促红细胞生成素对大鼠胰腺腺泡细胞和肺组织的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】探索原代培养胰腺腺泡细胞方法并鉴定所培养细胞的性质,为急性胰腺炎(acute pancreatitis, AP)体外模型的构建创造条件,通过促红细胞生成素(Erythropoietin,EPO)对胰腺腺泡细胞和肺组织保护作用的研究,为今后EPO治疗AP的临床应用提供理论依据。
     【方法】分离提纯胰腺腺泡细胞,将其置于DMEM-F12培养液中培养,24h后电子显微镜下观察胰腺腺泡细胞的超微结构变化,并运用PaA抗体鉴定培养细胞性质。90只Sprague-Dawley(SD)大鼠分为假手术组(sham-operation group, SO),SAP(Severeacute pancreatitis, SAP)组,EPO1000组,EPO3000组,EPO5000组,每组18只,分别按以下时间24h、48h、72h随机处死6只。逆行胰胆管注射5%牛磺胆酸钠(sodiumtaurocholate, STC)(0.1ml/100g)制备SAP大鼠模型。测大鼠肺、胰腺干湿比重及体重系数,人工碘比色法测血清AMS,Elisa试剂盒测IL-1、IL-6和TNF-α,分析3种炎性因子的相互关系;HE染色观察胰腺和肺组织病理变化,免疫组化法检测胰腺组织中EPOR的表达,Elisa法检测EPOR表达水平。
     【结果】①新鲜分离的大鼠胰腺腺泡细胞悬浮在培养液中,形态不规则,细胞质与细胞核比例较大。分离纯化后腺泡细胞绝大多数呈圆形或椭圆形,细胞核呈圆形,偏于一侧,细胞间杂质较少。②24h后可见细胞数有所增加,细胞明显聚集,2~3天换液后观察细胞,细胞活性好,细胞数目明显增多,传代良好。③经台盼蓝染色测定细胞活性达96%以上,符合进一步实验要求。④电镜下,大量的酶原颗粒位于细胞顶部的胞质内,细胞内可见发达的粗面内质网,在酶原颗粒聚集的区域可见高尔基复合体。⑤经PaA抗体检测腺泡细胞在免疫荧光镜下呈现大片绿色荧光。⑥SAP组大鼠肺脏干湿比重大于SO组(P<0.05),经EPO治疗后,肺、胰腺水肿减轻;SAP组大鼠体重系数亦大于SO组和EPO组(P<0.05);⑦SAP组与EPO组血清AMS、IL-1、IL-6、TNF-α水平均明显高于SO组,经EPO治疗24h和48h后,测血清AMS明显降低(P<0.05),SAP组和EPO组各时间点的血清炎症因子(IL-1、IL-6、TNF-α)含量均高于SO组, SAP组升高显著,48h达到峰值,72h有所回落,经EPO治疗后各指标均有下降,EPO疗效呈时间依赖性,三者之间呈正相关性(r=0.534, p=0.02; r=0.584, p=0.04; r=0.820,p=0.00),有相互促进表达作用。⑧SO组胰腺和肺组织均无明显病理变化;SAP组大鼠胰腺和肺组织出现不同程度水肿、渗出、炎症细胞浸润,部分组织出现出血、坏死、空泡形成,细胞间结构模糊,甚至连接成片;EPO治疗组胰腺和肺组织病理损伤程度明显改善,病理评分显著低于SAP组(P<0.05)。组间比较显示:除EPO3000和EPO5000间无统计学意义外,其他各组间差异均有统计学意义。⑨EPO治疗组、假手术组大鼠胰腺和肺组织中,可见散在的EPOR阳性表达,染色位置位于胞浆;不同剂量EPO治疗组中EPOR在胰腺和肺组织中均呈现大片深染的阳性表达。⑩ELISA法测EPOR表达量示:假手术组、SAP组EPO1000组中EPOR表达量的变化不显著,差异无统计学意义,EPOR表达量随EPO剂量的增加而增加。
     【结论】①本实验方法可成功原代培养胰腺腺泡细胞,培养细胞纯度及存活率高,符合体外实验要求;②PaA抗体可成为鉴定胰腺腺泡细胞的一种便捷、可行的方法,其特异性高,可推广应用于鉴定胰腺腺泡细胞;③SAP组大鼠血清中炎症介质IL-1、IL-6、TNF-α水平呈逐渐升高趋势;EPO可有效减轻胰腺和肺组织病理损伤,降低SAP大鼠血清AMS、IL-1、IL-6、TNF-α水平;④ELISA法及免疫组化法检测出胰腺腺泡细胞上EPOR的表达,其表达量随EPO剂量的增加而增加,但与治疗时间无明显相关性,由此推测EPO可与EPOR结合后,激活下游的细胞信号转导通路,从而起到抗炎的作用。
[Objective] To explore a new method on primary culture of pancreatic acinar cells and indentify the nature of the cells, it is the preparation for acute pancreatitis (AP) in vitro. To investigate the protective effects of Erythropoietin (EPO) on pancreatic acinar cells and lung, this will be useful for researching the clinical theoretical basis.
