半导体器件的电磁损伤效应与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁脉冲炸弹和高功率微波武器等新概念电子战武器的快速发展以及雷达和无线通信系统的广泛使用使得电子系统面临的电磁环境日益复杂化,另一方面半导体器件和集成电路特征尺寸的不断缩小、功耗的不断降低以及工作频率的不断提高使得电子系统对电磁能量的敏感度和易损性与日俱增,因此研究电磁脉冲(electromagnetic pulse, EMP)对电子系统的干扰和损伤效应进而提高电子系统的抗干扰能力变得越来越重要。电磁脉冲可通过天线、电缆和孔缝等耦合进入电子系统内部,引起半导体器件的退化或损伤。因此研究EMP对半导体器件的损伤效应与机理是电子系统EMP效应研究的基础。
     本论文采用半导体器件数值仿真与实验相结合的方法,研究了几种典型半导体器件的EMP损伤效应与机理,主要的研究内容和研究成果包括以下几个方面:
     1.采用半导体器件和工艺仿真工具ISE-TCAD建立了p-n-n+二极管的二维数值仿真模型,考虑了器件的自热、雪崩碰撞电离等效应,对EMP作用下二极管的烧毁过程进行了瞬态电热仿真,分析了二极管内部的电场强度、电流密度和温度分布的瞬时变化,讨论了影响二极管烧毁的因素,计算了二极管的损伤能量阈值。仿真结果表明,二极管烧毁是由热二次击穿导致的。雪崩产生率随温度升高而减小以及热产生率随温度升高而增大是热二次击穿发生的根本原因,二次击穿后二极管表现出的负阻效应导致电流集中,使二极管局部温度迅速升高,从而引起二极管烧毁。二次击穿触发温度随二次击穿延迟时间增加而降低,随载流子寿命增大而升高。仿真得到的二极管损伤能量阈值随脉冲宽度的增加而增大,脉宽较短时,损伤能量近似为一常数,脉宽较长时,损伤能量与脉宽的平方根近似成正比,与现有热模型一致。与实验数据的定量比较结果表明,仿真得到的能量阈值比热模型的预测更精确。
     2.建立了PIN限幅二极管的二维电热仿真模型,研究了其在EMP作用下的瞬态响应,分析了电流丝形成及运动机理,讨论了电流丝运动方式及其对PIN二极管损伤的影响。结果显示,PIN二极管发生雪崩击穿后由于空间电荷产生的负阻效应引起的不稳定性致使I层内形成雪崩电流丝,局部温度迅速升高。雪崩电离率的负温度系数驱使雪崩电流丝向低温区运动,电流丝运动促使器件I层内的横向温度分布趋于均匀,避免因局部过热而导致器件快速烧毁。电流丝到达器件边缘后温度迅速升高,若低于临界温度,电流丝沿原路返回或跳跃到低温区;若超过临界温度,雪崩电流丝转变为热电流丝,被钉扎在器件边缘,温度升高的同时不断收缩,导致PIN二极管局部烧毁。在亚微秒脉宽内,损伤能量随脉宽减小呈下降趋势,电流丝形成位置的不确定性致使PIN二极管损伤能量表现出一定的离散性。
     3.针对典型高频小信号双极型晶体管(BJT),建立了其二维电热模型,研究了强电磁脉冲从基极注入时BJT的瞬态响应。结果表明,BJT的损伤机理与脉冲幅度有关,低脉冲幅度下BJT损伤是由于发射结发生雪崩击穿导致局部烧毁,烧毁点位于发射结边缘的柱面区;而在高脉冲幅度下,基区-外延层-衬底组成的p-n-n+结构发生了二次击穿,导致靠近发射极一侧的基极边缘由于电流密度过大而先于发射结烧毁;BJT损伤能量随脉冲幅度升高呈现减小-增大-减小的变化趋势,存在一个最小值。与实验结果的对比表明,本文的模型能够准确模拟EMP作用下BJT的烧毁过程。
     4.开展了两级级联低噪声放大器(LNA)高功率微波前门注入效应实验,研究了其性能退化及功能损伤效应和阈值,对失效LNA进行了破坏性失效分析。结果显示,当注入信号功率超过一定值时,LNA的噪声系数明显增加,增益也有所下降,性能退化;当信号功率继续增加到某一临界值时,LNA的噪声系数和增益严重恶化,功能完全丧失。LNA损伤功率阈值随注入脉冲宽度减小而增大。LNA退化或损伤是由第一级晶体管退化或损伤导致的。GaAs HEMT退化机理为注入信号作用下栅极金属与GaAs相互扩散引起栅金属下沉导致栅-源/漏肖特基结退化,表现为栅-源/漏肖特基结反向漏电、正向导通电压降低;晶体管损伤机理与注入信号形式有关:连续波或微秒级脉冲注入时晶体管损伤机理为栅-源反向击穿,表现为栅-源/漏短路;亚微秒级脉冲注入时晶体管栅-源和栅-漏均发生了反向击穿,表现为栅-源/漏短路;纳秒级脉冲注入时晶体管损伤机理为栅金属化烧毁,表现为栅-源/漏呈电阻特性。
The electromagnetic environment of electronic systems is deterioratingincreasingly due to the rapid developments of new concept electronic warfare weaponslike electromagnetic pulse bombs and high-power microwave weapons as well as theextensive applications of radars and wireless communication systems. On the otherhand, semiconductor devices and integrated circuits are characterized by smaller featuresizes, lower power dissipation and higher operating frequency, which increases thesusceptibility and vulnerability of electronic systems to electromagnetic energies.Therefore, it becomes more and more important to study the interference and damageeffects of electronic systems induced by electromagnetic pulses (EMPs) so as toimprove the immunity of electronic systems to EMPs. EMPs can be coupled intoelectronic systems through antennas, cables, apertures and so on, thus resulting in thedegeneration or destruction of semiconductor devices. Hence, the research on damagemechanisms of semiconductor devices caused by EMPs is the basis of research onEMP-induced effects of electronic systems.
