介孔γ-氧化铝及其负载的镍镁氧化物制备和催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氧化铝是非常重要的吸附剂和催化剂组分,其性能主要取决于它们的晶体结构和织构特性。传统γ-氧化铝是通过铝的氢氧化合物在超过450oC条件下焙烧制备的,比表面积较低且孔径分布较宽,这限制了它们在工业过程中的潜在应用。因此,继M41S介孔氧化硅之后,介孔氧化铝材料的研究也随即成为材料和催化领域的一个研究热点。
     溶胶-凝胶模板法是介孔氧化铝合成过程中最为广泛使用的方法。然而,在多数情况下,制备的有序或无序结构的介孔氧化铝,为无定型氧化铝骨架。在用做催化剂或催化剂载体时缺乏水热稳定性和晶体氧化铝的表面特性。为获得晶体γ-氧化铝,进行高温焙烧不可避免地因烧结和骨架的收缩破坏氧化铝孔结构并导致织构特性的破坏。另外,在这些介孔氧化铝制备过程中,除了使用昂贵的模板剂外,大多需要使用有机溶剂和有毒的醇铝作为铝源。因此,开发一种新型、经济的路线合成具有高表面积、大孔容、狭窄孔径分布的稳定的介孔γ-氧化铝仍然是一个值得研究的课题。
     本文利用无机铝盐制备介孔氧化铝开展研究,成功制备出高比表面的介孔γ-氧化铝及其负载的镍镁复合氧化物,并对其催化性能进行了研究。主要研究内容和结果概述如下:
     1.介孔γ-氧化铝制备及CO_2吸附
     在无表面活性剂存在下,首次通过(NH_4)2CO_3部分水解Al(NO_3)3水溶液方法合成了含有Keggin-Al_(13)的NH_4NO_3/Al_(13)杂合物干胶。XRD、27Al MAS NMR、TEM以及N_2吸附和脱附结果表明NH_4NO_3/Al_(13)杂合物经过200oC处理可以直接转化形成γ-氧化铝,且在300oC完全除去NH_4NO_3之后产生具有高比表面积(约450m2g-1)、较大的孔尺寸(约3.9nm)、且具有狭窄孔径分布的蠕虫状孔道结构。这是目前报道的从铝盐水溶液前驱体合成γ-氧化铝的最低反应温度。考察了不同无机铝盐对γ-氧化铝的形成和孔结构的影响;分析了NH_4NO_3/Al_(13)杂合物中NH_4NO_3的分解情况;详细研究NH_4NO_3/Al_(13)在焙烧过程中铝氧化物的相变化,提出了NH_4NO_3和Al_(13)物种的协同作用促进了Al物种直接形成介孔γ-Al_2O_3的独特机理。所制备的介孔γ-Al_2O_3具有较高的热稳定性和水热稳定性。CO_2吸附实验表明,与模板法制备的有序介孔氧化铝和传统的γ-Al_2O_3相比,部分水解法制备的介孔γ-Al_2O_3比表面积更大,因而显示出更高的CO_2吸附量。
     2.介孔镍铝复合氧化物制备及催化反应性能
     通过(NH_4)2CO_3部分水解Al(NO_3)3和Ni(NO_3)2水溶液方法,制备了不同Ni/Al摩尔比的介孔镍铝复合氧化物NixAl (x=0.05,0.10,0.125,0.25,0.50)。利用XRD、TPR、SEM、TEM和N_2吸脱附等手段对产物进行了详细表征。结果表明,与纯介孔γ-氧化铝相似,制备的氧化铝负载的镍铝复合氧化物具有高的比表面积、较大的孔尺寸且狭窄孔径分布的蠕虫状孔道结构。XRD和TPR结果表明,当焙烧温度超过300oC时,硝酸铵完全分解且形成γ-氧化铝,氧化镍物种高度分散在镍铝复合氧化物中,没有观察到游离NiO晶相。随着温度升高到800oC时,Ni物种主要以体相NiAl_2O4形成存在。
     以CO_2和H_2甲烷化反应为模型反应,考察了400oC焙烧获得的不同Ni/Al摩尔比的镍铝复合氧化物催化反应性能。结果表明,通过部分水解法制备的镍铝复合氧化物对CO_2甲烷化反应具有较好的催化活性和100%甲烷选择性。当Ni/Al比为0.25时,镍铝催化剂的活性最高。
     以苯与水蒸气的重整为模型反应,对比了部分水解和溶胶-凝胶模板法800oC焙烧制备的介孔Ni0.1Al氧化物催化剂重整反应性能。结果表明,部分水解制备的介孔镍铝氧化物催化剂具有更高的催化活性和更好的抗积炭能力。这可能是由于三维孔道结构更有利于产物的扩散从而减少孔道中产物的聚合。
     3.介孔镍镁铝复合氧化物制备及催化反应性能
     利用与镍铝复合氧化物相似的制备方法,保持镍镁摩尔比相同,制备一系列介孔镍镁铝复合氧化物NixMgxAl (x=0.125,0.17,0.25,0.5),并利用XRD、TPR和N_2吸脱附等手段对其进行了表征。所制备的NixMgxAl也具有高的比表面积、较大孔尺寸和狭窄的孔径分布。
     NixMgxAl氧化物用于液化石油气LPG的水蒸气重整反应。考察了Ni/Al摩尔比,焙烧温度等对Ni-Mg-Al催化性能的影响,结果显示,500oC焙烧获得的Ni0.25Mg0.25Al催化剂对LPG水蒸气重整反应具有最高的催化活性和抗积炭能力。
γ-aluminas have been shown to be of crucial importance as industrial adsorbents andcatalyst components in a wide variety of chemical processes However, conventionalγ-aluminas formed through the thermal transformation of aluminum hydroxides andoxyhydroxides at a temperature above450oC typically present only textural porosityfeatured by low surface areas and broad pore size distributions (PSDs), which limit theirpotential applications. Therefore, following the M41S mesoporous silica, mesoporousalumina materials become an important research topic in the field of catalysis.