     [Methods] Pancreatic acinar cells were placed in DMEM-F12 medium after separated and purified. 24 hours later, the ultrastructural changes of pancreatic acinar cells were observed by electron microscopy. PaA antibody was used to identify the properties of the cultured cells. After that, Sprague Dawley (SD) rats were randomly divided into sham operation group(SO), SAP (acute pancreatitis, SAP), EPO1000 group, EPO3000 group, EPO5000 group, Each group contained 18 rats and executed at the time of 24h, 48h and 72h. SAP rats were prepared by retrograde pancreatic duct injection of 5% sodium taurocholate (STC)(0.1ml/100g). Dry-Wet proportion and weight coefficient of lung were measured at the different time points by electronic scale. The levels of amylase (AMS) in serum were tested by artificial iodine colorimetry. The levels of interleukin-1(IL-1), interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) in serum were tested by ELISA kits,and then the relationship would be tested among them. The pathological changes of pancreas and lung were observed by HE staining. The expressions of EPOR were tested by immunohistochemical method and ELISA kits.
     [Results]①Fresh isolated pancreas acinar cells suspended in the medium, the shape of the cells were irregular. It was large of the proportion of cytoplasm and nuclear. Most of the separated and purified acinar cells were round or oval.②The nuclear was round, leaned to one side and impurities in the intercellular were less. The number of the cells was increased after 24 hours. It was obviously gathered together. After 2~3 days, changed the medium and the observed the activities of the cells. The number of the cells was significantly increased and passaged well.③The viability of the acinar cells was greater than 96% as determined by trypan blue assay and results were in accordance with experimental requirements.④Under the electron microscopy, there are a large number of zymogen granules in the cytoplasm were at the top of the cells, which were rich in rough endoplasmic reticulum. It could be seen the golgi complexes in the region of zymogen granules gethering.⑤It could be found the highly expression of green fluorescence in acini using the antibodies against PaA by immunocytochemistry.⑥The ratio of lung Drought-Wet weight in SAP group was much higher (P < 0.05) than in SO group. After the treatment of EPO, lung and pancreas edema could be easer than before. Lung index of rats were much higher than SO and EPO group (P < 0.05).⑦The levels of AMS and IL-1、IL-6、TNF-αin serum were significantly higher in SAP groups and EPO groups than that in SO groups, however, AMS and IL-1、IL-6、TNF-αwas declined significantly when given EPO intervention for 24h and 48h(P<0.05), but there were no statistics significant difference between EPO3000 and EPO5000 groups. The effects of EPO was time-dependent, it was positive correlation (r=0.534, p=0.02; r=0.584, p=0.04; r=0.820,p=0.00), there is a mutual role in promoting expression.⑧T here are no significant pathological changes or only slight edema of pancreas and lung tissues in SO group. However, varying degrees of edema, exudation, and inflammatory cell infiltration have happed in pancreatic and lung tissues of rats in SAP group, partial pancreatic or lung tissues had happened hemorrhage and necrosis, the structure of which had changed into blur, and even into a slice. The treatment of EPO could improve the pathological damages and the pathological score was significantly lower than SAP group (P<0.05).⑨I t could be seen that EPOR-positive stanining cells, located in the cytoplasm, were scattered in the pancreatic tissue in SO group. The expression of EPOR in pancreas and lung tissue showed large deeply stained EPOR-positive staining cells in different doses of EPO treatment groups.⑩There is no significant EPOR expression changes in SO, SAP, EPO1000 groups measured by ELISA kits. The quantities of the expression of EPOR increased with the increasing doses of EPO.