     In this dissertation the damage effects and mechanisms of several typicalsemiconductor devices induced by EMPs are studied by numerical simulations andexperiments with the following research results:
     1. A two-dimensional (2D) model of a typical high-frequency small-signal diodewith a p-n-n+structure is established for numerical simulations with self-heating effectsand avalanche generation in consideration. Based on the model, transient electrothermalsimulations are performed to simulate the damage process of diodes induced by EMPs,the variations of the distributions of electric field, current density and temperature insidethe diode with time are analyzed in detail, the factors affecting the burnout of diodes arediscussed, and the damage thresholds are calculated. The results show that the burnoutof diodes is caused by thermal mode second breakdown. The occurrence of thermalmode second breakdown is due to the negative temperature dependence of avalanchegeneration rate and the positive temperature dependence of thermal generation rate.When the diode goes into second breakdown, dynamic negative resistance leads to localcurrent concentration, followed by a rapid local temperature rise and finally the burnoutof the diode. The triggering temperature of second breakdown increases with the carrierlifetime and decreases with the delay time. The calculated damage energy thresholdincreases with the pulse width. For the short pulse, the damage energy is approximately constant, and for the long pulse, the damage energy is nearly proportional to the squareroot of pulse width, which is consistent with the thermal models available. Aquantitative comparison with experimental data shows that the simulated energythreshold is more precise than what is predicted by the thermal models.
     2. A2D model of a typical PIN limiter diode is established for electrothermalsimulations. The transient response of the PIN diode to EMPs is simulated, the physicalmechanisms of the formation and motion of current filaments are analyzed, and thefilament moving mode and its impact on the damage to the PIN diode are discussed.The results show that the instability induced by the current-controlled negativeresistance of avalanching PIN diodes leads to the formation of avalanche currentfilaments in the I layer of the PIN diode, resulting in a succeeding local temperature rise.The negative temperature dependence of avalanche generation rates drives the filamentto move towards low-temperature regions. The motion of filament homogenizes thetemperature distribution in the I layer, thus preventing the PIN diode burnout due tolocal overheating. When the filament arrives at the edge of the device, the temperatureat the edge rises rapidly, which drives the filament to leave the edge and return or jumpto the low-temperature regions depending on the filament current density andtemperature distribution in the device. When the filament temperature exceeds a criticalvalue, the thermal excitation will replace the impact ionization as the major source ofcarriers, and the positive temperature dependence of thermal generation rates willproduce a thermal-electrical positive feedback inside the filament, which will pin thefilament at the edge of the device, thus shrinking it continuously, making the filamenttemperature rise quickly, and leading to the burnout of the PIN diode. For thesubmicrosecond pulse width, the damage energy decreases as the width decreases, andthe uncertainty of the initial position of filaments will lead to a dispersion in the damageenergy of PIN diodes.
     3. For a typical high-frequency small-signal bipolar junction transistor (BJT), a2Delectrothermal model is established to study the damage mechanism and damagethreshold of the BJT under the injection of the EMP at the base. The results show thatthe damage mechanism of the BJT is related to the pulse amplitude: for a low pulseamplitude, BJT damage is caused by the local burnout at the edge of the base-emitterjunction due to avalanche breakdown, and for a high pulse amplitude, a secondbreakdown in the base-epitaxy-substrate p-n-n+structure results in the local burnout atthe edge of the base neighbouring the emitter before the burnout of the base-emitter junction due to a high current density. The BJT burnout time decreases with the increaseof pulse amplitude, while the damage energy has a minimum value in itsdecrease-increase-decrease tendency. A comparison with experimental results showsthat the model in the dissertation can simulate accurately the burnout process of BJTunder the impact of EMPs.
     4. High-power microwave front-door injection experiments are carried out in thetwo-stage low noise amplifiers (LNAs), performance degeneration and malfunction ofthe LNAs are studied and destructive failure analyses of the failed LNAs are made. Theresults show that when the injection signal power exceeds a critical value, the noisefigure increases dramatically, the gain decreases, and the performance of the LNAdegenerates; when the signal power increases further to another critical value, the noisefigure and gain deteriorate severely and the LNA loses its main function. With thedecreasing pulse width, the damage power threshold of the LNA increases. The LNAdegeneration or damage is attributed to the first-stage transistor degeneration or damage.The degeneration of the GaAs HEMT is due to the gate-source/drain schottky junctiondegeneration caused by the decline of the gate metallization due to the interdiffusion ofthe gate metal and GaAs, and the degeneration is manifested as reverse leakage currentincreasing and forward voltage lowering of the gate-source/drain junction. The damagemechanisms of the GaAs HEMT are related to the signal waveforms: after the injectionof continuous waves or microsecond-duration pulses, the gate-source short circuit willoccur due to the reverse breakdown of the gate-source junction, after the injection ofsubmicrosecond-duration pulses, the gate-source/drain short circuit will happen due toreverse breakdown of both the gate-source and gate-drain junctions, and after theinjection of nanosecond-duration pulses, the gate-source junction behaves as a resistordue to the gate metallization burnout.