     The sol-gel approaches have been widely applied for the synthesis of porous alumina. Inmost cases mesoporous aluminas with disordered or ordered channels prepared via thesurfactant-assisted method give only amorphous framework walls at temperatures below800oC, which lack the structure stability and surface characteristics of crystalline aluminasfor use as absorbents and catalyst supports. While higher temperature calcinations fortransition alumina phase inevitably destroy the pore structure and cause drasticdeterioration of texture properties. On the other hand, most of these procedures use organicsolvents and aluminum alkoxides besides expensive structure-directing agents. Therefore,it is important to develope a novel, economic and environmentally benign approach tofabricate stable mesoporous γ-aluminas with large surface areas, pore volumes and narrowPSDs.
     In this paper, high-surface-area mesoprous γ-alumina and alumina supported Ni-Mgoxides are successfully prepared using inorganic Al salts as Al source and their catalyticproperties are also studied. The main research contents and results are summarized asfollows:
     1. Preparation of mesoporous γ-alumina and CO_2adsorption capacity
     The facile synthesis of mesoporous γ-alumina is developed through partial hydrolysis ofAl(NO_3)3aqueous solution with (NH_4)2CO_3without organic surfactants. In this synthesis,stable NH_4NO_3/Al_(13)species (AN/Al) hybrid containing Keggin-Al_(13)polycations is firstprepared, which is the key for the successful formation of mesoporous γ-alumina. XRD, 27Al MAS NMR, TEM, and N_2adsorption and desorption results demonstrate that theas-prepared AN/Al hybrid can be transformed to γ-alumina by treatment at200oC andexhibit a wormhole-like mesoporous structure with large surface area up to~450m2g-1,pore volume of~0.3cm3g-1and narrow pore size distribution peaked at~3.9nm aftercompletely removing NH_4NO_3at300oC. The obtained mesoporous γ-aluminas have highthermal stability up to900oC and excellent hydrothermal stability.
     The effects of different inorganic aluminum salts on the formation and pore structure ofmesoporous γ-aluminas are investigated; the decomposition of NH_4NO_3in the hybrid areanalyzed; and the phase transformation of Al species in the AN/Al hybrid are detailedlystudied during the calcination process. The results imply that the synergetic effect betweenNH_4NO_3and Al_(13)species promotes crystallization of Al species to γ-alumina, which mayhave a unique mechanism distinct from the mesoporous aluminas reported previously.
     CO_2adsorption measurements indicate that these mesoporous γ-aluminas have muchhigher CO_2adsorption capacity than ordered mesoporous alumina synthesized by thesurfactant-templating method and conventional γ-alumina derived from aluminumoxyhydroxides.
     2. Preparation of mesoporous Ni-Al oxides and catalytic reaction performance
     The mesoporous γ-alumina supported nickel oxides (NixAl) with various Ni/Al molarratios (x=0.05,0.10,0.125,0.25,0.50) are prepared by a simple co-hydrolysis of aqueoussolution of Al(NO_3)3and Ni(NO_3)2with (NH_4)2CO_3without surfactants and characterizedby XRD, SEM, TEM, and N_2adsorption and desorption. The prepared NixAl samplesexhibit wormhole-like mesoporous structures with large specific surface areas and narrowpore size distributions are similar to mesoporous γ-alumina. XRD and TPR resultsdemonstrate that ammonium nitrate is completely decomposed and γ-alumina formed as thecalcination temperature of over300oC. The nickel oxide species are highly dispersed in thenickel-aluminum composite oxide without free NiO crystal phase. As the temperatureincreases to800oC, most of Ni species are transfermed into NiAl_2O4.
     CO_2and H_2methanation reaction are used as a model reaction. The catalytic reactionperformances of the Ni-Al composite oxide with different Ni/Al molar ratio calcined at400oC are investigated. The results show that the Ni-Al composite oxides prepared by partialhydrolysis method have better catalytic activity and100%methane selectivity. When theNi/Al ratio is0.25, Ni-Al catalyst exhibits the highest activity.
     The steam reforming of benzene is used as a model reaction. The reforming reactionperformance of the mesoporous Ni0.1Al oxide prepared by partial hydrolysis and sol-geltemplate method calcined at800oC are compared. The results show that mesoporous Ni-Aloxide prepared by partial hydrolysis have a higher catalytic activity and better resistance tocarbon deposition. This may be due to the three-dimensional pore structureis are moreconducive to the diffusion of the product, thereby reducing the polymerization of theproduct in the pore.
     3. Preparation of mesoporous Ni-Mg-Al composite oxide and its catalytic reactionperformance
     Keeping the Ni/Mg molar ratio equivalent, a series of different Ni/Al molar ratio of themesoporous Ni-Mg-Al composite oxides (NixMgxAl x=0.125,0.17,0.25,0.5) areprepared and characterized by means of XRD, TPR and N_2adsorption-desorption.Theprepared mesoporous NixMgxAl oxides also have high specific surface area, the larger poresize and a narrow pore size distribution.
     The NixMgxAl oxides are employed for the liquefied petroleum gas (LPG) steamreforming reaction. The effects of Ni/Al molar ratio and calcination temperature ofNixMgxAl catalyst on the performance of LPG reforming show that Ni0.25Mg0.25Al-500catalyst calcined at500oC has a high resistance to carbon deposition and high catalyticactivity.