    
     [Conclusion]①Primary pancreatic acinar cells can be successfully cultured by this method, the purity and viability of acinar cells were in line with the vitro experiments.②PaA antibody may be a convenient ang feasible method to identify the pancreatic acinar cells with its high specificity. It can be widely used for identification of pancreatic acinar cells.③It was gradually increased of the levels of AMS, IL-1、IL-6、TNF-αin serum in SAP group. The treatment of EPO may effective reduce the pathological pancreas and lung injury and obviously decreased the levels of AMS, IL-1、IL-6、TNF-αin serum.④Using ELISA and Immunohistochemical methods can detect the expression of EPOR on pancreatic acinar cells. The expression of EPOR increased with the increasing doses of EPO, but there is no significant correlationship with the timing of treatment. We may speculate that EPO might bind with EPOR and activate the pathways of downstream signal transduction, which may play an critical role on anti-inflammatory and anti-apoptosis.
引文
[1] Jessop NW, Hay RJ. et al. Characteristics of two rat pancreatic exocrine cell lines derived from transplantable tumors[J]. In Vitro. 1980; 16(1): 212-216.
    [2] Zhang XP, Tian H. et al. Pathological changes in multiple organs of rats with severe acute pancreatitis treated by baicalin and octreotide[J]. Hepatobiliary Pancreat Dis Int. 2009; 8(1): 85-92.
    [3] Guo Jun Wang, Chun Fang Gao. et al. Acute pancreatitis: Etiology and common pathogenesis[J]. World Journal of Gastroenterology. 2009; 15 (12): 1427-1430.
    [4] Genc S, Koroglu TF, Genc K. et al. Erythropoietin as a novel neuroprotectant[J]. Res Neurol Neurosci. 2004; 22(2): 105-119.
    [5] Sharples EJ, Thiemenmann C, Yaqoob MM, et al. Novel applications of recombinant erythropoietin [J]. Curr Opin Pharmacol. 2006; 6(2): 184-189.
    [6] Carsten Schneider, Kai Jaquet. et al. Attenuation of cardiac remodelling by endocardial injection of erythropoietin: ultrasonic strain-rate imaging in a model of hibernating myocardium [J]. European Heart Journal. 2007; 28(4): 499-509.
    [7] Arishima, Yoshiya, Setoguchi. et al. Preventive Effect of Erythropoietin on Spinal Cord Cell Apoptosis Following Acute Traumatic Injury in Rats[J]. Spine. 2006; 31(21): 2432- 2438.
    [8] Park SH, Choi MJ, Song IK. et al. Erythropoietin decreases renal fibrosis in mice with ureteral obstruerion: role of inhibiting TGF- beta-induced epithelial-to-mesenchyma1 transition [J]. J Am Soc Nephrol. 2007; 8(5): 1497-1507.
    [9] Liu T. Allaf ME, Lagoda G. et al. Erythropoietin receptor expression in the human urogenital tract: immunolocalization in the prostate. neurovascular bundle and penis[J]. BJU Int. 2007; 100(5): 1103-1106.
    [10] Chen Ke qi,Dong Shao hong. et al. Effect of erythropoietin on the proliferation and differentiation of rat skeletal muscle satellite cell[J]. Journal of Clinical Rehabilitative Tissue Engineering Research. 2008; 12(34): 6687-6691
    [11] Bulent Hamdi Ucan, Oktay Irkorucu. et al. Erythropoietin: a possible cytoprotective cytokine in acute necrotizing pancreatitis[J]. J Hepatobiliary Pancreat Surg. 2009; 16(4):530-537
    [12] Liu X, Xie W, Liu P, Duan M, Jia Z, Li W. et al. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia-reperfusion[J]. Life Sci. 2006; 78(19): 2255-2264
    [13] Liu S, Feng G, Wang GL, Liu GJ. et al. P38MAPK inhibition attenuates lipopolysaccharide induced acute lung injury involvement of NF-kappaB pathway[J]. Eur J Pharmacol. 2008; 584(1): 159-165.