引文
[1.1] Baum C E. From the Electromagnetic Pulse to High-Power Electromagnetics.Proceedings of the IEEE,1992,80(6):789-817.
    [1.2] BROAD W J. Nuclear Pulse (I): Awakening to the Chaos Factor. Science,1981,212(4498):1009-1012.
    [1.3]周璧华,陈彬,石立华.电磁脉冲及其工程防护.北京:国防工业出版社,2003.
    [1.4] Sabath F. HPEM susceptibility test on IT-Networks and their components.Proceedings of the29th General Assembly of URSI, Chicago, USA,2008.
    [1.5] Radasky W A, Baum C E, Wik M W. Introduction to the Special Issue onHigh-Power Electromagnetics (HPEM) and Intentional ElectromagneticInterference (IEMI). IEEE Transactions on Electromagnetic Compatibility,2004,46(3):314-321.
    [1.6] Giri D V, Tesche F M. Classification of Intentional ElectromagneticEnvironments (IEME). IEEE Transactions on Electromagnetic Compatibility,2004,46(3):322-328.
    [1.7]陈栋,许黎明.高功率微波武器对C4ISR系统毁伤效应研究.装备环境工程,2010,7(2):48-50.
    [1.8]谢海燕.瞬态电磁拓扑理论及其在电子系统电磁脉冲效应中的应用.博士论文,北京:清华大学,2010.
    [1.9] Wunsch D C, Bell R R. Determination of Threshold Failure Levels ofSemiconductor Diodes and Transistors Due to Pulse Voltages. IEEETransactions on Nuclear Science,1968,15(6):244-259.
    [1.10] Tasca D M. Pulse Power Failure Modes in Semiconductors. IEEE Transactionson Nuclear Science,1970,17(6):364-372.
    [1.11] Brown W D. Semiconductor Device Degradation by High Amplitude CurrentPulses. IEEE Transactions on Nuclear Science,1972,19(6):68-75.
    [1.12] Vault W L. The Damage Susceptibility of Integrated Circuits to a SimulatedIEMP Transient. IEEE Transactions on Nuclear Science,1973,20(6):40-47.
    [1.13] Jenkins C R, Durgin D L. EMP Susceptibility of Integrated Circuits. IEEETransactions on Nuclear Science,1975,22(6):2494-2499.
    [1.14] Whalen J J. The RF Pulse Susceptibility of UHF Transistors. IEEE Transactionson Electromagnetic Compatibility,1975, EMC-17(4):220-225.
    [1.15] Whalen J J. A Comparison of DC and RF Pulse Susceptibilities of UHFTransistors. IEEE Transactions on Electromagnetic Compatibility,1977,EMC-19(2):49-56.
    [1.16] Whalen J J, Calcatera M C, Thorn M L. Microwave Nanosecond Pulse BurnoutProperties of GaAs MESFET's. IEEE Transactions on Microwave Theory andTechniques,1979,27(12):1026-1031.
    [1.17] Richardson R E, Puglielli V G, Amadori R A. Microwave Interference Effect inBipolar Transistors. IEEE Transactions on Electromagnetic Compatibility,1975,EMC-17(4):216-219.
    [1.18] Forcier M L, Richardson R E. Microwave-Rectification RFI Response inField-Effect Transistors. IEEE Transactions on Electromagnetic Compatibility,1979, EMC-21(4):312-315.
    [1.19] Kenneally D J, Koellen D S, Epshtein S. RF upset susceptibilities of CMOS andlow power Schottky D-type flip-flops. IEEE1989National Symposium onElectromagnetic Compatibility, Denver, CO, USA,1989:190-195.
    [1.20] Kenneally D J, Wilson D D, Epshtein S. RF Upset Susceptibility of CMOS andLow Power Schottky4-Bit Magnitude Comparators.1990IEEE InternationalSymposium on Electromagnetic Compatibility, Washington, DC, USA,1990:671-677.
    [1.21] Kyechong K, Iliadis A A, Granatstein V L. Effects of microwave interference onthe operational parameters of n-channel enhancement mode MOSFET devices inCMOS integrated circuits. Solid-State Electronics,2004,48(10-11):1795-1799.
    [1.22] Kyechong K, Iliadis A A. Critical Upsets of CMOS Inverters in Static OperationDue to High-Power Microwave Interference. IEEE Transactions onElectromagnetic Compatibility,2007,49(4):876-885.
    [1.23] Kyechong K, Iliadis A A. Impact of Microwave Interference on DynamicOperation and Power Dissipation of CMOS Inverters. IEEE Transactions onElectromagnetic Compatibility,2007,49(2):329-338.
    [1.24] Kim K, Iliadis A A. Latch-up effects in CMOS inverters due to high powerpulsed electromagnetic interference. Solid-State Electronics,2008,52(10):1589-1593.
    [1.25] Kyechong K, Iliadis A A. Operational upsets and critical new bit errors inCMOS digital inverters due to high power pulsed electromagnetic interference.Solid-State Electronics,2010,54(1):18-21.
    [1.26] Chappel J F, Zaky S G. EMI-induced Delays In Digital Circuits: Application.IEEE1992International Symposium on Electromagnetic Compatibility,Symposium Record, Anaheim, CA, USA,1992:449-454.