引文
[1] IUPAC Manual of Symbols and Terminology Pure APPL.Chem.,1972,31,578.
    [2] D. Y. Zhao, J. L. Feng, Q. S. Huo, et al., Science,1998,279,548.
    [3] A. Corma, Chemical Reviews,1997,97,2373.
    [4] Y. Wan, H. F.Yang, D. Y. Zhao, Accounts Chem. Res.,2006,39,423.
    [5] M. E. Davis, Nature,2002,417,813.
    [6] J. S. Beck, J. C.Vartuli, W. J. Roth, et al., J. Am. Chem. Soc.,1992,114,10834.
    [7] C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature,1992,359,710.
    [8] D. Y. Zhao, Q. S. Huo, J. L. Feng, et al., J. Am. Chem. Soc.,1998,120,6024.
    [9] Q. Yuan, A. X. Yin, C. Luo, et al., J. Am. Chem. Soc.,2008,130,3465.
    [10] F. Schuth, Chem. Mater.,2001,13,3148.
    [11] C. Sun, J. M. Du, J. Liu, et al., Chem. Comm.,2010,46,2671.
    [12] X. D. Zou, T. K. Conradsson, M. S. Dadachov, Nature,2005,437,716.
    [13] Y. F. Shi, B. k. Guo, S. A. Corr, et al., Nano Lett.,2009,9,4615.
    [14] J. Blanchard, F. Schuth, P. Trens, et al., Micro. Meso. Mater.,2000,39,163.
    [15] S. C.Warren, L. C. Messina, L. S. Slaughter, et al., Science,2008,320,1748.
    [16] G. S. Attard, C. G. Goltner, J. M. Corker, et al., Angew. Chem.Int. Ed.,1997,36,1315.
    [17] S. H. Joo, S. J. Choi, J. Kwak, et al., Nature,2001,412,169.
    [18] R. Ryoo, S. H. Joo, M. Kruk, et al., Adv. Mater.,2001,13,677.
    [19] M. Hu, J. Reboul, S. Furukawa, et al., J. Am. Chem.Soc.,2012,134,2864.
    [20] C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature,1992,359,710.
    [21] D. Y. Zhao, Q. H. Huo, J. L. Feng, et al., J. Am. Chem. Soc.,1998,120,6024.
    [22] S. H. Joo, R. Ryoo, M. Kruk, et al., J. Phys. Chem. B.,2002,106,4640.
    [23] S. E. Park, D. S. Kim, J. S. Chang, et al., Catal. Today,1998,44,301.
    [24] B. L. Newalkar, S. Komarneni, Chem. Mater.,2001,13,4573.
    [25] J. M. Oh, A. S. Kumbhar, O. Geiculescu, et al., Langmuir,2012,28,3259.
    [26] Y. Meng, D. Gu, F. Q. Zhang, et al., Angew. Chem.Int. Ed.,2005,44,7053.
    [27] C. D. Liang, S. Dai, J. Am. Chem. Soc.,2006,128,5316.
    [28] X. Y. Liu, B. Z. Tian, C. Z. Yu, et al., Angew. Chem. Int. Ed.,2002,41,3876.
    [29] S. Liu, Z. Zhang, H. Y. Zhang, et al., J. Colloid Interface Sci.,2010,345,257.
    [30] S. Jun, S. H. Joo, R. Ryoo, et al., J. Am. Chem. Soc.,2000,122,10712.
    [31] Z. X. Wu, Q. Li, D. Feng, et al., J. Am. Chem. Soc.,2010,132,12042.
    [32] Y. Shi, Y. Wan, R. Zhang, et al., Adv. Funct. Mater.,2008,18,2436.
    [33] J. N. Kondo, K. Domen., Chem. Mater.,2008,20,835.
    [34] C. Danumah, S.Vaudreuil, L. Nneviot, et al., Micro. Meso. Mater.,2001,44,241.
    [35] V. Luca, J. N. Watson, M. Ruschena, et al., Chem. Mater.,2006,18,1156.
    [36] H. Yoshitake,T. Sugihara, T.Tatsumi, Chem.Mater.,2002,14,1023.
    [37] M. Yusufm, H. Imai. J. Hirashima, Non-Crystalline Solids,2001,285,90.
    [38] Y. Wei, D. L. Jin, T. Z.Ding, et al., Adv. Mater.,1998,10,313.
    [39] K. Ariga, A.Vinu, Q. M. Ji, Angew. Chem. Int. Ed.,2008,47,7254.
    [40] X. G. Wang, S. Cheng, J. C. C. Chan, J. Phys. Chem. C,2007,111,2156.
    [41] K. I. Shimizu, E. Hayashi, T. Hatamachi, et al., Tetrahedron Lett.,2004,45,5135.
    [42] Y.Tang, L. Yang, Z. Qiu, et al., J. Mater. Chem.,2009,19,5980.
    [43] C. C. Yu, L. X. Zhang, J. L.Shi, et al., Adv. Funct. Mater.,2008,18,1544.
    [44] J. S. Beck, J. C. Vartuli, W. J. Roth, et al., J. Am. Chem. Soc.,1992,114,10834.
    [45] C. T. Kresge, M. E. Leonowiez, W. J. Roth, et al., Narure,1992,359,710.
    [46] Q. S. Huo, D. I. Margolese, U. Ciesla, et al., Nature,1994,368,317.
    [47] A. Monnier, F. Schüth, Q. S. Huo, et al., Science,1993,261,1299.
    [48] J. C.Vartuli, C. T. Kresge, M. E. Leonowicz, et al., Chem. Mater.,1994,6,2070.
