新型腰椎后路动态内固定器械的研制与初步生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分新型腰椎后路动态内固定器械的研制
     目的设计一种结构简单、安装简易且价格低,适合因腰椎失稳引起的下腰痛及椎间盘源性腰痛治疗的新型腰椎后路经椎弓根动态内固定系统。方法器械由尾端单面球窝凹面的椎弓根螺钉、尾端均为平面的椎弓根螺钉、弹性连接棒和套筒构成。椎弓根螺钉与弹性连接棒由医用钛合金金属制成,套筒由医用超大分子量聚乙烯材料制成。螺钉直径为6.0mm、长度为40mm,弹性连接棒直径为2.0mm,套筒外径为9.5mm、内径为2.0mm。结果初步设计出一套腰椎后路经椎弓根螺钉动态内固定器械。结论新型动态内固定系统设计合理,使用简单,符合动态内固定技术的理念。
     第二部分新型腰椎后路动态内固定器械的初步生物力学测试
     目的通过生物力学稳定性实验来测试新型动态内固定器械对腰椎固定节段的动态稳定性能及活动度的影响,为该系统的进一步改进及将来的临床应用提供理论依据。方法成人新鲜尸体腰椎标本共3具(男2具、女1具)共7个腰椎FSU,分正常、失稳、动态内固定、坚强内固定4组,测试椎体间节段在4个状态下的前屈后伸、左/右侧弯及左/右轴向旋转6个自由度上的运动范围(ROM)。所得数据采用SPSS16.0软件进行统计学分析。结果损伤失稳状态下节段运动范围明显大于其它状态(P<0.05);新型动态内固定与坚强内固定两种方法固定后,节段运动范围均小于失稳标本组(P<0.05);新型动态内固定后的节段运动范围大于坚强固定后(P<0.05)。结论新型动态内固定系统对固定节段有较好的稳定作用,同时又保留了固定节段部分运动功能。
PartⅠThe new posterior dynamic internal fixation devices’development of abdominal vertebra
     Objective To design a new posterior dynamic internal fixation device which is simple, cheap, and suitable for low back pain caused by the lumbar instability and discogenic pain. Method Apparatus are composed by the end of the one-sided concave ball and socket of the pedicle screws, lateral mass of vertebrae screws with tail are flat, flexible connecting rod and the sleeve composition. Lateral mass of vertebrae screws and flexibility of metal connecting rod are made of medical titanium alloy , and the sleeve is made of the medical supermolecular weight polyethylene. Screw diameter is 6.0mm, and length is 40mm. Flexible connecting rod diameter is 2.0mm. The sleeve’s outside diameter is 9.5mm and inner diameter is 2.0mm. Results To preliminary design a set of posterior dynamic fixation internal devices in lumbar posterior pedicle screw through lateral mass of vertebrae. Conclusion This new posterior dynamic internal fixation device is reasonable in desiging ,easy to use, and consistent with the concept of dynamic internal fixation.
     PartⅡThe initial bio-mechanical test of new posterior dynamic internal fixation devices
     Objective By biomechanical experiments to test the new dynamic internal fixation device in the lumbar dynamic stability, load bearing area of performance. To provide a further improvement and scientific basis for clinical application. Method There were 3 lumbar spine specimens of adult fresh cadaver(including 7 FSU), divided into 4 groups: normal, unstable, dynamic internal fixation, rigid internal fixation. To test segment of vertebral bodies in the four states: flexion after the extension, left / right lateral bending ,and left / right axial rotation, six degrees of freedom on the range of motion (ROM). The datas were used statistical analysis software SPSS16.0. Results Injury unstable state ROM segment was significantly higher than other states (P <0.05). Two ways of New dynamic within a fixed and rigid internal fixation after fixation, segmental ROM was less than the full samples (P<0.05). New dynamic segments within a fixed ROM after the firm was greater than rigid internal fixation (P <0.05). Conclusion This new dynamic fixation device on the fixed segment has good stabilizing effect, while retaining a fixed part of the ROM segments.
引文
[1] Boos N, Webb JK. Pedicle screw fixation in spinal disorders: a European view. Eur Spine J. 1997, 6: 2-18.
    [2] Kumar MN, Jacquot F, Hall H. Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease [J]. Eur Spine J, 2001, 4: 309-313.
    [3] Park P, Garton HJ, Gala V, et al. Adjacent segment disease after lumbar or lumbos- acral fusion: review of the literature [J]. Spine, 2004, 17:1938-1944.
    [4] Gibson JN, Grant IC, Waddell G. The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis. Spine, 1999, 24(17): 1820.
    [5] Nockels R P. Dynamic stabilization in the surgical management of painful lumbar spinal disorders [J]. Spine, 2005, 16 Suppl : 68-72.