    [1.27] Laurin J J, Zaky S G, Balmain K G. Prediction of delays induced by in-bandRFI in CMOS inverters. IEEE Transactions on Electromagnetic Compatibility,1995,37(2):167-174.
    [1.28] Dubois T, Laurin J J, Raoult J, et al. On the effect of amplitude modulated EMIinjected on a PLL active filter.8th International Workshop on ElectromagneticCompatibility of Integrated Circuits, EMC COMPO2011, Dubrovnik, Croatia,2011:170-175.
    [1.29] Fiori F, Benelli S, Gaidano G, et al. Investigation on VLSIs' input portssusceptibility to conducted RF interference. Proceedings of the1997IEEE14thInternational Symposium on Electromagnetic Compatibility, Austin, TX, USA,1997:326-329.
    [1.30] Fiori F, Crovetti P S. Linear voltage regulator susceptibility to conducted EMI.Proceedings of the2002IEEE International Symposium on IndustrialElectronics, Aquila, Italy,2002:1398-1403.
    [1.31] Orietti E, Saggini S, Mattavelli P, et al. Electromagnetic Susceptibility Analysison a Digital Pulse Width Modulator for SMPSs. IEEE Transactions onElectromagnetic Compatibility,2009,51(4):1034-1043.
    [1.32] Goransson G. HPM effects on electronic components and the importance of thisknowledge in evaluation of system susceptibility.1999IEEE InternationalSymposium on Electromagnetic Compatibility, Seattle, WA, USA,1999:543-548.
    [1.33] Hattori Y, Tadano H, Nagase H. A Study of dc Operating Point Shifts inMOSFETs with Large RF Signals. Electronics and Communications in Japan,Part1,2001,84(7):18-26.
    [1.34] Chahine I, Kadi M, Gaboriaud E, et al. Characterization and Modeling of theSusceptibility of Integrated Circuits to Conducted Electromagnetic DisturbancesUp to1GHz. IEEE Transactions on Electromagnetic Compatibility,2008,50(2):285-293.
    [1.35]汪柳平.强电磁脉冲与有孔矩形腔耦合及地下强电线与地下管线之间互感系数相关研究.博士论文,北京:北京邮电大学,2008.
    [1.36]方进勇,申菊爱,杨志强等.集成电路器件微波损伤效应实验研究.强激光与粒子束,2003,15(06):591-594.
    [1.37]李平,刘国治,黄文华等.半导体器件HPM损伤脉宽效应机理分析.强激光与粒子束,2001,13(3):353-356.
    [1.38]杨洁,王长河,刘尚合等.微波低噪声晶体管电磁脉冲敏感端对研究.强激光与粒子束,2007,19(1):99-102.
    [1.39]杨建光,武占成.半导体三极管电磁脉冲损伤功率实验研究.电源技术,2009,33(07):611-614.
    [1.40]陈京平,刘尚合,谭志良等. ESD和方波脉冲对集成电路损伤效应异同性.高电压技术,2007,33(07):102-106.
    [1.41]林永涛,谭志良,张荣奇.方波注入对组合电路损伤效应研究.军械工程学院学报,2006,18(2):16-19.
    [1.42]李用兵,王海龙.电磁脉冲对GaAs LNA损伤及其分析.半导体技术,2008,33(10):899-901.
    [1.43]李用兵,田国强,王长河等. GaAs器件电磁脉冲效应实验与毁伤机理研究.半导体技术,2010,35(07):695-698.
    [1.44]汪海洋,李家胤,周翼鸿等. PIN限幅器PSpice模拟与实验研究.强激光与粒子束,2006,18(01):88-92.
    [1.45] Wang H, Li J, Li H, et al. Experimental study and SPICE simulation of CMOSinverters latch-up effects due to high power microwave interference. Progress InElectromagnetics Research, PIER,2008,87:313-330.
    [1.46]汪海洋.高功率微波效应机理理论与实验研究.博士论文,成都:电子科技大学,2010.
    [1.47]汪海洋,周翼鸿,李家胤等.低噪声放大器有意电磁干扰效应(英文).强激光与粒子束,2011,23(11):2865-2871.
    [1.48]柴常春,杨银堂,张冰等.硅基双极低噪声放大器的能量注入损伤与机理.半导体学报,2008,29(12):2403-2407.
    [1.49] Chai C C, Yang Y, Zhang B, et al. The effect of passive component damage ofan integrated si bipolar low-noise amplifier under energy-injection.200916thIEEE International Symposium on the Physical and Failure Analysis ofIntegrated Circuits, IPFA2009, Suzhou, China,2009:402-405.
    [1.50] Chai C C, Yang Y T, Zhang B, et al. The effect of injection damage on a siliconbipolar low-noise amplifier. Semiconductor Science and Technology,2009,24(3):035003.
    [1.51]柴常春,张冰,任兴荣等.集成Si基低噪声放大器的注入损伤研究.西安电子科技大学学报,2010,37(05):898-903.
    [1.52]范菊平,张玲,贾新章.双极型晶体管高功率微波的损伤机理.强激光与粒子束,2010,22(06):1319-1322.
    [1.53]游海龙,蓝建春,范菊平等.高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究.物理学报,2012,61(10):108501.
    [1.54] Backstrom M G, Lovstrand K G. Susceptibility of Electronic Systems toHigh-Power Microwaves: Summary of Test Experience. IEEE Transactions onElectromagnetic Compatibility,2004,46(3):396-403.