    [14] Chen G, Shi JX, Hang CH, Xie W, Liu J, Liu X. et al. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO)[J]. Neurosci Lett. 2007; 425(3): 177-182.
    [15] You Shang, Xingwang Li. et al. Erythropoietin Attenuates Lung Injury in Lipopolysaccharide Treated Rats[J]. Journal of Surgical Research. 2009; 155(1): 104-110.
    [16] Xiao hui Lu, AlecW Gross, HarveyF Lodish. et al. Active Conformation of the Erythropoietin Receptor [J] The Journal of Biological Chemistry. 2006; 3(11): 7002-7011.
    [17] Depping R, Kawakami K, Ocker H. et al. Expression of the erythropoietin receptor in human heart[J]. J Thorac Cardiovasc Surg. 2005; 130(3):877-878.
    [18] Pascal E. Sanchez, Raafat P. Fares. et al. Optimal neuroprotection by erythropoietin requires elevated expression of its receptor in neurons[J]. Proc Natl Acad Sci USA. 2009; 106(24): 9848-9853
    [19] Khankin EV, Mutter WP, Tamez H. et al. Soluble erythropoietin receptor contributes to erythropoietin resistance in end-stage renal disease[J]. PLoS One. 2010; 5(2): e9246.
    [20] Marta Garc′Ia Ram′Irez. Cristina Hern′Andez. et al. Expression of Erythropoietin and Its Receptor in the Human Retina[J]. Diabetes Care. 2008; 31(6): 1189-1194
    [21] Rundqvist H, Rullman E. et al. Activation of the erythropoietin receptor in human skeletal muscle[J].Eur J Endocrinol. 2009; 161(3):427-434.
    [22] Shuai H, Zhang J. et al. Expression of EPO receptor in pancreatic cells and its effect on cell apoptosis[J]. J Huazhong Univ Sci Technolog Med Sci. 2008; 28(1):49-51.
    [23] Pradeep Sathyanarayana, Arvind Dev. et al. EPO receptor circuits for primaryerythroblast survival[J]. Blood. 2008; 111(11): 5390-5399.
    [24] Breggia AC, Wojchowski DM, Himmelfarb J. et al. JAK2/Y343/STAT5 signaling axis is required for erythropoietin-mediated protection against ischemic injury in primary renal tubular epithelial cells[J]. Am J Physiol Renal Physiol. 2008; 295(6): 1689-1695.
    [25] Zhande R, Karsan A. et al. Erythropoietin promotes survival of primary human endothelial cells through PI3K-dependent, NF-kappaB-independent upregulation of Bcl-xL[J]. Am J Physiol Heart Circ Physiol. 2007; 292(5): 2467-2474.
    [26] Spandou E, Tsouchnikas I, Karkavelas G, Dounousi E, Simeonidou C, Guiba-Tziampiri O, Tsakiris D. et al. Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model[J]. Nephrol Dial Transplant. 2006; 21(2): 330-336.
    [27] De Oliveira Martins J, Meyer-Pflug AR, Alba Loureiro TC. et al. Modulation of lipopolysaccharide-induced acute lung inflammation: Role of insulin[J]. Shock. 2006; 25(3): 260-266.
    [28] Ou XM, Feng YL, Wen FQ, Huang XY. et al. Simvastatin attenuates bleomycin induced pulmonary fibrosis in mice[J]. Chin Med J. 2008; 121(18): 1821-1829.
    [29] Frederic Marrache, Shui Ping Tu. et al. Overexpression of Interleukin-1βin the Murine Pancreas Results in Chronic Pancreatitis[J]. Gastroenterology. 2008; 135(4): 1277-1287.
    [30] S. Nikeghbalian, P. Mardani. et al. The effect of ischemic Preconditioning of the Pancreas on Severity of Ischemia/Reperfusion-Induced Pancreatitis after a Long Period of Ischemia in the Rat [J]. Transplantation Proceedings. 2009; 41(7): 2743-2746.
