新型胸腰椎前路复合锁定系统(D-rod系统)的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:临床上应用的胸腰椎前路器械有许多,按器械的外形构造大致可以分为钉-棒系统与钉-板系统,两类均广泛运用于胸腰段的骨折、肿瘤及感染等。钉-棒系统在生物力学上一般较钉-板系统更稳定,而钉-棒系统操作较为复杂且切迹较高,有可能对邻近的神经血管组织造成损伤。我们设计了一种新型的胸腰椎前路复合锁定系统(D-rod系统),具有较低的切迹并进行生物力学稳定性测试。
     目的:介绍一种低切迹胸腰椎前路新型复合锁定系统,并与Z-plate及Kaneda系统进行生物力学稳定性比较。
     方法:18个新鲜猪T14-L35个节段的脊柱标本分成3组(每组6个),行L1椎体部分切除,制成前中柱损伤模型。分别采用下面三种内固定:D-rod、Z-plate及Kaneda系统,固定于T15及L2椎体的左侧。每个脊椎标本分别测试以下三种状态下的运动范围(range of motion, ROM):1)完整脊柱;2) L1椎体部分切除后椎体间钛网植骨及内固定;3) 3.0Nm下屈伸5000次疲劳后。记录T15-L2在6.0Nm下屈伸、左右侧弯及左右旋转状态下的ROM。
     结果:三种内固定后的脊柱标本均较完整状态下更稳定(P<0.05)。D-rod系统、Kaneda系统较Z-plate在旋转方向更稳定(P<0.05),屈伸状态下无统计学差异(P>0.05)。疲劳试验后,所有内固定物均无移位及失败,在旋转方向上Z-plate系统的稳定性较完整状态时差(P<0.05), D-rod, Kaneda系统仍可恢复到完整状态下的稳定性,两者无统计学差异(P>0.05)。疲劳试验前后,Z-plate在右侧弯时均较左侧弯时更稳定(P<0.05)。
     结论:三种胸腰椎前路系统均可重建脊柱的生物力学稳定性。D-rod系统、Kaneda在旋转时较Z-plate前路系统更稳定。胸腰椎前路D-rod系统切迹较低,生物力学稳定性良好。
Background:Many different types of instrumentation systems are available to fix the thoracolumbar spine in clinical. Anterior thoracolumbar instrumentations were evoled to either rods or plates. Both types have been used widely in the treatment of several diseases such as fractures,tumors and infections. Briefly, dual rod designs has been suggested to offer superior biomechanical stability than plate designes. However, the profile of anterior instrmentation is important to consider,bulky implants have led to catastrophic complications secondary to aortic erosions.With these considerations in mind,we sought to modify the configuration of the bulky rods system with lower profile design (D-rod system) to achieving biomechanical stability.
     Objective:To introduce a lower profile angular stable locking rod anterior thoracolumbar spinal instrumentation and biomechanical in vitro evalution it compared with Z-plate and Kaneda system.
     Methods:Eighteen pig spinal specimens (T14-L3) were divided into three groups (6 per group) and subjected to L1 corpectomy. One of three fixation methods was applied to the left of the vertebra(T15-L2) in each group:The D-rod system, Z-plate and Kaneda system.Each spine was tested in three different scenarios:1)intact spine;2)after partial L1 corpectomy with graft and stabilization with three alternative instrumentations; 3) after flexion-extension cyclic fatiguing for 5000 cycles at a load of±3.0Nm. T15-L2 range of motion (ROM) was measured in a 6-degree-of-freedom (flexion-extension, lateral bending, and axial rotation) spine simulator under pure moments of 6.0 Nm.
     Results:All three fixation stabilized spine showed superior stability compared to the intact spine (P<0.05).The D-rod system and Kaneda system stabilized spine showed superior stability compared to Z-plate in axial rotation (P< 0.05).Flexion/extension loading demonstrated no statistical difference between the systems in ROM (P>0.05). After fatiguing test, there have no implants fail, the D-rod system and Kaneda system instrumented spine can still restored the stability of the intact spine (P<0.05) in axial rotation. The Z-plate stabilized spine was more rigid in right lateral bending than left lateral bending before and after fatigue (P< 0.05).