    [49] J. C. Vartuli, K. D. Schmitt, C. T. Kresge, et al., Chem. Mater.,1994,6,2317.
    [50] A. Corma, Chem. Rev.,1997,97,2373.
    [51] J. Huang, G. Li, S. Wu, et al., J. Mater. Chem.,2005,15,1055.
    [52] Z. Zhang, Y. Han, F. S. Xiao, et al., J. Am. Chem. Soc.,2001,123,5014.
    [53] O. D. Trong, S. Kaliaguine, Angew. Chem. Int. Ed.,2002,41,1036.
    [54] O. D. Trong, S. Kaliaguine, J. Am. Chem. Soc.,2003,125,618.
    [55] M. A. Camblor, A. Corma, A. Martinez, et al., Chem. Comm.,1992,8,589.
    [56] Z. L. Hua, J. L. Shi, W. H. Zhang, et a1., Mater. Lett.,2002,53,299.
    [57] X. X. Wang, F. Lefebvre, J. Patarin, et a1., Micro. Meso. Mater.,2001,42,269.
    [58] S. Gontier, A. Tuel,1996,143,125.
    [59] K. M. Keddy, Chem. Comm.,1994,9,1059.
    [60] S. Kawi, M. Te, Catal. today1988,44,101.
    [61] W. Z. Zhang, J. L. Wang, P. T. Tanev, et a1., Chem. Comm.,1996,8,979.
    [62] J. M. Brdgeault, J. Y. Piquemal, E. Briot, et al., Micro. Meso. Mater.,2001,44,409.
    [63] K. Kageyama, S. I. Ogino, T. Aida, et al., Macromol.,1998,31,4069.
    [64] M. Zhang, H. Xu, C. Guo, et al., Polym. Int.,2005,54,274.
    [65] J. Bisquert, D. Cahen, J. Hodes, et al., J. Phys. Chem. B,2004,108,8106.
    [66] S. Yoon, J. W. Lee, T. Hyeon, et al., J. Electro. Soc.,2000,147,2507.
    [67] J. Lee, S. Yoon, S. M. Oh, et al., Adv. Mater.,2000,12,359.
    [68] C. H. Chang, Y. L. Lee, Appl. Phys. Lett.,2007,91,053503.
    [69] J. Fan, T. Wang, C. Z. Yu, et al., Adv. Mater.,2004,16,1432.
    [70] S. M. Zhu, H. S. Zhou, T. Miyoshi, et al., Adv. Mater.,2004,16,2012.
    [71] H. F. Yang, Q. H. Shi, X. Y. Liu, et al.,Chem. Comm.,2002,23,2842.
    [72] G. Liu, Y. N. Zhao, C. H. Sun, et al., Angew. Chem. Int. Ed.2008,47,4516.
    [73] Y. Wan, H. F. Yang, D. Y. Zhao, Accounts of Chemical Research,2006,39,423.
    [74] A. M. Liu, K. Hidajat, S. Kawi, et al., Chem. Comm.,2000,13,1145.
    [75] S. Kim, J. Ida, V. V. Guliants, et al., J. Phys. Chem. B,2005,109,6287.
    [76] X. Xu, C. Song, B. G. Miller, et al., Ind. Eng. Chem. Res.,2005,44,8113.
    [77] T. N. Bell, P. Kirszensztejn, B.Czajka, Catal. Lett.,1995,30,221.
    [78]杨重愚.氧化铝生产工艺学(第二版)北京:冶金工业出版社,1993,6-12.
    [79] C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature,1992,359,710
    [80] Q. S. Huo, D. I. Margolese, U. Ciesla, et al., Nature,1994,368,317.
    [81] M. Yada, M. Machida, T. Kijima, Chem. Comm.,1996,6,769.
    [82] M. Yada, H. Hiyoshi, T. Kijima, et al., Inorg. Chem.,1997,36,5565.
    [83] M. Yada, H. Kitamura, T. Kijima, Langmuir,1997,13,5252.
    [84] M. Yada, M. Ohya, T. Kijima, Chem. Comm.,1998,18,1941.
    [85] A. Caragheorgheopol,A. Rogozea,R. Ganea,et al., J. Phys. Chem. C,2010,114,28.
    [86] Q. Liu,A. Q. Wang,X. D. Wang,et al., Micro. Meso.Mater.,2007,100,35.
    [87] G. Lee,C. Chen,S. T. Yang,et al., Micro. Meso. Mater.,2010,127,152.
    [88] S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem. Int. Ed. Engl.,1996,35,1102.
    [89] S. Cabrera, J. E. Haskouri, P. Amorós, et al., Adv. Mater.,1999,11,379.
    [90] H. C. Lee, H. J. Kim, C. H. Rhee, et al., Micro. Meso. Mater.,2005,79,61.
    [91] J. H. Kim,K.Y. Jung,K. Y. Park,et al., Micro. Meso. Mater.,2010,128,85.
    [92] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science,1995,269,1242.
    [93] Z. R. Zhang, T. J. Pinnavaia, J. Am. Chem. Soc.,2002,124,12294.
    [94] Z. R. Zhang, R. W. Hicks, T. R. Pauly, et al., J. Am. Chem. Soc.,2002,124,1592.
    [95] Q. Liu,A. Q. Wang,X. H. Wang,et al., Micro. Meso. Mater.,2008,111,323.
    [96] S. M. Morris, P. F. Fulvio, M. Jaroniec, J. Am. Chem. Soc.,2008,130,15210.
    [97] Q. Yuan, A. X. Yin, C. Luo, et al., J. Am. Chem. Soc.,2008,130,3465.