    [31] Enrique de-Madaria, Juan Martinez. et al. Cytokine Genotypes in Acute Pancreatitis: association with etiology, severity, and cytokine levels in blood[J]. Pancreas. 2008; 37(3): 295-301.
    [32] Xi Ping Zhang, Jie Zhang. et al. Pathological changes at early stage of multiple organ injury in a rat model of severe acute pancreatitis[J]. Hepatobiliary Pancreat Dis Int. 2010; 9(1): 83-87.
    [33] Bulent Hamdi Ucan, Tay Irkorucu. et al. Erythropoietin: a possible cytoprotective cytokine in acute necrotizing pancreatitis[J]. Hepatobiliary Pancreat Surg. 2009; 16(4):530-537.
    [34] Oge Tascilar, Güldeniz Karadeniz Cakmak. et al. Protective effects of erythropoietin against acute lung injury in a rat model of acute necrotizing pancreatitis[J]. World Journal of Gastroenterology. 2007; 13(46): 6172-6182
    [35]刘学进,陈垦,龙友明,等.不同浓度的脂多糖刺激AR42J细胞对NF-κB及ICAM-1表达的影响[J].广东药学院学报. 2007(1): 71-75.
    [36] Long Y M, Chen K, Liu X J, Xie W R, Wang H. et al. Cell-permeable Tat-NBD peptide attenuates rat pancreatitis and acinus cell inflammation response [J]. World J Gastroenterol. 2009, 15(5): 561-569.
    [37]黄蓰庭.等.急性胰腺炎细胞内早期事件的再认识[J].中华肝胆外科杂志, 2006; 12(2): 75-76.
    [38] Hober C, Benhamou PY, Watt PC. et al. A new culture method for human pancreatic islets using a biopore membrane insert[J]. Pancreas. 1997; 14(2): 199-204
    [39] De Lisle R.C., Logsdon C.D. et al. Pancreatic acinar cells in culture: expression of acinar and ductal antigens in a growth-related manner[J]. Eur J Cell Biol. 1990; 51 (1):64-75
    [40] Wang RN, Kl?ppel G. et al. Bouwens. et al. Duct-to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats[J]. Diabetologia. 1995; 38(12): 1405-11.
    [41] Zulewski H, Abraham EJ. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes[J]. Diabetes. 2001; 50(3): 521-33.
    [42] Rooman I, Heremans Y. et al. Modulation of rat pancreatic acinoductal transdi
    [45] Flamez D, Roland I. et al. A genomic-based approach identifies FXYD domain containing ion transport regulator 2 (FXYD2) gammaa as a pancreatic beta cell-specific biomarker[J]. Diabetologia. 2010; 53(7): 1372-1383.
    [46] Ernest Witebsky, Noel R. Rose. et al. Studies on Organ Specificity: X. The Serologic Specificity of Pancreas Extracts[J]. The JournalofImmunology.1960; 85(6): 568-574.
    [47] Loor R, Shimano T. et al. Purification and characterization of a human pancreas-specific antigen[J]. Biochim Biophys Acta. 1981; 668(2): 222-234.
    [48] Kusske AM, Rongione AJ, Ashley SW. et al. interleukin-10 prevents death in lethal necrotizing pancreatitis in mice[J]. Surgery. 1996; 120(2):284-8
    [49] Hofbauer B, Saluja AK, Bhatia M. et al. effect of recombinant platelet-activating factor acetylhydrolase on two models of experimental acute pancreatitis[J]. Gastroenterology. 1998; 115(5):1238-1247
    [50] Kong L, Santiago N, Han T Q. et al. Clinical characteristics and prognostic factors of severe acute pancreatitis[J]. World J Gastroenterol. 2004; 10(22): 3336-3338.
    [51] Steer M L. et al .Relationship between pancreatitis and lung diseases[J]. Respir Physiol. 2001; 128(1): 13-16.
    [52] Bhatia M, Brady M, Shokuhi S. et al. Inflammatory mediators in acute pancreatitis[J]. J Pathol. 2000; 190(2): 117-125.