     Conclusion:All three model anterior thoracolumbar instrumentations can restored the stability. The D-rod system and Kaneda system showed superior stability compared to the Z-palte in axial rotation. The D-rod system could provide adequate stability for anterior thoracolumbar with low profile.
引文
[1]Stagnara P, De Mauroy JC, Dran G,et al. Reciprocal angulation of vertebral bodies in a sagittal plane:approach to references for the evaluation of kyphosis and lordosis. Spine (Phila Pa 1976),1982,7(4):335-342.
    [2]McLain RF, Sparling E, Benson DR. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am,1993,75(2):162-167.
    [3]Zdeblick TA, Warden KE, Zou D,et al. Anterior spinal fixators. A biomechanical in vitro study. Spine,1993,18(4):513-517.
    [4]王向阳,戴力扬,徐华梓,等.胸腰椎不同程度前中柱骨折内固定后的生物力学特征及前路重建的意义.中华创伤杂志,2006,(03):214-217.
    [5]Ghanayem AJ, Zdeblick TA. Anterior instrumentation in the management of thoracolumbar burst fractures. Clin Orthop Relat Res,1997, (335):89-100.
    [6]Hodgson AR, Stock FE. The Classic:Anterior spinal fusion:a preliminary communication on the radical treatment of Pott's disease and Pott's paraplegia.1956. Clin Orthop Relat Res,2006, 444:10-15.
    [7]Hodgson A, Stock F. Anterior spine fusion for the treatment of tuberculosis of the spine:the operative findings and results of treatment in the first one hundred cases. The Journal of Bone and Joint Surgery,1960,42(2):295.
    [8]McDonough PW, Davis R, Tribus C,et al. The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. Spine (Phila Pa 1976),2004,29(17): 1901-1908; discussion 1909.
    [9]D'Aliberti G, Talamonti G, Villa F,et al. Anterior approach to thoracic and lumbar spine lesions: results in 145 consecutive cases. J Neurosurg Spine,2008,9(5):466-482.
    [10]Verlaan J, Diekerhof C, Buskens E,et al. Surgical treatment of traumatic fractures of the thoracic and lumbar spine:a systematic review of the literature on techniques, complications, and outcome. Spine,2004,29(7):803.
    [11]Hitchon P, Tomer J, Eichholz K,et al. Comparison of anterolateral and posterior approaches in the management of thoracolumbar burst fractures. Journal of Neurosurgery:Pediatrics,2006, 5(2).
    [12]Whang PG, Vaccaro AR. Thoracolumbar fractures:anterior decompression and interbody fusion. J Am Acad Orthop Surg,2008,16(7):424-431.
    [13]Oskouian RJ, Jr., Shaffrey Cl, Whitehill R,et al. Anterior stabilization of three-column thoracolumbar spinal trauma. J Neurosurg Spine,2006,5(1):18-25.
    [14]Zelle BA, Dorner J. Management of late posttraumatic kyphosis with anterior Z-plate instrumentation. Am J Orthop,2008,37(2):76-80.
    [15]Kaneda K, Taneichi H, Abumi K,et al. Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am,1997,79(1):69-83.
    [16]Woolsey R. Aortic laceration after anterior spinal fusion. Surgical neurology,1986,25(3): 267-268.
    [17]Thalgott JS, Kabins MB, Timlin M,et al. Four year experience with the AO Anterior Thoracolumbar Locking Plate. Spinal Cord,1997,35(5):286-291.
    [18]Lim TH, An HS, Hong JH,et al. Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine (Phila Pa 1976),1997,22(3):261-266.
    [19]Hitchon P, Goel V, Rogge T,et al. In vitro biomechanical analysis of three anterior thoracolumbar implants. Journal of Neurosurgery:Pediatrics,2000,93(2).
    [20]Hitchon P, Goel V, Rogge T,et al. Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines. Spine,1999,24(3):213.
    [21]Hitchon P, Brenton M, Serhan H,et al. In vitro biomechanical studies of an anterior thoracolumbar implant. Journal of spinal disorders & techniques,2002,15(5):350.
