry and Density on Three-Dimensional Film Cooling, Int.J.Heat Mass Transfer, 1974, Vol.17, pp.595-607
    [33]徐红洲,苏红祯,刘松龄,许都纯,倾斜30°锥形喷孔气膜冷却的流动和传热实验研究,推进技术, 1996, Vol.17, pp52-58
    [34] Kadotani, K., Goldstein, R.J., Effect of Mainstream Variables on Jets Issuing from a Row of Inclined Round Holes, ASME Paper No.78-GT-138, 1978
    [35] Brown, A., Saluja, C.L., Film Cooling from Three Rows of Holes on Adiabatic, Constant Heat Flux and Isothermal Surfaces in the Presence of Variable Velocity Gradients and Turbulent Intensity, ASME Paper No.79-GT-24, 1979
    [36] Simonich, J.C., Bradshaw, P., Effect of Free-Stream Turbulence on Heat Transfer Through a Turbulent Boundary Layer, ASME Journal of Heat Transfer, 1978, Vol.100, pp.671-677
    [37] Hancock, P.E., Bradshaw, P., The Effect of Free-Stream Turbulence on Turbulent Boundary Layer, ASME Journal of Fluids Engineering, 1983, Vol.105, pp.284-289
    [38] Blair, M.F., Influence of Free-Stream turbulence on Turbulent Boundary Layer Heat Transfer Mean Profile Development, PartⅠ-Experimental Data, ASME Journal of Heat Transfer, 1983, Vol.105, pp.33-40
    [39] Blair, M.F., Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer Mean Profile Development, PartⅡ-Analysis of Results, ASME Journal of Heat Transfer, 1983, Vol.105, pp.41-47
    [40] Bonnice, M.A., L’Ecuyer, Stagnation Region Gas Film Cooling-Effects of Dimensionless Coolant Temperature, NASA Rep.CR-168197
    [41] O’Brien, J.E., Vanfossen, G.J., The Influence of Jet-Grid Turbulence on Heat Transfer from the Stagnation Region of a Cylinder in Cross flow, ASME Paper No.85-HT-58, 1988
    [42] Mick, W.J., Mayle, R.E., Stagnation Film Cooling and Heat Transfer, Including its Effect With the Hole Pattern, ASME Journal of Turbo machinery, 1988, Vol.110, pp.66-72
    [43] Mac Mullin, R., Elrod, W., Rivir, R., Free-Stream Turbulence From a Circular Wall Jet on a Flat Plate Heat Transfer and Boundary Layer Flow, ASME Paper No.88-GT-183, 1998
    [44] Mehendale, A.B., Han, J.C., Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer, ASME Journal of Turbo machinery, 1992, Vol.114, pp.707-715
    [45]吴宏,邓宏武,陶智,气膜出流对叶片内表面换热系数影响的实验研究和计算,航空动力学报, 1999, Vol.14, pp.247-250
    [46] Kruse, H., Effects of Hole Geometry, Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row, AGARD-CP-390, Paper No.8, 1985
    [47] Hay, N., Lampard.D., Saluja, C.L., Effects of the Condition of the Approach Boundary Layer and of Mainstream Press Gradients on the Heat Transfer Coefficient on Film-Cooled Surfaces, ASME Journal of Engineering for Power, 1984, Vol.107, pp.99-104
    [48] Ammari, H.D., Hay, N., Lampard, D., Effect of Acceleration on the Heat Transfer Coefficient on a Film-Cooled Surface, ASME Journal of Turbo machinery, 1991, Vol.113, pp.442-449