    [53] Denham W, Yang J, Wang H, Botchkina G, Tracey KJ, Norman J. et al. Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis induced adult respiratory distress syndrome[J]. Crit Care Med. 2000; 28(7): 2567-2572.
    [54] Granger J, Remick D.et al. Acute pancreatitis: models, markers, and mediators[J]. Shock 2005; 24(1): 45-51.
    [55] Gulcubuk A, Altumatmaz K, Sonmez K. et al. Effects of curcumin on tumor necrosis factor-alpha and interleukin-6 in the late phase of experimental acute pancreatitis[J]. Vet Med A physiol Pathol Clin Med. 2006; 53(1): 49-54.
    [56] Genc S, Koroglu TF, Genc K. et al. Erythropoietin as a novel neuroprotectant[J]. Restor Neurol Neurosci. 2004; 22(2): 105-119.
    [57] Herna′ndez C, Fonollosa A, Garc?′a Ram?′rez M, Higuera M, Catala′n R, Miralles A,Garc?′a Arumi J, Simo′R. et al. Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous ?uid of patients with diabetic macular edema[J]. Diabetes Care. 2006; 29(9): 2028-2033.
    [58] Liu, X.; Xie, W.; Liu, P.; Duan, M.; Jia, Z.; Li, W.; Xu, J. et al. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia-reperfusion[J]. Life Sci. 2006; 78(19): 2255-2264.
    [59] Cai, Z.; Semenza, G. L. et al. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury[J]. Circulation. 2004; 109(17): 2050-2053.
    [60] Hirata, A.; Minamino, T.; Asanuma, H.; Sanada, S.; Fujita, M.; Tsukamoto, O.; Wakeno, M.; Myoishi, M.; Okada, K.; Koyama, H. et al. Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts[J]. Cardiovasc Drugs Ther. 2005; 19(1): 33-40.
    [61] Burger, D.; Lei, M.; Geoghegan-Morphet, N.; Lu, X.; Xenocostas, A.; Feng, Q. et al. Erythropoietin protects cardiomyocytes from apoptosis via up-regulation of endothelial nitric oxide synthase[J]. Cardiovasc. Res. 2006; 72(1): 51-59.
    [62] Bullard, A. J.; Govewalla, P.; Yellon, D. M. et al. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo[J]. Basic Res Cardiol. 2005; 100(5): 397-403.
    [1] Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura K. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol. 2008; 181(7):1065-1072.
    [2] Allen HS, Steiner J, Broussard J, Mansfield C, Williams DA, Jones B. Serum and urine concentrations of trypsinogen-activation peptide as markers for acute pancreatitis in cats. Can J Vet Res. 2006; 70(4):313-316.
    [3] Sha H, Ma Q, Jha RK. Trypsin is the culprit of multiple organ injury with severe acute pancreatitis. Med Hypotheses. 2009; 72(2):180-182.
    [4] Zwerina J, Hayer S, Redlich K, Bobacz K, Kollias G, Smolen JS, Schett G. Activation of p38 MAPK Is a Key Step in Tumor Necrosis Factor-Mediated Inflammatory Bone Destruction. Arthritis Rheum. 2006; 54(2):463-472.
    [5] Karrasch T, Steinbrecher KA, Allard B, Baldwin AS, Jobin C. Wound-induced p38MAPK-dependent histone H3 phosphorylation correlates with increased COX-2 expression in enterocytes. J Cell Physiol. 2006; 207(3):809-815.
    [6] Sun B, Dong CG, Wang G, Jiang HC, Meng QH, Li J, Liu J, Wu LF. Analysis of fatal risk factors for severe acute pancreatitis: a report of 141 cases. Zhonghua Wai Ke Za Zhi. 2007; 45(23):1619-1622.
    [7] Zhang XP, Zhang L, Chen LJ, Cheng QH, Wang JM, Cai W, Shen HP, Cai J. Influence of dexamethasone on inflammatory mediators and NF-κB expression in multiple organs of rats with severe acute pancreatitis. World J Gastroenterol. 2007; 13(4):548-556.
    [8] Muller CA, McArthur N, Belyaev O, Burr W, Werner J, Meiser A, Weyhe D, Büchler MW, Uhl W. The effect of synacthen on acute necrotizing pancreatitis in rats. Pancreas. 2008; 37(3):316-320.