    [6] Sengupta DK. Dynamic stabilization devices in the treatment of the low back pain [J]. Neurology India, 2005, 4: 466-474.
    [7] Sengupta DK. Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am, 2004, 35: 43-56.
    [8] Glazer PA, Colliou O, Klisch SM, et al. Biomechanical analysis of multilevel fixation methods in the lumbar spine[J]. Spine, 1997, 22 (2): 171-187.
    [9] Wilke I-U, Wenger K, Claes L. Testing criteria for spinal implants: recommenda- tions for the standardization of in vitro stability testing of spinal implants [J]. J Eur Spine, 1998, 7: 148.
    [10] Panjabi MM. Biomechanical evaluation of spinal fixation devices: IA comceptual frame work [J]. Spine, 1988, 13:11-29.
    [11] Phillips FM, Voronov LI, Gaitanis IN, et al. Biomechanice of posterior dynamic stabilizing device after facetectomy and discectomy. Spine J 2006;6:714-722.
    [12] Seifert JL, Sairyo K, Goel VK, et al. Stability analysis of an enhaneed load sharing posterior fixation device and its equivalent conventional device in a calf spine model. Spine. 1999, Nov l, 24(21): 2206-2213.
    [13] Strauss P, Novotny E, Wilder D, et al. Multidirectional stability of the Grafsystem.1994, 19(8): 956-972.
    [14] Freudiger S, Dubois G, Lorrain M. Dynamic neutralisation of the lumbar spine confirmed on a new lumbar spine simulator in vitro. Aich Orthop Trauma Surg, 1999, 119(3-4): 127-132.
    [15] Sengupta DK, Mulholland RC. Fulcrum Assisted Soft Stabilization System: A New Concept in the Surgical Treatment of Degenerative Low Back Pain. Spine. Volume 30, Number 90, 1019-1029.
    [16] Mayer HM, Korge A. Non-fusion technolody in degenerative lumbar spinal disorders: facts, questions, challenges. Eur Spine J. 2002, 11 Suppl 2:85-91.
    [17] Rigby MC, Selmon GP, Foy MA, et al. Graf ligament stabilization: midto long-term follow-up [J]. Eur Spine J, 2001, 10: 234-236.
    [18] Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech, 2003, 16 (14): 418-423.
    [19] Schmoelz W, Huber JF, Nydegger T, et al. Influence of a dynamic stabilization system on load bearing of a bridged disc: an in vitro study of intradiscal pressure, Eur Spine J, 2006, 15 (8): 1276-1285.
    [20] Legaye J. Unfavorable influence of the dynamic neutralization system on sagittal balance of the spine. Rev Chir Orthop ReParatrice Appar Mot, 2005, 91: 542-550.
    [21] Mulholland RC, Sengupta DK. Rationale, principles and experimental evaluation of the concept of soft stabilization. Eur Spine J, 2002, 11 Suppl 2: 198-205.
    [22] Sengupta DK, Webb JK, Mulholland RC. Can soft stabilization in the lumbar spine unload the disc and retain mobility? Abiomechanical study with fulcrum assisted soft stabilization on cadaver spine. Proceedings of the ISSLS Annual meeting. Edinburgh, 2001: 129-130.
    [1] Kumar MN, Jacquot F, Hall H. Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease [J]. Eur Spine J, 2001, 4: 309-313.
    [2] Park P, Garton HJ, Gala V, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature [J]. Spine, 2004, 17:1938-1944.
    [3] Gibson JN, Grant IC, Waddell G. The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis [J]. Spine, 1999, 24(17): 1820.
    [4] Nockels R P. Dynamic stabilization in the surgical management of painful lumbar spinal disorders [J]. Spine, 2005, 16 Suppl : 68-72.
    [5] Sengupta DK. Dynamic stabilization devices in the treatment of the low back pain [J]. Neurology India, 2005, 4: 466-474.
    [6] Sengupta DK. Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am, 2004, 35: 43-56.
    [7] Gardner A, Pande KC. Graf ligamentoplasty: a 7-year follow-up [J].Eur Spine J,2002, Suppl 2: 157-163.
    [8] Madan S, Boeree NR. Outcome of the Graf ligamentoplasty procedure compared with anterior lumbar in terbody fusion with the Hartshill horseshoe cage [J]. Eur Spine J, 2003, 4: 361-368.
    [9] Rigby MC, Selmon GP, Foy MA, et al. Graf ligament stabilization: midto long-term follow-up [J]. Eur Spine J, 2001, 10: 234-236.