    [98] B. Xu, T. Xiao, Z. Yan, et al., Micro. Meso. Mater.,2006,91,293.
    [99]王春明,王培,王晖,等.[J]催化学报,2005,26,797.
    [100] B. J. Xu, J. Long,H. P. Tian,et al., Catal. Today,2009,147S, S46.
    [101] H. Wakayama, H. Itahara, N. Tatsuda, et al., Chem. Mater.,2001,13,2392.
    [102] A. G. Dong, N. Ren, Y. Tang, et al., J. Am. Chem. Soc.,2003,41,4976.
    [103] Q. Liu, A. Wang, X. Wang, Chem. Mater.,2006,18,5153.
    [104] Z. M. Wang, Y. S. Lin, J. catal.,1998,174,43.
    [105] N. Yao, G. Xiong, Y. Zhang, et al., Catal. Today.,2001,68,97.
    [106] A. Khaleel, Micro. Meso. Mater.,2006,91,53.
    [107] M. Pavese, S. Biamino, J. Porous Mater.,2009,16,59.
    [108] Z. R. Zhang, T. J. Pinnavaia, J. Am. Chem. Soc.,2002,124,12294.
    [109] Z. Zhang, R. W. Hicks, T. R. Pauly, et al., J. Am. Chem. Soc.,2002,124,1592.
    [110] R. W. Hicks, T. J. Pinnavaia, Chem. Mater.,2003,15,78.
    [111] J. Aguado, J. M. Escola, M. C. Castro, et al. Micro. Meso. Mater.,2005,83,181.
    [112] S. Valange, J. L. Guth, Z. Gabelica, et al. Micro. Meso. Mater.,2000,35,597.
    [113] W. Deng, P. Bodart, B. H. Shanks, et al., Micro. Meso. Mater.,2002,52,169.
    [114] G. A. H. Mekhemer, A. K. H. Nohman, N. E. Fouad, et al.,Colloids Surf. A,2000,161,439.
    [115] W. Z. Zhang, T. J. Pinnavaia, Chem. Comm.,1998,11,1185.
    [116] T. Seki, S. Ikeda, M. Onaka, Micro. Meso. Mater.,2006,96,121.
    [117] S. Valange, J. Barrault, A. Derouault, et al., Micro. Meso. Mater.,2001,44,211.
    [118] Y. S. Seo, Y. S. Jung, W. L.Yoon. et al., Int. J. Hydrogen Energy,2011,36,94.
    [119] J. G. Seo, M. H. Youn, S. Park, et al., J. Power Sources,2008,186,178.
    [120] H. S. Roh, K. W. Jun, S. E. Park. Appl. Catal. A General,2003,251,275.
    [121] P. Kim, Y. Kim, H. Kim, et al., Mol. Catal. A: Chem.,2004,219,87.
    [122] J. G. Seo, M. H. Youn, S. Park, et al., J. Power Sources2009,186,178.
    [123]李翠平,赵瑞红,郭奋,等.[J]物理化学学报,2007,23,157.
    [124] Y. Kim, P. Kim, C. Kim, et al., J. Mater. Chem.,2003,13,2353.
    [125] P. Kim, Y. Kim, H. Kim, et al., Appl. Catal. A,2004,272,157.
    [126] J. G. Seo, M. H. Youn, H. I. Lee, et al., Chem. Eng. J.,2008,141,298.
    [127] J. G. Seo, M. H. Youn, I. K. Song, Int. J. Hydrogen Energy2009,34,1809.
    [128] S. M. Morris, P. F. Fulvio, M. Jaroniec. J. Am. Chem. Soc.,2008,130,15210.
    [129] W. Q. Cai, J. G. Yu, C. Anand, et al., Chem. Mater.,2011,23,1147.
    [130] M. Rezaei, S. M. Alavi, S. Sahebdelfar, et al., Energy Fuels2008,22,2195.
    [131] T. Takeguchi, Y. Kani, T. Yano, et al., J. Power Sources,2002,112,588.
    [132] P. Kim, Y. Kim, H. Kim, et al., Mol. Catal. A: Chem.,2005,231,247.
    [133] Z. Y. Hou, T. Yashima, Appl. Catal. A: Gen.2004,261,205.
    [134] L. L. Xu, H. L. Song, L. J. Chou, Appl. Catal. B: Environ.,2011,108,177.
    [135] W. H. Shen, K. Komatsubara, T. Hagiyama, et al., Chem. Comm.,2009,42,6490.
    [136]杨泠,冯炫,刘应亮.[J]化学进展,2010,22,32.
    [137] P. Bai, P. Wu, G. Zhao, et al., J. Mate. Chem.,2008,18,74.
    [138] L. Kaluza, M. Zdrazil, N. Zilkova, et al., Catal. Comm.,2002,3,151.
    [139] X. Zhang, F. Zhang, K. Chan, Mater. Lett.,2004,58,2872.
    [140]秦亮生,银董红,刘建福,等.[J]催化学报,2005,26,714.
    [141] X. Zhang, F. Zhang, K. Y. Chan. Mater. Lett.,2004,58,2872.
    [142] E. Moretti, M. Lenarda, L. Storaro, et at., Appl. Catal. A: General,2008,335,46.
    [143] S. Jagtap, M. K. Yenkie, N. Labhsetwar, et al., Micro. Meso. Mate.,2011,142,454.
    [144] Y. H. Kim, C. M. Kim, I. H.Choi, et al., Environ. Sci. Technol.,2004,38,924.
    [145] Y. S. Ho, Environ. Sci. Technol.,2004,38,3214.
    [146] Y. H. Kim, C. M. Kim, I. Choi, et al., Environ. Sci. Technol.,2004,38,3216.