    [49] Ito, S., Goldstein, R.J., Eckert, E.R.G., Film Cooling of a Gas Turbine Blade, ASME Journal of Engineering for Power, 1978, Vol.100, pp.476-481
    [50] Furuhama, K., Moffat, R.J., Turbulent Boundary Layer and Heat Transfer on a Concave Wall with Discrete Hole Injection, ASME-H-43 for meeting 3/20-24/1983, 198 3
    [51] Furuhama, K., Moffat, R.J., Frota, M.N., Heat Transfer and Turbulence Measurements of a Film-Cooled Flow over a Convexly Curved Surface, 83-Tokyo-IGTC-16, 1983
    [52] Ko, S.Y., Xu J.Z., Yao Y.Q., and Tsou F.K., Film Cooling Effectiveness and Turbulence Distribution of discrete Holes on a Convex Surface, Int.J.Heat and Mass Transfer, 1984, Vol.27, pp.1551-1557
    [53]向安定,罗小强,朱惠人,许都纯,刘松龄,涡轮叶片表面气膜冷却的传热实验研究,航空动力学报, 2002, Vol.17, pp.577-581
    [54]葛绍岩,刘登赢,徐靖中,李静,《气膜冷却》,北京,科学出版社, 1985
    [55] Eriksen, V.L., Eckert, E.R.G., Goldstein, R.J., A Model for analysis of the Temperature Field Downstream of a Heat Jet Injected into an Isothermal Crossflow at an Angle of 90°, NASA Rep.CR-72990, 1971
    [56] Crawford, M.E., Kays, W.M., Moffat, R.J., Full Coverage Film Cooling PartⅡ:Heat Transfer Data and Numerical Simulation, ASME Journnal of Engineering for Power, 1980, Vol.112, pp.1006-1012
    [57] Miller, K.L., Crawford, M.E., Numerical Simulation of/single, Double, Multiple Row Film Cooling Effectiveness and Heat Transfer, ASME Paper No.84-GT-112
    [58] Schonung, B., Rodi, W., Prediction of/film/cooling by a row of Holes with a Two-Dimensional Boundary Layer Procedure, ASME Journal of Turbo machinery, 1987, Vol.109, pp.579-587
    [59] Tafti, D.L., Yavuzkurt, Y., Prediction of Heat Transfer Characteristics for Discrete Hole Cooling for Turbine Blade Application, ASME Journal of Turbo machinery, 1990, Vol.112, pp.504-511
    [60] Norton, T.J.G., Epstein, A.H., Gorest, A.E., White, D.G., Henshaw, D.L., Schultz, D. L., Oldfield, M.L.G., Turbine Cooling System Design, Final Report, No.WRDC-TR-89-2109, 1990, Vol.1
    [61] Haas, W., Rodo, W., Schonung, B., The Influence of Density Difference Between Hot and Coolant Gas on Film Cooling by a Row of Holes: Predictions and Experiments, ASME Journal of Turbo machinery, 1992, Vol.114, pp.747-755
    [62] Bergeles, G., Gosman, A.D., Launder, B.E., The Turbulent Jet in a Cross Stream at Low Injection Rates:A Three-Dimensional Numerical Treatment, Numerical Heat Transfer, 1978, Vol.1, pp.217-242
    [63] Rodi, W., Srivatsa, S.K., A Locally Elliptic Calculation Procedure for Three Dimensional Flows and Its Application to a Jet in a Cross Flow, Comp. Meth. Appl. Mech. Engg., 1980, Vol.23, pp.67-83
    [64] Demuren, A.O., Rodi, W., Schonung, B., Systematic Study of Film Cooling With a Three-Dimensional Calculation Procedure, ASME Journal of Turbo machinery, 1986, Vol.108, pp.124-130
    [65] Patankar, S.V., Basu, D.K., and Alpay, S.A., Prediction of Three-Dimensional Velocity Field of a Deflected Turbulent Jet, ASME Journal of Fluids Engineering, 1977, Vol.99, pp.758-762