    [9] Gulcubuk A, Altunatmaz K, Sonmez K, Haktanir-Yatkin D, Uzun H, Gurel A, Aydin S. Effects of curcumin on tumor necrosis factor-alpha and interleukin-6 in the late phase of experimental acute pancreatitis. J Vet Med A Physiol Pathol Clin Med. 2006; 53(1):49-54.
    [10] Noh KW, Pungpapong S, Wallace MB, Woodward TA, Raimondo M. Do cytokine Concentrations in pancreatic juice predict the presence of pancreatic diseases. Clin Gastroenterol Hepatol. 2006; 4(6):782-789.
    [11] De-Madaria E, Martínez J, Sempere L, Lozano B, Sánchez-PayáJ, Uceda F, Pérez-Mateo M. Cytokine genotypes in acute pancreatitis: association with etiology, severity, and cytokine levels in blood. Pancreas. 2008; 37(3):295-301.
    [12] Schneider A, Haas SL, Hildenbrand R, Siegmund S, Reinhard I, Nakovics H, Singer MV, Feick P. Enhanced expression of interleukin-18 in serum and pancreas of patients with chronic pancreatitis. World J Gastroenterol. 2006;12(40):6507-6514.
    [13] Shimizu K.Pancreatic stellate cells: molecular mechanism of pancreatic fibrosis. J Gastroenterol Hepatol. 2008; 5(1):S119-121 .
    [14] Moreno C, Nicaise C, Gustot T, Quertinmont E, Nagy N, Parmentier M, Louis H, Devière J. Chemokine receptor CCR5 deficiency exacerbates cerulein-induced acute pancreatitis in mice, Am J Physiol Gastrointest Liver Physiol. 2006; 291(6):G1089-G1099.
    [15] Panek J, Zasada J, Po?niczek M. Microcirculatory disturbance in the course of acute pancreatitis. Przegl Lek. 2007; 64(6):435-437.
    [16] Zhang S, Peng XG, Liu CC, Liu H, Lu Y. Low-dose dopamine reduces inflammatory factors of acute pancreatitis in rats. Hepatobiliary Pancreat Dis Int. 2007; 6(6):646-649.
    [17] Hackert T, Pfeil D, Hartwig W, Fritz S, Schneider L, Gebhard MM, Büchler MW, Werner J. Platelet Function in Acute Experimental Pancreatitis. J Gastrointest Surg. 2007;11(4):439-444.
    [18] Xia SH, Hu CX, Zhao ZL, Xia GD, Di Y. Significance of platelet activating factor receptor expression in pancreatic tissues of rats with severe acute pancreatitis and effects of BN52021. World J Gastroenterol. 2007; 13(21): 2992-2998.
    [19] Chen C, Xia SH, Chen H, Li XH. Therapy for acute pancreatitis with platelet-activating factor receptor antagonists. World J Gastroenterol. 2008; 14(30):4735-4738.
    [20] Van Minnen LP, Blom M, Timmerman HM, Visser MR, Gooszen HG, Akkermans LM. The Use of Animal Models to Study Bacterial Translocation During Acute Pancreatitis . J Gastrointest Surg. 2007; 11(5):682-689.
    [21] Liul'ko IV, Kosul'nikov SO, Gorbach DV. Pathogenetic aspects of surgical treatment of destructive pancreatitis . Klin Khir. 2007; (8):22-27.
    [22] Sun B, Dong CG, Wang G, Jiang HC, Meng QH, Li J, Liu J, Wu LF. Analysis of fatal risk factors for severe acute pancreatitis: a report of 141 cases. Zhonghua Wai Ke Za Zhi. 2007; 45(23):1619-1622.
    [23] Lytras D, Manes K, Triantopoulou C, Paraskeva C, Delis S, Avgerinos C, Dervenis C. Persistent early organ failure: defining the high-risk group of patients with severe acute pancreatitis . Pancreas. 2008; 36(3):249-254.
    [24] Xu XF, Lou WH, Wang DS, Jin da Y, Ni XL, Wu ZH. Influence of glutamine on pancreatic blood flow and apoptosis of pancreatic acinar in rats with severe acute pancreatitis. Chin J Dig Dis. 2006; 7(2):121-126.