    [147]M. J. Yu, X. Li, W. S. Ahn., Micro. Meso. Mater.,2008,113,197.
    [148] S. Rengaraj,Y. Kim, C. K. Joo, et al., J. Coll. Inter. Sci.,2004,273,14.
    [149] K. M. Khelifa, A. Khelifa, A. Belhakem, et al., Adsorp. Sci. Technol.,2004,22,1.
    [150] N. Hovijitra, S. W. Lee, H. Shang, et al., Chem. Bio. Sensing,2004,5416,84.
    [151]王亚坤,赵瑞红,冯晓霞,等.[J]材料导报2012,26,71.
    [152] T. Du, S. Jang, B. Chen, Chem. Engin. Sci.,2007,62,4864.
    [153] L. J. Wan, H. G. Fu, K.Y. Shi, et al., Mater. Lett.,2008,62,1525.
    [154] S. Ram, P. Mohanty, J. Mater. Sci. Lett.,2002,21,1127.
    [155] P. Bai, F. Su, P. Wu, et al., Solid State Ionics,2006,177,2403.
    [156] H. Y. Shen, H. Maekawa, J. Kawamura, et al., Solid State Ionics,2006,177,2403.
    [157] S. Kapoor, R. Hegde, A. J. Bhattacharyya, J. Control Release,2009,140,34.
    [158] S. K. Das, S. Kapoor, H. Yamada, et al., Micro. Meso. Mater.,2009,118,267.
    [1] X. L. Yan, Y. Zhang, K. Qiao, et al., J. Hazard. Mater.,2011,192,1505.
    [2] H. Kn zinger and P. Ratnasamy, Catal. Rev. Sci. Eng.,1978,17,31.
    [3] S. Natesakhawat, R. B. Watson, X. Q. Wang et al., J. Catal.,2005,234,496.
    [4] A. Khaleel, Micropor. Mesopor. Mater.,2006,91,53.
    [5] A. M. Karim, V. Prasad, G. Mpourmpakis,et al., J. Am. Chem.,2009,131,12230.
    [6] L. B. Sun, J. Yang, J. H. Kou, et al., Angew. Chem. Int. Ed.,2008,47,3418.
    [7] Y. H. Kim, C. M. Kim, I. H. Choi, et al., Environ. Sci. Technol.,2004,38,924.
    [8] C. Misra, Industrial Alumina Chemicals; ACS Monograph184; American ChemicalSociety: Washington, DC,1986.
    [9] M. Trueba, S. P. Trasatti, Eur. J. Inorg. Chem.,2005,17,3393.
    [10] A. Khaleel and B. Dellinger, Environ. Sci. Technol.,2002,36,1620.
    [11] S.A.Hassanzadeh-Tabrizi, E. Taheri-Nassaj, Mater. Lett.,2009,63,2274.
    [12] K. M. Parida, A. C. Pradhan, J. Das et al., Mater. Chem. Phys.,2009,113,244.
    [13] M.F.Macêdo,C. C. Osawa,C.A. Bertran, J. Sol-Gel Sci.Technol.,2004,30,135.
    [14] a) V. Cai, J. G. Yu, C. Anand, et al., Chem. Mater.,2011,23,1147; b) S. M. Morris,P. F. Fulvio, M. Jaroniec, J. Am. Chem. Soc.,2008,130,15210.
    [15] a) S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem. Int. Ed.,1996,35,1102; b) W. Z.Zhang, T. J. Pinnavaia, Chem. Commun.,1998,11,1185; c) Z. R. Zhang, R. W.Hicks, T. R. Pauly et al., J. Am. Chem. Soc.,2002,124,1592; d) Z. R. Zhang and T. J.Pinnavaia, J. Am. Chem. Soc.,2002,124,12294; e) Z. R. Zhang, and T. J. Pinnavaia,Langmuir,2010,26,10063.
    [16] W. H. Deng, M. W. Toepke, B. H. Shanks, Adv. Funct. Mater.,2003,13,61.
    [17] S. Cabrera, J. E1Haskouri, J. Alamo, et al., Adv. Mater.,1999,11,379.
    [18] a) M. Kuemmel, D. Grosso, C. Boissiere, et al., Angew. Chem. Int. Ed.,2005,44,4589; b) C. Boissiere, L. Nicole, C. Christelle,et al., Chem. Mater.,2006,18,5238.
    [19] K. Niesz, P. D. Yang, G. A. Somorjai, Chem. Commun.,2005,15,1586.
    [20] A. Caragheorgheopol, A. Rogozea, R. Ganea, et al., J. Phys. Chem. C,2010,114,28.
    [21] Q. Yuan, A. X. Yin, C. Luo, et al., J. Am. Chem. Soc.,2008,130,3465.
    [22] P. Bai, F. B. Su, P. P. Wu, et al., Langmuir,2007,23,4599.
    [23] C. Marquez-Alvarez, N. Zilkova, J. Perez-Pariente et al., Catal. Rev.-Sci. Eng.,2008,50,222.
    [24] H. S. Potdar, K. W. Jun, Ki-Won, et al., Appl. Catal. A,2007,321,109.
    [25] N. D. Tzoupanosa, A. I. Zouboulisa, C. A. Tsoleridis, Colloids Surf. A:Physicochem. Eng. Aspects,2009,342,30.
    [26] J. L. Lin, C. J. M. Chin, C. Huang, et al., Water Res.2008,42,4281.
    [27] Z. Y. Chen, Z. K. Luan, J. H. Fan, et al., Colloids Surf. A: Physicochem. Eng.Aspects,2007,292,110.
    [28] W. H. Gasey, Chem. Rev.,2006,106,1.