    [1.55] Mansson D, Thottappillil R, Backstrom M, et al. Vulnerability of European RailTraffic Management System to Radiated Intentional EMI. IEEE Transactions onElectromagnetic Compatibility,2008,50(1):101-109.
    [1.56] Mansson D, Thottappillil R, Nilsson T, et al. Susceptibility of Civilian GPSReceivers to Electromagnetic Radiation. IEEE Transactions on ElectromagneticCompatibility,2008,50(2):434-437.
    [1.57] Camp M, Gerth H, Garbe H, et al. Predicting the Breakdown Behavior ofMicrocontrollers Under EMP/UWB Impact Using a Statistical Analysis. IEEETransactions on Electromagnetic Compatibility,2004,46(3):368-379.
    [1.58] Nitsch D, Camp M, Sabath F, et al. Susceptibility of Some ElectronicEquipment to HPEM Threats. IEEE Transactions on ElectromagneticCompatibility,2004,46(3):380-389.
    [1.59] Camp M, Garbe H. Susceptibility of Personal Computer Systems to FastTransient Electromagnetic Pulses. IEEE Transactions on ElectromagneticCompatibility,2006,48(4):829-833.
    [1.60] Sabath F. Classification of electromagnetic effects at system level.2008IEEEInternational Symposium on Electromagnetic Compatibility, EMC2008, Detroit,United states,2008.
    [1.61] Laurin J, Zaky S G, Balmain K G. EMI-induced failures in crystal oscillators.IEEE Transactions on Electromagnetic Compatibility,1991,33(4):334-342.
    [1.62] Palisek L, Suchy L. High Power Microwave Effects on Computer Networks-Sensitive Parts and Comparisons. International Journal of Electromagnetics andApplications,2012,2(4):61-64.
    [1.63] Hoad R, Carter N J, Herke D, et al. Trends in EM susceptibility of IT equipment.IEEE Transactions on Electromagnetic Compatibility,2004,46(3):390-395.
    [1.64] Hwang S M, Hong J I, Huh C S. Characterization of the susceptibility ofintegrated circuits with induction caused by high power microwaves. Progress InElectromagnetics Research, PIER,2008,81:61-72.
    [1.65]方进勇,刘国治,李平等.高功率微波脉冲宽度效应实验研究.强激光与粒子束,1999,11(05):639-642.
    [1.66]王韶光,魏光辉,陈亚洲等.无线电引信的超宽谱辐照效应及其防护.强激光与粒子束,2007,19(11):1873-1878.
    [1.67]蒲天乐,刘长军,闫丽萍等.微型计算机微波辐照效应的实验研究.强激光与粒子束,2006,18(09):1549-1552.
    [1.68]刘长军,闫丽萍,范如东等. L波段微波脉冲对微型计算机的辐照效应实验.强激光与粒子束,2007,19(09):1580-1584.
    [1.69] Larson C E, Roe J M. A Modified Ebers-Moll Transistor Model forRF-Interference Analysis. IEEE Transactions on Electromagnetic Compatibility,1979, EMC-21(4):283-290.
    [1.70] Tront J G, Whalen J J, Larson C E, et al. Computer-Aided Analysis of RFIEffects in Operational Amplifiers. IEEE Transactions on ElectromagneticCompatibility,1979, EMC-21(4):297-306.
    [1.71] Whalen J J, Tront J G, Larson C E, et al. Computer-Aided Analysis of RFIEffects in Digital Integrated Circuits. IEEE Transactions on ElectromagneticCompatibility,1979, EMC-21(4):291-297.
    [1.72] Orvis J W, Yee H J. Semiconductor device modeling with BURN42: Aone-dimensional code for modeling solid state devices. UCID-20602,1985.
    [1.73] Tront J G. Predicting URF Upset of MOSFET Digital IC's. IEEE Transactionson Electromagnetic Compatibility,1985, EMC-27(2):64-69.
    [1.74] Graffi S, Masetti G, Golzio D. New macromodels and measurements for theanalysis of EMI effects in741op-amp circuits. IEEE Transactions onElectromagnetic Compatibility,1991,33(1):25-34.
    [1.75] Laurin J, Zaky S G, Balmain K G. EMI-induced Delays In Digital Circuits:Prediction. IEEE1992International Symposium on ElectromagneticCompatibility, Symposium Record, Anaheim, CA, USA,1992:443-448.
    [1.76] Laurin J, Zaky S G, Balmain K G. On the prediction of digital circuitsusceptibility to radiated EMI. IEEE Transactions on ElectromagneticCompatibility,1995,37(4):528-535.
    [1.77] Hattori Y, Kato T, Hayashi H, et al. Harmonic balance simulation of RFinjection effects in analog circuits. IEEE Transactions on ElectromagneticCompatibility,1998,40(2):120-126.
    [1.78] Fiori F, Pozzolo V. Modified Gummel-Poon Model for Susceptibility Prediction.IEEE Transactions on Electromagnetic Compatibility,2000,42(2):206-213.
    [1.79] Fiori F L, Crovetti P S. Prediction of High-Power EMI Effects in CMOSOperational Amplifiers. IEEE Transactions on Electromagnetic Compatibility,2006,48(1):153-160.
    [1.80] Yang H, Kollman R. Analysis of high-power RF interference on digital circuits.Electromagnetics,2006,26(1):87-102.
    [1.81]余稳,蔡新华,黄文华等.电磁脉冲对半导体器件的电流模式破坏.强激光与粒子束,1999,11(03):100-103.