    [10] Markwalder M, Wenger TM. Dynamic stabilization of lumbar motion segments by use of Graf’s ligaments: results with an average follow-up of 7.4 years in 39 highly selected, consecutive patients [J]. Acta Neurochir (Wien), 2003, 3: 209-214.
    [11] Saxler G, Wedemeyer C, von Knoch M, et al. Follow-up study after dynamic and static stabilisation of the lumbar spine. Z Orthop Ihre Grenzgeb, 2005, 143: 92-99.
    [12] Kanayama M, Hashimoto T, Shigenebu K, et al. Adjacent-segment morbidity after Graf ligamentoplasty compared with postero lateral lumbar fusion. J Neurosurg, 2001, 95 (1 Suppl): 5-10.
    [13] Gardner A, Pande KC. Graf ligamentoplasty: a 7-year follow-up [J].Eur Spine J, 2002, Suppl 2: 157-163.
    [14] Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system [J]. Eur Spine J, 2002, Suppl 2: S170-178.
    [15] Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech, 2003, 16 (14): 418-423.
    [16] Schmoelz W, Huber JF, Nydegger T, et al. Influence of a dynamic stabilization system on load bearing of a bridged disc: an in vitro study of intradiscal pressure, Eur Spine J, 2006, 15 (8): 1276-1285.
    [17] Nockels RP. Dynamic stabilization in the surgical management of painful lumbar spinal disorders. Spine, 2005, 30(16 Suppl): S68-72.
    [18] Schwarzenbach O, Berlemann U, Stoll TM, et al. Posterior dynamic stabilization systems: Dynesys[J]. Orthop Clin N Am, 2005, 3: 363-372.
    [19] Sengupta DK, Mulholland RC. Fulcrum assisted soft stabilization system: a newconcept in the surgical treatment of degenerative low back pain [J]. Spine, 2005, 9: 1019-1029.
    [20] Sengupta DK, Webb JK, Mulholland RC. Can soft stabilization in the lumbar spine unload the disc and retain mobility? Abiomechanical study with fulcrum assisted soft stabilization on cadaver spine. Proceedings of the ISSLS Annual meeting. Edinburgh, 2001: 129-130.
    [21] Sengupta DK, Herkowitz HN , Hochschuler S, et al. Loads sharing characteristics of two novel soft stabilization devices in the lumbar motion segments: a biomechanical study in cadaver spine. Presented at Spine Arthroplasty Society Annual Conference. Scottsdale, 2003: 1-3 .
    [22] Zhu Q, Larson CR, Sjovold SG, et al. Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics [J]. Spine, 2007, 32 (1): 55-62.
    [23] McAfee P, Khoo LT, Pimenta L, et al. Treatment of lumbar spinal stenosis with a total posterior arthroplasty prosthesis: implant description, surgical technique, and a prospective report on 29 patients [J]. Neurosurg Focus, 2007, 22 (1): E13.
    [24] Wilke HJ, Schmidt H, Werner K, et al. Biomechanical evaluation of a new total posterior-element replacement system. Spine, 2006, 31 (24): 2790-2796.
    [25] Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system [J]. Eur Spine J, 2002, 2 Suppl: 164-169.
    [26] Zucherman JF, Hsu KY, Hartjen CA, et al. A prospective randomized multi-center study for the treatment of lumbar spinal stenosis with the X STOP interspinous implant: 1-year results [J]. Eur Spine J, 2004, 13: 22-31.
    [27] Zucherman JF, Hsu KY, Hartjen CA, et al. A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results [J]. Spine, 2005, 30: 1351-1358.
    [28] Lee J, Hida K, Toshitaka S, et al. An interspinous process distractor (X-STOP) for lumbar spinal stenosis in elderly patients [J]. J Spinal Disord Tech, 2004, 17: 72-77.
    [29] Gillespie KA, Dickey JP. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model [J]. Spine, 2004, 11: 1208-1216.
    [30] Kondrashov DG, Hannibal M, Hsu KY, et al. Interspinous process decompression with the X-Stop device for lumbar spinal stenosis [J]. J Spinal Disord Tech, 2006, 5: 323-327.
    [31] Bono CM, Vaccaro AR. Interspinous Process Devices in the Lumbar Spine [J]. J Spinal Disord Tech, 2007, 20: 255-261.
    [32] Caserta S, La Maida GA, Misaggi B, et al. Elastic stabilization alone or combined with rigid fusion in spinal surgery: a biomechanical study and clinical experience based on 82 cases [J]. Eur Spine J, 2002, Suppl 2: 192-197.
    [33] Garner MD, Wolfe SJ, Kuslich SD. Development and preclinical testing of a new tension-band device for the spine: the Loop system [J]. Eur Spine J, 2002, Suppl 2: 186-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700