    [29] S. Valange, J. L. Guth, F. Kolenda, et al., Micropor. Mesopor. Mater.,2000,35,597.
    [30] S. Jiansirisomboon, K. J. D. Mackenzie, Mater. Res. Bull.,2006,41,791.
    [31] E. Holmstrom, S. C. Parker, C. Arrouvel, Phys. Rev. B,2011,83,094201.
    [32] Z. X. Wu, Q. Li, D. Feng, et al., J. Am. Chem. Soc.,2010,132,12042.
    [33] a) Q. Liu, A. Q. Wang, X. D. Wang et al., Chem. Mater.,2006,18,5153; b) Q. Liu,A. Q. Wang, J. M. Xu, et al., Micropor. Mesopor. Mater.,2008,116,461.
    [34] A. M. Siouffi, J. Chromatogr. A,2003,1000,801.
    [35] J. B. Pang, K. Y. Qiu, Y. Wei, et al., Chem. Comm.,2000,6,477.
    [36] a) Y. Wei, D. L. Jin, T. Z. Ding, et al., Adv. Mater.,1998,10,313; b) Y. Wei, J. G.Xu, H. Dong, et al., Chem. Mater.,1999,11,2023.
    [37] W. Dubbin, G. Sposit, Environ. Sci. Technol.,2005,39,2509.
    [38] Z. Yong, V. Mata, A. E. Rodrigues, J. Chem. Eng. Data,2000,45,1093.
    [39] G. Li, P. Xiao, P. Webley, Langmuir,2009,25,10666.
    [40] H. Jeon, S. H. Ahn, J. H. Kim,et al., J. Mater. Sci.,2011,46,4020.
    [41] C. F. Mao, M. A. snm Vannice, Appl. Catal. A,1994,111,151.
    [1] M. Paul, N. Pal, A. Bhaumik. Eur. J. Inorg. Chem.,2010,32,5129.
    [2] N. S. Chaubal, M. R. Sawant. J. Mol. Catal.A Chem.,2007,261,232.
    [3] J. G. Seo, M. H. Youn, Y. Bang, et al., Int. J. Hydrogen Energy,2010,35,12174.
    [4] Y. S. Seo, Y. S. Jung, W. L. Yoon, et al., Int. J. Hydrogen Energy,2011,36,94.
    [5] J. Yang, X. G. Wang, L. Li, et al., Appl. Catal.B,2010,96,232.
    [6] Z. W. Guo, W. T. Huo, M. J. Jia, et al., J. Mol. Catal. A Chem.,2010,326,82.
    [7] J. G. Seo, M. H. Youn, S. Park, et al., J. Power Sources,2008,186,178.
    [8] J. H Kim, D. J. Suh, T. J. Park, et al., Appl. Catal. A Gen,2000,197,191.
    [9] D. J. Suh, T. J. Park, J. H. Kim, et al., J. Non. Cryst. Solids,1998,225,168.
    [10] J. Choi, D. J. Suh, Catal. Surv.Asia,2007,11,123.
    [11] H. S. Roh, K. W. Jun, S.E.Park. Appl. Catal. A Gen.,2003,251,275.
    [12] J. G. Seo, M.H.Youn, S. Parket al., J. Power Sources,2009,186,178.
    [13] D. J. Suh, T. J. Park, J. H. Kim, et al., J. Non-Cryst. Solids,1998,225,168.
    [14] J. G. Seo, M. H. Youn, H. I. Lee, et al., Chem. Eng. J.,2008,141,298.
    [15] O. Yamazaki, K. Tomishige, K.Fujimoto, Appl. Catal. A Gen.,1996,135,49.
    [16] G. Li, L. Hu, J. M. Hill, Appl. Catal. A Gen.,2006,301,16.
    [17] X. Xiang, H. I. Hima, H. Wang, F. Li, Chem. Mater,2008,20,1173.
    [18] J. G. Seo, M. H. Youn, I. K. Song, Int. J. Hydrogen Energy,2009,34,1809.
    [19] J. C. Ray, K. S. You, J. W. Ahn, et al., Micro. Meso. Mater.,2007,100,183.
    [20] S. M. Morris, P. F. Fulvio, M. Jaroniec. J. Am. Chem. Soc.,2008,130,15210.
    [21] W. Q. Cai, J. G. Yu, C. Anand,et al., Chem. Mater.,2011,23,1147.
    [22] P. Kim, Y. Kim, H. Kim, Iet al., Appl. Catal. A,2004,272,157.
    [23] J. G. Seo, M. H. Youn, I. K. Song. Int. J. Hydrogen Energy,2009,34,1809.
    [24] J. G. Seo, M. H. Youn, H. I. Lee, et al., Chem. Eng. J.2008,141,298.
    [25] P. Kim, Y. Kim, H. Kim, et al., Appl. Catal. A,2004,272,157.
    [26] J. G. Seo, M. H. Youn, H. I. Lee, et al., Chem. Eng. J.,2008,141,298.
    [27] Z. Y. Hou, T. Yashima. Appl. Catal. A,2004,261,205.
    [28] R. C. Yang, J. S. Wu, X. G. Li, X. et al., Appl. Catal. A,2010,383,112.
    [29] G. Z. Wang, L. Zhang, H. X. Dai, et al., Inorg. Chem.2008,47,4015.
    [30] X. F. Shang, X. G. Wang, W. X. Nie, et al., Mater. Lett.,2012,83,91.
    [31] X. F. Shang, X. G. Wang, W. X. Nie, et al., J. Mater. Chem.,2012,22,23806.
    [32] P. F. Fulvio, S. Pikus, M. Jaroniec, Appl. Mater. Interfaces,2010,2,134.