    [1.82]余稳,蔡新华,周传明等.硅二极管对高功率微波的非线性响应计算.强激光与粒子束,2000,12(03):324-326.
    [1.83]余稳,蔡新华,黄文华等.二极管失效和烧毁阈值与电磁波参数关系.强激光与粒子束,2000,12(02):215-218.
    [1.84]余稳,聂建军,郭杰荣等. PIN二极管的高功率微波响应.强激光与粒子束,2002,14(02):299-301.
    [1.85]周怀安,杜正伟,龚克.双极型晶体管在强电磁脉冲作用下的瞬态响应.强激光与粒子束,2005,17(12):1861-1864.
    [1.86]周怀安,杜正伟,龚克.双极型晶体管损坏与强电磁脉冲注入位置的关系.强激光与粒子束,2006,18(04):689-692.
    [1.87]陈曦,杜正伟,龚克.基极注入强电磁脉冲对双极型晶体管的作用.强激光与粒子束,2007,19(03):449-452.
    [1.88]陈曦,杜正伟,龚克.外电路在电磁脉冲对双极型晶体管作用过程中的影响.强激光与粒子束,2007,19(07):1197-1202.
    [1.89]陈杰,杜正伟. CMOS反相器的电磁干扰频率效应.强激光与粒子束,2012,24(01):147-151.
    [1.90] Chen J, Du Z W. Device simulation studies on latch-up effects in CMOSinverters induced by microwave pulse. Microelectronics Reliability,2013,53(3):371-378.
    [1.91] Xi X W, Chai C C, Ren X R, et al. EMP injection damage effects of a bipolartransistor and its relationship between the injecting voltage and energy. Journalof Semiconductors,2010,31(4):044005.
    [1.92] Xi X W, Chai C C, Ren X R, et al. Influence of the external component on thedamage of the bipolar transistor induced by the electromagnetic pulse. Journalof Semiconductors,2010,31(7):074009.
    [1.93]柴常春,席晓文,任兴荣等.双极晶体管在强电磁脉冲作用下的损伤效应与机理.物理学报,2010,59(11):8118-8124.
    [1.94] Xu J F, Yin W Y, Mao J F. Transient Thermal Analysis of GaN HeterojunctionTransistors (HFETs) for High-Power Applications. IEEE Microwave andWireless Components Letters,2007,17(1):55-57.
    [1.95] Xu J F, Yin W Y, Mao J F, et al. Thermal Transient Response of GaAs FETsUnder Intentional Electromagnetic Interference (IEMI). IEEE Transactions onElectromagnetic Compatibility,2008,50(2):340-346.
    [1.96] Ren Z, Yin W Y, Shi Y B, et al. Thermal Accumulation Effects on the TransientTemperature Responses in LDMOSFETs Under the Impact of a PeriodicElectromagnetic Pulse. IEEE Transactions on Electron Devices,2010,57(1):345-352.
    [2.1] ANSI C63.14-1992. American National Standard Dictionary for Technologiesof Electromagnetic Compatibility (EMC), Electromagnetic Pulse (EMP), andElectrostatic Discharge (ESD).1992.
    [2.2]郭建飞.车辆电控系统电磁防护技术研究.硕士论文,长春:吉林大学,2013.
    [2.3]周璧华,陈彬,石立华.电磁脉冲及其工程防护.北京:国防工业出版社,2003.
    [2.4]谢彦召,王赞基,王群书等.高空核爆电磁脉冲波形标准及特征分析.强激光与粒子束,2003,15(08):781-787.
    [2.5] MIL-STD-464. Electromagnetic Environmental Effects Requirements forSystems.1997.
    [2.6] MIL-STD-464C. Electromagnetic Environmental Effects Requirements forSystems.2010.
    [2.7] Giri D V, Tesche F M. Classification of Intentional ElectromagneticEnvironments (IEME). IEEE Transactions on Electromagnetic Compatibility,2004,46(3):322-328.
    [2.8] Prather W D, Baum C E, Torres R J, et al. Survey of worldwide high-powerwideband capabilities. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):335-344.
    [2.9] Camp M, Gerth H, Garbe H, et al. Predicting the Breakdown Behavior ofMicrocontrollers Under EMP/UWB Impact Using a Statistical Analysis. IEEETransactions on Electromagnetic Compatibility,2004,46(3):368-379.
    [2.10] Nitsch D, Camp M, Sabath F, et al. Susceptibility of Some ElectronicEquipment to HPEM Threats. IEEE Transactions on ElectromagneticCompatibility,2004,46(3):380-389.
    [2.11] Ianoz M, Wipf H. Modeling and Simulation Methods to Assess EM TerrorismEffects. Proceedings Asia-Pacific Conference on EnvironmentalElectromagnetics. CEEM2000, Shanghai, China,2000:1-4.
    [2.12]汪柳平.强电磁脉冲与有孔矩形腔耦合及地下强电线与地下管线之间互感系数相关研究.博士论文,北京:北京邮电大学,2008.
    [2.13]司守训.电磁脉冲防护技术研究.硕士论文,合肥:合肥工业大学,2006.
    [2.14]闫哲.电磁脉冲孔耦合及其电磁拓扑模型.博士论文,哈尔滨:哈尔滨理工大学,2008.
    [2.15]赖祖武.高功率微波及核电磁脉冲的防护问题.微波学报,1995,(01):1-8.