    [66] White, A.J., The Prediction of the Flow and Heat Transfer in the Vicinity of a Jet in Crossflow, ASME Paper No.80-WA/HT-26, 1980
    [67] Dibelius, G.H., Pitt, R., Wen, B., Numerical Prediction of Film Cooling Effectiveness and the Associated Aerodynamic Losses with a Three-Dimensional Calculation Procedure, ASME Paper No.90-GT-226, 1990
    [68] Leylek, J.H., zerkle, R.D., Discrete-Jet Film Cooling:A Comparison of Computational Results with Experiments, ASME Journal of Turbo machinery, 1994, Vol.116, pp.358-368
    [69]葛绍岩,李静,刘澄沄,平板湍流气膜冷却的数值计算,研究报告80-传热-3,中国科学院工程热物理所, 1980年8月
    [70]丁滨元,二维气膜冷却平板的实验研究与数值计算,北京,中国科学院工程热物理所硕士论文,1981年7月
    [71]陶智,吴宏,蔡毅,气膜出流对叶片各内表面换热系数的影响,航空动力学报, 1997, Vol.12, pp.413-415
    [72]胡娅萍,吉洪湖,平壁气膜冷却流场与温度场的协同分析,工程热物理学报, 2004, Vol.25, pp.94-96
    [73]徐靖中,葛绍岩,弯曲壁面离散孔气膜冷却数值模拟,工程热物理学报, 1983, Vol.4, pp.67-63
    [74]朱惠人,刘松龄,用低雷诺数K-ε湍流模型计算涡轮叶片的对流换热,航空动力学报, 1995, Vol.16, pp.422-430
    [75]朱惠人,刘松龄,余志红,涡轮叶片气膜冷却的数值模拟,航空动力学报, 1999, Vol.20, pp.416-420
    [76]许全宏,张宝华,林宇震,刘高恩,冲击加多斜孔双层壁冷却方式气膜绝热温比研究,航空动力学报, 2000, Vol.15, pp.387-390
    [77]俞文利,林宇震,刘高恩,冲击加多斜孔双层壁冷却方式多斜孔内换热研究,航空动力学报, 2001, Vol.16, pp.365-369
    [78]许全宏,林宇震,刘高恩,冲击/发散复合冷却方式发散壁换热系数研究,航空动力学报, 2004, Vol.19, pp.213-218
    [79] Gerendas M., Hoschler K., Schiling Th., Development and Modeling of Angled Effusion Cooling for the BR715 Low Emission Staged Combustor Core Demonstrator, Roll-Royce Deutschland Ltd.&Co.KG
    [80]梁春华,现代典型军民用涡扇发动机的先进技术,航空科学技术, 2004, Vol.90, pp.20-24
    [81]林宇震,宋波,李彬,刘高恩,多斜孔壁冷却方式小孔内对流换热研究,航空动力学报, 1999, Vol.14, pp.87-90
    [82]李军,董志锐,林宇震,刘高恩,陆涛,多斜孔气膜冷却壁表面换热系数实验研究,推进技术, 2000, Vol.21, pp.45-48
    [83]胡娅萍,吉洪湖,致密多孔壁冷却方式冷流入射角对冷却效果影响的数值研究,航空动力学报, 2005, Vol.20, pp.116-119
    [84] Hu Y.P., Ji H.H., the Effect of Blowing Ratio on Effusion Cooling Effectiveness, ISHTEE2004, guanzhou, 2004
    [85] Hu Y.P., Ji H.H., Numerical Study on the Effect of Blowing Angle on Cooling Effectiveness of Effusion Cooling, ASME Turbo Expo, Power for Land, Sea&Air, GT2004-54043, Vienna, Austria, June, 14-17, 2004
    [86]胡娅萍,吉洪湖,孔的疏密度对致密多孔壁冷却效果的影响,推进技术, 2005, Vol.26, pp.28-33
    [87]胡娅萍,基于场协同理论的航空发动机冷却结构传热特性的数值研究,南京,南京航空航天大学, 2003
    [88] Mills, A.F., Experimental investigation of turbulent heat transfer in thermal entrance region of a circular conduit, J. Mech. Eng. Sci., Vol.4. No.1, 1962
    [89] Sparrow, E.M. and Gurdol, U., J.V., Heat Transfer at an upstream facing surface washed by fluid on route to an aperture in the surface, Int. J. Heat and Mass Transfer, Vol.24, pp.851-857, 1981
    [90] Sparrow, E.M. and Carranco Oritiz, M. Heat transfer coefficients for the upstream face of a perforated plate positioned normal to an oncoming flow, Int. J. Heat and Mass Transfer, Vol.25, pp.127-135, 1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700