    [25] Zhang XP, Xu HM, Jiang YY, Yu S, Cai Y, Lu B, Xie Q, Ju TF. Influence of dexamethasone on mesenteric lymph node of rats with severe acute pancreatitis. World J Gastroenterol. 2008; 14(22):3511-3517.
    [26] Odinokova IV, Sung KF, Mareninova OA, Hermann K, Evtodienko Y, Andreyev A, Gukovsky I, Gukovskaya AS. Mechanisms regulating cytochrome C release in pancreatic mitochondria. Gut. 2009; 58(3):431-442.
    [27] Zhang XP, Tian H, Lu B, Chen L, Xu RJ, Wang KY, Wang ZW, Cheng QH, Shen HP. Tissue microarrays in pathological examination of apoptotic acinar cells induced by dexamethasone in the pancreas of rats with severe acute pancreatitis. Hepatobiliary Pancreat Dis Int. 2007; 6(5):527-536.
    [28] Criddle DN, Gerasimenko JV, Baumgartner HK, Jaffar M, Voronina S, Sutton R, Petersen OH, Gerasimenko OV. Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ. 2007; 14(7):1285-1294.
    [29] Fischer L, Gukovskaya AS, Penninger JM, Mareninova OA, Friess H, Gukovsky I, Pandol SJ. Phosphatidylinositol 3-kinase facilitates bile acid-induced Ca2+ responses in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2007; 292(3): G875-G886.
    [30] Wittel UA, Wiech T, Chakraborty S, Boss B, Lauch R, Batra SK, Hopt UT. Taurocholate-induced pancreatitis: a model of severe necrotizing pancreatitis in mice. Pancreas. 2008; 36(2):19-21.
    [31] Xue P, Deng LH, Zhang ZD, Yang XN, Xia Q, Xiang DK, Huang L, Wan MH. Effect of Chaiqinchengqi decoction on sarco/endoplasmic reticulum Ca2+-ATPase mRNA expression of pancreatic tissues in acute pancreatitis rats. World J Gastroenterol. 2008;14(15):2343-2348.
    [32] Sempere L, Martinez J, de Madaria E, Lozano B, Sanchez-Paya J, Jover R, Perez-Mateo M. Obesity and fat distribution imply a greater systemic inflammatory response and a worse prognosis in acute pancreatitis. Pancreatology. 2008; 8(3):257-264.
    [33] Graesdal A. Severe hypertriglyceridemia--an important cause of pancreatitis. Tidsskr Nor Laegeforen. 2008; 128(9):1053-1056.
    [34] Deng LH, Xue P, Xia Q, Yang XN, Wan MH. Effect of admission hypertriglyceridemia on the episodes of severe acute pancreatitis. World J Gastroenterol. 2008; 14(28):4558-4561.
    [35] Segersv?rd R, Tsai JA, Herrington MK, Wang F.Obesity alters cytokine gene expression and promotes liver injury in rats with acute pancreatitis. Obesity (Silver Spring). 2008; 16(1):23-28.
    [36] Yoon YK, Ji JH, Mun BS. Hypertriglyceridemia-induced pancreatitis .Korean J Gastroenterol. 2008; 51(5):309-313.
    [37] Huang G, Yao J, Zeng W, Mizuno Y, Kamm KE, Stull JT, Harding HP, Ron D, Muallem S. ER stress disrupts Ca2+ signaling complexes and Ca2+ regulation in secretory and muscle cellsfrom PERK-knowout mice.J Cell Sci. 2006; 119(1):153-161.
    [38] Zhang XP, Wang L, Zhou YF. The pathogenic mechanism of severe acute pancreatitis complicated with renal injury: a review of current knowledge. Dig Dis Sci. 2008; 53(2):297-306.
    [39] Konstantinou GN, Liatsos CN, Patelaros EG, Karagiannis SS, Karnesis LI, Mavrogiannis CC. Acute pancreatitis associated with herpes simplex virus infection: report of a case and review of the literature. Eur J Gastroenterol Hepatol. 2009; 21(1):114-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700