    [2.16]舒志强.核电磁脉冲孔耦合及防护研究.硕士论文,西安:西安电子科技大学,2009.
    [2.17] Sabath F. Classification of electromagnetic effects at system level.2008IEEEInternational Symposium on Electromagnetic Compatibility, EMC2008, Detroit,United states,2008.
    [2.18] Tasca D M. Pulse Power Failure Modes in Semiconductors. IEEE Transactionson Nuclear Science,1970,17(6):364-372.
    [2.19] Anand Y, Howell C. A burnout criterion for Schottky-barrier mixer diodes.Proceedings of the IEEE,1968,56(11):2098-2098.
    [2.20] Whalen J J. The RF Pulse Susceptibility of UHF Transistors. IEEE Transactionson Electromagnetic Compatibility,1975, EMC-17(4):220-225.
    [2.21] Long D M, Swant D H. Burnout of Junction Field Effect Transistors. IEEETransactions on Nuclear Science,1973,20(6):149-157.
    [2.22] Whalen J J, Calcatera M C, Thorn M L. Microwave Nanosecond Pulse BurnoutProperties of GaAs MESFET's. IEEE Transactions on Microwave Theory andTechniques,1979,27(12):1026-1031.
    [2.23] Kyechong K, Iliadis A A, Granatstein V L. Effects of microwave interference onthe operational parameters of n-channel enhancement mode MOSFET devices inCMOS integrated circuits. Solid-State Electronics,2004,48(10-11):1795-1799.
    [2.24] Vault W L. The Damage Susceptibility of Integrated Circuits to a SimulatedIEMP Transient. IEEE Transactions on Nuclear Science,1973,20(6):40-47.
    [2.25] Jenkins C R, Durgin D L. EMP Susceptibility of Integrated Circuits. IEEETransactions on Nuclear Science,1975,22(6):2494-2499.
    [2.26]陈星弼,唐茂成.晶体管原理.北京:国防工业出版社,1981.
    [2.27] Thornton C G, Simmons C D. A new high current mode of transistor operation.IRE Transactions on Electron Devices,1958,5(1):6-10.
    [2.28]高光勃,李学信.半导体器件可靠性物理.北京:科学出版社,1987.
    [2.29] Schafft H A. Second breakdown-A comprehensive review. Proceedings of theIEEE,1967,55(8):1272-1288.
    [2.30] Hower P L, Krishna Reddi V G. Avalanche injection and second breakdown intransistors. IEEE Transactions on Electron Devices,1970,17(4):320-335.
    [2.31]浙江大学半导体器件教研室.晶体管原理.北京:国防工业出版社,1980.
    [2.32]张屏英,周佑谟.晶体管原理.上海:上海科学技术出版社,1985.
    [2.33] Ridley B K. Mechanism of electrical breakdown in SiO2films. Journal ofApplied Physics,1975,46(3):998-1007.
    [3.1]余稳,蔡新华,黄文华等.电磁脉冲对半导体器件的电流模式破坏.强激光与粒子束,1999,11(03):100-103.
    [3.2]韩雁.集成电路设计制造中EDA工具实用教程.杭州:浙江大学出版社,2007.
    [3.3] Tasca D M, Peden J C, Miletta J. Non-Destructive Screening for ThermalSecond Breakdown. IEEE Transactions on Nuclear Science,1972,19(6):57-67.
    [3.4] DESSIS. User’s manual Version10.0. Integrated Systems Engineering AG,Zurich, Switzerland,2004.
    [3.5] Donoval D, Vrbicky A, Marek J, et al. Evaluation of the ruggedness of powerDMOS transistor from electro-thermal simulation of UIS behaviour. Solid-StateElectronics,2008,52(6):892-898.
    [3.6] Ward A L. Studies of Second Breakdown in Silicon Diodes. IEEE Transactionson Parts, Hybrids, and Packaging,1977,13(4):361-368.
    [3.7]余稳,聂建军,郭杰荣等. PIN二极管的高功率微波响应.强激光与粒子束,2002,14(02):299-301.
    [3.8] Wunsch D C, Bell R R. Determination of Threshold Failure Levels ofSemiconductor Diodes and Transistors Due to Pulse Voltages. IEEETransactions on Nuclear Science,1968,15(6):244-259.
    [3.9] Tasca D M. Pulse Power Failure Modes in Semiconductors. IEEE Transactionson Nuclear Science,1970,17(6):364-372.
    [3.10]汪柳平.强电磁脉冲与有孔矩形腔耦合及地下强电线与地下管线之间互感系数相关研究.博士论文,北京:北京邮电大学,2008.
    [3.11]周怀安,杜正伟,龚克.双极型晶体管在强电磁脉冲作用下的瞬态响应.强激光与粒子束,2005,17(12):1861-1864.
    [3.12]周怀安,杜正伟,龚克.双极型晶体管损坏与强电磁脉冲注入位置的关系.强激光与粒子束,2006,18(04):689-692.
    [3.13]陈曦,杜正伟,龚克.外电路在电磁脉冲对双极型晶体管作用过程中的影响.强激光与粒子束,2007,19(07):1197-1202.
    [3.14]陈曦,杜正伟,龚克.基极注入强电磁脉冲对双极型晶体管的作用.强激光与粒子束,2007,19(03):449-452.
    [3.15] Xi X W, Chai C C, Ren X R, et al. EMP injection damage effects of a bipolartransistor and its relationship between the injecting voltage and energy. Journalof Semiconductors,2010,31(4):044005.