    [22]Ohnishi T, Neo M, Matsushita M,et al. Delayed aortic rupture caused by an implanted anterior spinal device. Case report. J Neurosurg,2001,95(2 Suppl):253-256.
    [23]Higashino K, Katoh S, Sairyo K,et al. Pseudoaneurysm of the thoracoabdominal aorta caused by a severe migration of an anterior spinal device. The Spine Journal,2008,8(4):696-699.
    [24]Kirkpatrick JS, Wilber RG, Likavec M,et al. Anterior stabilization of thoracolumbar burst fractures using the Kaneda device:a preliminary report. Orthopedics,1995,18(7):673-678.
    [25]Wilke HJ, Krischak S, Claes LE. Formalin fixation strongly influences biomechanical properties of the spine. J Biomech,1996,29(12):1629-1631.
    [26]Panjabi MM, Krag M, Summers D,et al. Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res,1985,3(3):292-300.
    [27]Crawford N, Brantley A, Dickman C,et al. An apparatus for applying pure nonconstraining moments to spine segments in vitro. Spine,1995,20(19):2097.
    [28]Wilke H, Wenger K, Claes L. Testing criteria for spinal implants:recommendations for the standardization of in vitro stability testing of spinal implants. European Spine Journal,1998, 7(2):148-154.
    [29]Goel VK, Panjabi MM, Patwardhan AQet al. Test protocols for evaluation of spinal implants. J Bone Joint Surg Am,2006,88 Suppl 2:103-109.
    [30]Panjabi MM. Biomechanical evaluation of spinal fixation devices:I. A conceptual framework. Spine,1988,13(10):1129-1134.
    [31]Crawford N, Peles J, Dickman C. The spinal lax zone and neutral zone:measurement techniques and parameter comparisons. Journal of spinal disorders & techniques,1998,11(5): 416.
    [32]江建明,金大地,陈建庭,等.胸腰椎前路K形钛钢板在爆裂性骨折中的应用.中国矫形外科杂志,2002,9(3):233-236.
    [33]An H, Lim T, You J,et al. Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine,1995,20(18):1979.
    [34]Cotterill P, Kostuik J, D'Angelo G,et al. An anatomical comparison of the human and bovine thoracolumbar spine. Journal of Orthopaedic Research,2005,4(3):298-303.
    [35]Riley III L, Eck J, Yoshida H,et al. A biomechanical comparison of calf versus cadaver lumbar spine models. Spine,2004,29(11):E217.
    [36]Wilke H, Krischak S, Claes L. Biomechanical comparison of calf and human spines. Journal of Orthopaedic Research,2005,14(3):500-503.
    [37]Kettler A, Liakos L, Haegele B,et al. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? European Spine Journal,2007,16(12):2186-2192.
    [38]Bozkus H, Crawford N, Chamberlain R,et al. Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surgical endoscopy,2005, 19(12):1652-1665.
    [39]Brodke D, Gollogly S, Bachus K,et al. Anterior thoracolumbar instrumentation:stiffness and load sharing characteristics of plate and rod systems. Spine,2003,28(16):1794-1801.
    [40]Cloutier L, Aubin C-E, Grimard G. Biomechanical study of anterior spinal instrumentation configurations. European Spine Journal,2007,16(7):1039-1045.
    [41]Dick J, Brodke D, Zdeblick T,et al. Anterior instrumentation of the thoracolumbar spine:a biomechanical comparison. Spine,1997,22(7):744.
    [42]Kotani Y, Cunningham BW, Parker LM,et al. Static and fatigue biomechanical properties of anterior thoracolumbar instrumentation systems. A synthetic testing model. Spine (Phila Pa 1976),1999,24(14):1406-1413.
    [43]McLain F. Comparative morphometry of L4 vertebrae:comparison of large animal models for the human lumbar spine. Spine,2002,27(8):E200.
    [44]Smit T. The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations. European Spine Journal,2002,11(2):137-144.
    [45]Dale'Bass C, Rafaels K, Salzar R,et al. Thoracic and lumbar spinal impact tolerance. Accident Analysis & Prevention,2008,40(2):487-495.