    [33] Z. Boukha, L. Fitian, M. López-Haro, et al., J. Catal.2010,272,121.
    [34] J. G. Seo, M. H. Youn, I. K. Song. Catal. Surv. Asia,2010,14,1.
    [35] P. Kim, Y. Kim, H. Kim, et al., Mol. Catal. A Chem.2005,231,247.
    [36] R. C. Yang, X. G. Li, J. S. Wu, et al. Appl. Catal. A Gen.2009,368,105.
    [37] P. Kim, J. B. Joo, H. Kim, et al., Catal. Lett.,2005,104,3.
    [1] A. M. Gadalla, B. Bower, Chem. Eng. Sci.,1988,43,3049.
    [2] J. B. Claridge, M. L. H. Green, S. C. Tsang, et al., Catal.Lett.,1993,22,299.
    [3] A. T. Ashcroft, A. K. Cheetham, M. L. H. Green, et al., Nature,1991,352225.
    [4] M. C. J. Bradford, M. A. Vannice, J. Catal.,1999,183,69.
    [5] M. Sigl, M. C. J. Bradford, H. Knozinger, et al., Top. Catal.1999,8,211.
    [6] S. Damyanova, B. Pawelec, K. Arishtirova, et al., Appl. Catal. B: Environ.,2009,92,250.
    [7] S. Damyanova, B. Pawelec, K. Arishtirova, et al., Appl. Catal. B: Environ.,2009,89,149.
    [8] J. Nakamura, K. Aikawa, K. Sato, et al., Catal. Lett.,1994,25,265.
    [9] M. P. Kohn, M. J. Castaldi, R. J. Farrauto, Appl. Catal. B: Environ.,2010,94,125.
    [10] C. J. Liu, J. Y. Ye, J. J. Jiang, et al., Chem. Cat, Chem.,2011,3,529.
    [11] S. Corthals, J. Van Nederkassel, H. De Winne, et al., Appl.Catal. B: Environ.,2011,105,263.
    [12] M. C. J. Bradford, M. A. Vannice, Catal. Rev. Sci. Eng.,1999,41,1.
    [13] Y. H. Hu, E. Ruckenstein, Catal. Rev. Sci. Eng.,2002,44,423.
    [14] Y. H. Hu, E. Ruckenstein, Catal. Adv.,2004,48,297.
    [15] H. S. Roh, K.W. Jun, Catal. Surv. Asia,2008,12,239.
    [16] G. Jones, J. G. Jakobsen, S. S. Shim, et al., J. Catal.,2008,259,147.
    [17] Y. H. Hu, Catal. Today,2009,148,206.
    [18] X. Zhu, P. Huo, Y. Zhang, et al., Appl. Catal. B: Environ.,2008,81,132.
    [19] K. Bourikas, C. Kordulis, A. Lycourghiotis, Catal. Rev.: Sci. Eng.,2006,48,363.
    [20] N. Laosiripojana, S. Assabumrungrat, Appl. Catal. B: Environ.,2005,60,107.
    [21] A. J. van Dillen, R. Terorde, D. J. Lensveld, et al., J. Catal.,2003,216,257.
    [22] E. K. Poels, J. G. Dekker, W. A. Vanleeuwen, Prep. Catal.,1991,63,205.
    [23] H. W. Chen, C. Y. Wang, C. H. Yu, L. et al., Catal. Today2004,97,173.
    [24] D. L. Trimm, Catal. Today1999,49,3.
    [25] O. Yamazaki, T. Nozaki, K. Omata, et al., Chem. Lett.1992,1953.
    [26] S. G. Liu, L. X. Guan, J. P. Li, et al., Fuel,2008,87,2477.
    [27] Z. Y. Hou, T. Yashima, Appl. Catal. A: Gen.,2004,261,205.
    [28] P. Chen, Z. Y. Hou, X. M. Zheng, Chin. J. Chem.,2005,23,847.
    [29] M. Rezaei, S. M. Alavi, S. Sahebdelfar, et al., Energy Fuels,2008,22,2195.
    [30] J. A. C. Dias, J. M. Assaf, Catal. Today,2003,85,59.
    [31] T. Osaki, T. Mori, J. Catal.,2001,204,89.
    [32] L. L. Xu, H. L. Song, L. J. Chou, Appl. Catal. B: Environ.,2011,108,177.
    [33] W. H. Shen, K. Komatsubara, T. Hagiyama, et al., Chem. Comm.,2009,42,6490.
    [34] X. F. Shang, X. G. Wang, W. X. Nie, et al., Mater. Lett.2012,83,91.
    [35] X. F. Shang, X. G. Wang, W. X. Nie, et al., J Mater. Chem.2012,22,23806.
    [36] P.Kim, H. Kim, J. B.Joo, et al. J. Mol. Catal. A: Chem.,2006,256,178.
    [37] O. W. Perez-Lopez, A. Senger, N. R.Marcilio, et al. Appl. Catal. A: General,2006,303,234.
    [38] K. Shen, X. G. Wang, X. J. Zou, et al., Int. J. Hydrogen Energy2011,36,4908.
    [39] R. C. Yang, X. Li, J. Wu, et al. Appl.Catal. A: General,2009,368,105.
    [40] K. V. R. Chary, R. P. V.Ramana, R. V. Venkat, Catal. Commun.,2008,9,886.
    [41] L. Aparicio, J. Catal.,1997,165,262.
    [42] A. Moniri, S. M. Alavi, M. Rezaei, J. Natural Gas Chem.,2010,19,638.
    [43]赵景月,邹秀晶,汪学广,等.[J]催化学报,2011,32,456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700