    [46]F. McLain R, Yerby SA, Moseley TA. Comparative Morphometry of L4 Vertebrae:Comparison of Large Animal Models for the Human Lumbar Spine. Spine,2002,27(8):E200-E206.
    [47]Mosekilde L, Kragstrup J, Richards A. Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcified Tissue International,1987, 40(6):318-322.
    [48]Busscher I, van der Veen A, van Dieen J,et al. In Vitro Biomechanical Characteristics of the Spine:A Comparison Between Human and Porcine Spinal Segments. Spine,2010,35(2):E35.
    [49]Aerssens J, Boonen S, Lowet G,et al. Interspecies Differences in Bone Composition, Density, and Quality:Potential Implications for in Vivo Bone Research. Endocrinology,1998,139(2): 663-670.
    [50]王向阳,戴力扬.胸腰椎爆裂性骨折模型.医用生物力学,2006,(02):153-158.
    [51]Knop C, Lange U, Bastian L,et al. Three-dimensional motion analysis with Synex. European Spine Journal,2000,9(6):472-485.
    [52]Panjabi MM, Kifune M, Wen L,et al. Dynamic canal encroachment during thoracolumbar burst fractures. J Spinal Disord,1995,8(1):39-48.
    [53]ABUMI K, PANJABI M, DURANCEAU J. Biomechanical evaluation of spinal fixation devices:Part Ⅲ. Stability provided by six spinal fixation devices and interbody bone graft. Spine,1989,14(11):1249-1255.
    [54]Panjabi M, Abumi K, Duranceau J,et al. Biomechanical evaluation of spinal fixation devices:II. Stability provided by eight internal fixation devices. Spine,1988,13(10):1135-1140.
    [55]Gurr K, McAfee P, Shih C. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. The Journal of Bone and Joint Surgery,1988, 70(8):1182.
    [56]Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976),1983,8(8):817-831.
    [57]Panjabi M. Biomechanical evaluation of spinal fixation devices:Ⅰ. A conceptual framework. Spine,1988,13(10):1129-1134.
    [58]ASHMAN RB, BIRCH JG, BONE LB,et al. Mechanical Testing of Spinal Instrumentation. Clinical Orthopaedics and Related Research,1988,227:113-125.
    [59]Dickman CA, Yahiro MA, Lu HT,et al. Surgical treatment alternatives for fixation of unstable fractures of the thoracic and lumbar spine. A meta-analysis. Spine (Phila Pa 1976),1994,19(20 Suppl):2266S-2273S.
    [60]Johnston CE,2nd, Ashman RB, Baird AM,et al. Effect of spinal construct stiffness on early fusion mass incorporation. Experimental study. Spine (Phila Pa 1976),1990,15(9):908-912.
    [61]Zdeblick T. A prospective, randomized study of lumbar fusion:priliminary results. Spine,1993, 18(8):983.
    [62]Huang T, Hsu R, Tai C,et al. A biomechanical analysis of triangulation of anterior vertebral double-screw fixation. Clinical Biomechanics,2003,18(6):S40-S45.
    [63]Disch AC, Knop,C, Schaser KD,et al. Angular Stable Anterior Plating Following Thoracolumbar Corpectomy Reveals Superior Segmental Stability Compared to Conventional Polyaxial Plate Fixation. Spine,2008,33(13):1429-1437.
    [64]Smit T. The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations. European Spine Journal,2002,11(2):137-144.
    [65]Reinhold M, Schwieger K, Goldhahn J,et al. Influence of screw positioning in a new anterior spine fixator on implant loosening in osteoporotic vertebrae. Spine (Phila Pa 1976),2 006, 31(4):406-413.
    [1]Parker JW, Lane JR, Karaikovic EE,et al. Successful short-segment instrumentation and fusion for thoracolumbar spine fractures:a consecutive 41/2-year series. Spine,2000,25(9): 1157-1170.
    [2]Dai LY, Jiang SD, Wang XY,et al. A review of the management of thoracolumbar burst fractures. Surg Neurol,2007,67(3):221-231; discussion 231.
    [3]Tezeren G, Kuru I. Posterior fixation of thoracolumbar burst fracture:short-segment pedicle fixation versus long-segment instrumentation. J Spinal Disord Tech,2005,18(6):485-488.
    [4]Sasso RC, Renkens K, Hanson D,et al. Unstable thoracolumbar burst fractures:anterior-only versus short-segment posterior fixation. J Spinal Disord Tech,2006,19(4):242-248.
    [5]Mahar A, Kim C, Wedemeyer M,et al. Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture. Spine,2007,32(14):1503-1507.
    [6]Leduc S, Mac-Thiong JM, Maurais G,et al. Posterior pedicle screw fixation with supplemental laminar hook fixation for the treatment of thoracolumbar burst fractures. Can J Surg,2008, 51(1):35-40.
    [7]Whang PG, Vaccaro AR. Thoracolumbar fractures:anterior decompression and interbody fusion. J Am Acad Orthop Surg,2008,16(7):424-431.
    [8]Korovessis P, Repantis T, Petsinis G,et al. Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion. Spine,2008,33(4):E100-108.
    [9]Butt MF, Farooq M, Mir B,et al. Management of unstable thoracolumbar spinal injuries by posterior short segment spinal fixation. Int Orthop,2007,31(2):259-264.
    [10]Deutsch L, Testiauti M, Borman T. Simultaneous anterior-posterior thoracolumbar spine surgery. J Spinal Disord,2001,14(5):378-384.
    [11]An HS, Lim TH, You JW,et al. Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine,1995,20(18):1979-1983.
    [12]D'Aliberti G, Talamonti G, Villa F,et al. Anterior approach to thoracic and lumbar spine lesions:results in 145 consecutive cases. J Neurosurg Spine,2008,9(5):466-482.
    [13]Wood KB, Bohn D, Mehbod A. Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit:a prospective, randomized study. J Spinal Disord Tech,2005,18 Suppl:S15-23.
    [14]Dunn HK. Anterior stabilization of thoracolumbar injuries. Clin Orthop Relat Res,1984, (189):116-124.
    [15]Woolsey RM. Aortic laceration after anterior spinal fusion. Surg Neurol,1986,25(3): 267-268.
    [16]Kostuik JP. Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine,1988,13(3):286-293.
    [17]Kostuik JP, Matsusaki H. Anterior stabilization, instrumentation, and decompression for post-traumatic kyphosis. Spine,1989,14(4):379-386.
    [18]Zdeblick TA, Warden KE, Zou D,et al. Anterior spinal fixators. A biomechanical in vitro study. Spine,1993,18(4):513-517.
    [19]Shono Y, Kaneda K, Yamamoto I. A biomechanical analysis of Zielke, Kaneda, and Cotrel-Dubousset instrumentations in thoracolumbar scoliosis. A calf spine model. Spine, 1991,16(11):1305-1311.
    [20]McAfee PC. Complications of anterior approaches to the thoracolumbar spine. Emphasis on Kaneda instrumentation. Clin Orthop Relat Res,1994, (306):110-119.
    [21]Kaneda K, Abumi K, Fujiya M. Burst fractures with neurologic deficits of the thoracolumbar-lumbar spine. Results of anterior decompression and stabilization with anterior instrumentation. Spine,1984,9(8):788-795.
    [22]Kaneda K, Taneichi H, Abumi K,et al. Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am,1997,79(1):69-83.
    [23]Kirkpatrick JS, Wilber RG, Likavec M,et al. Anterior stabilization of thoracolumbar burst fractures using the Kaneda device:a preliminary report. Orthopedics,1995,18(7):673-678.
    [24]Kaneda K, Asano S, Hashimoto T,et al. The treatment of osteoporotic-posttraumatic vertebral collapse using the Kaneda device and a bioactive ceramic vertebral prosthesis. Spine,1992, 17(8 Suppl):S295-303.
    [25]Hitchon PW, Goel VK, Rogge T,et al. Biomechanical studies of a dynamized anterior thoracolumbar implant. Spine,2000,25(3):306-309.
    [26]Ryan MD, Taylor TK, Sherwood AA. Bolt-plate fixation for anterior spinal fusion. Clin Orthop Relat Res,1986, (203):196-202.
    [27]Black RC, Gardner VO, Armstrong GW,et al. A contoured anterior spinal fixation plate. Clin Orthop Relat Res,1988,227:135-142.
    [28]Gardner VO, Thalgott JS, White JI,et al. The contoured anterior spinal plate system (CASP). Indications, techniques, and results. Spine,1994,19(5):550-555.
    [29]Yuan HA, Mann KA, Found EM,et al. Early clinical experience with the Syracuse I-Plate:an anterior spinal fixation device. Spine,1988,13(3):278-285.
    [30]Bayley JC, Yuan HA, Fredrickson BE. The Syracuse I-plate. Spine,1991,16(3 Suppl): S120-124.
    [31]Matsuzaki H, Tokuhashi Y, Wakabayashi K,et al. Rigix plate system for anterior fixation of thoracolumbar vertebrae. J Spinal Disord,1997,10(4):339-347.
    [32]Ghanayem AJ, Zdeblick TA. Anterior instrumentation in the management of thoracolumbar burst fractures. Clin Orthop Relat Res,1997, (335):89-100.
    [33]Zelle BA, Dorner J. Management of late posttraumatic kyphosis with anterior Z-plate instrumentation. Am J Orthop,2008,37(2):76-80.
    [34]McDonough PW, Davis R, Tribus C,et al. The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. Spine,2004,29(17):1901-1908; discussion 1909.
    [35]Aydin E, Solak AS, Tuzuner MM,et al. Z-plate instrumentation in thoracolumbar spinal fractures. Bull Hosp Jt Dis,1999,58(2):92-97.
    [36]Thalgott JS, Kabins MB, Timlin M,et al. Four year experience with the AO Anterior Thoracolumbar Locking Plate. Spinal Cord,1997,35(5):286-291.
    [37]Wilson JA, Bowen S, Branch CL, Jr.,et al. Review of 31 cases of anterior thoracolumbar fixation with the anterior thoracolumbar locking plate system. Neurosurg Focus,1999,7(1): el.
    [38]Hitchon PW, Brenton MD, Serhan H,et al. In vitro biomechanical studies of an anterior thoracolumbar implant. J Spinal Disord Tech,2002,15(5):350-354.
    [39]江建明,金大地,陈建庭,等.胸腰椎前路K形钛钢板在爆裂性骨折中的应用.中国矫形外科杂志,2002,9(3):233-236.
    [40]Rao SC, Mou ZS, Hu YZ,et al. The IVBF dual-blade plate and its applications. Spine,1991, 16(3 Suppl):S112-119.
    [41]Disch AC, Knop C, Schaser KD,et al. Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation. Spine,2008,33(13):1429-1437.
    [42]Hitchon PW, Goel VK, Rogge TN,et al. In vitro biomechanical analysis of three anterior thoracolumbar implants. J Neurosurg,2000,93(2 Suppl):252-258.
    [43]Higashino K, Katoh S, Sairyo K,et al. Pseudoaneurysm of the thoracoabdominal aorta caused by a severe migration of an anterior spinal device. Spine J,2008,8(4):696-699.
    [44]Oskouian RJ, Jr., Johnson JP. Vascular complications in anterior thoracolumbar spinal reconstruction. J Neurosurg,2002,96(1 Suppl):1-5.
    [45]Ohnishi T, Neo M, Matsushita M,et al. Delayed aortic rupture caused by an implanted anterior spinal device. Case report. J Neurosurg,2001,95(2 Suppl):253-256.
    [46]Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants:recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J,1998,7(2): 148-154.
    [47]Wilke HJ, Claes L, Schmitt H,et al. A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J,1994,3(2):91-97.
    [48]Moon SM, Ingalhalikar A, Highsmith JM,et al. Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct:an in vitro corpectomy model. Spine J,2009,9(4):330-335.
    [49]Panjabi MM, Krag M, Summers D,et al. Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res,1985,3(3):292-300.
    [50]Panjabi MM, Abumi K, Duranceau J,et al. Biomechanical evaluation of spinal fixation devices:11. Stability provided by eight internal fixation devices. Spine,1988,13(10): 1135-1140.
    [51]Panjabi MM. Biomechanical evaluation of spinal fixation devices:I. A conceptual framework. Spine,1988,13(10):1129-1134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700