    [3.16] Xi X W, Chai C C, Ren X R, et al. Influence of the external component on thedamage of the bipolar transistor induced by the electromagnetic pulse. Journalof Semiconductors,2010,31(7):074009.
    [3.17]柴常春,席晓文,任兴荣等.双极晶体管在强电磁脉冲作用下的损伤效应与机理.物理学报,2010,59(11):8118-8124.
    [3.18] Schafft H A. Second breakdown-A comprehensive review. Proceedings of theIEEE,1967,55(8):1272-1288.
    [3.19] Melchior H, Strutt M J O. Secondary breakdown in transistors. Proceedings ofthe IEEE,1964,52(4):439-440.
    [3.20] Amerasekera A, Chang M, Seitchik J A, et al. Self-heating effects in basicsemiconductor structures. IEEE Transactions on Electron Devices,1993,40(10):1836-1844.
    [3.21]赖祖武.抗辐射电子学.北京:国防工业出版社,1998.
    [4.1]陈曦,杜正伟,龚克.脉冲宽度对PIN限幅器微波脉冲热效应的影响.强激光与粒子束,2010,22(07):1602-1606.
    [4.2] Xu T, Chen X, Du Z W. The Effect of Frequency on the Thermal Effect of HighPower Microwave Pulses on a PIN Limiter.2010Asia-Pacific Symposium onElectromagnetic Compatibility, APEMC2010, Beijing, China,2010:401-404.
    [4.3]赵振国,马弘舸,赵刚等. PIN限幅器微波脉冲热损伤温度特性.强激光与粒子束,2013,25(07):1741-1746.
    [4.4] Ward A L, Tan R J, Kaul R. Spike leakage of thin Si PIN limiters. IEEETransactions on Microwave Theory and Techniques,1994,42(10):1879-1885.
    [4.5]叶凯. Ka频段限幅器研制.硕士论文,成都:电子科技大学,2012.
    [4.6] Cory R. PIN-limiter diodes effectively protect receivers. EDN,2004,49(26):59-64.
    [4.7]毛钧业.微波半导体器件.成都:成都电讯工程学院出版社,1986.
    [4.8]王文祥.微波工程技术.北京:国防工业出版社,2009.
    [4.9] Leenov D. The silicon PIN diode as a microwave radar protector at megawattlevels. IEEE Transactions on Electron Devices,1964,11(2):53-61.
    [4.10] BOWERS H C. Space-charge-induced negative resistance in avalanche diodes.IEEE Transactions on Electron Devices,1968,15(6):343-350.
    [4.11] Muller M W, Guckel H. Negative Resistance and Filamentary Currents inAvalanching Silicon p+-i-n+Junctions. IEEE Transactions on Electron Devices,1968,15(8):560-568.
    [4.12] Denison M, Blaho M, Rodin P, et al. Moving current filaments in integratedDMOS transistors under short-duration current stress. IEEE Transactions onElectron Devices,2004,51(8):1331-1339.
    [4.13] Mamanee W, Johnsson D, Rodin P, et al. Interaction of traveling currentfilaments and its relation to a nontrivial thermal breakdown scenario inavalanching bipolar transistor. Journal of Applied Physics,2009,105(8):084501.
    [4.14] Crowell C R, Sze S M. Temperature dependence of avalanche multiplication insemiconductors. Applied Physics Letters,1966,9(6):242-244.
    [4.15] Pogany D, Bychikhin S, Denison M, et al. Thermally-driven motion of currentfilaments in ESD protection devices. Solid-State Electronics,2005,49(3):421-429.
    [4.16] Rodin P. Theory of traveling filaments in bistable semiconductor structures.Physical Review B,2004,69(4):045307.
    [4.17] Wunsch D C, Bell R R. Determination of Threshold Failure Levels ofSemiconductor Diodes and Transistors Due to Pulse Voltages. IEEETransactions on Nuclear Science,1968,15(6):244-259.
    [4.18] Tasca D M. Pulse Power Failure Modes in Semiconductors. IEEE Transactionson Nuclear Science,1970,17(6):364-372.
    [5.1]柴常春,席晓文,任兴荣等.双极晶体管在强电磁脉冲作用下的损伤效应与机理.物理学报,2010,59(11):8118-8124.
    [5.2] Xi X W, Chai C C, Ren X R, et al. EMP injection damage effects of a bipolartransistor and its relationship between the injecting voltage and energy. Journalof Semiconductors,2010,31(4):044005.
    [5.3] Xi X W, Chai C C, Ren X R, et al. Influence of the external component on thedamage of the bipolar transistor induced by the electromagnetic pulse. Journalof Semiconductors,2010,31(7):074009.
    [5.4]周怀安,杜正伟,龚克.双极型晶体管在强电磁脉冲作用下的瞬态响应.强激光与粒子束,2005,17(12):1861-1864.
    [5.5]马振洋,柴常春,任兴荣等.双极晶体管微波损伤效应与机理.物理学报,2012,61(07):078501.
    [5.6] Ma Z Y, Chai C C, Ren X R, et al. Effects of microwave pulse-width damage ona bipolar transistor. Chinese Physics B,2012,21(5):058502.
    [5.7] Ma Z Y, Chai C C, Ren X R, et al. Microwave damage susceptibility trend of abipolar transistor as a function of frequency. Chinese Physics B,2012,21(9):098502.
    [5.8] Ma Z Y, Chai C C, Ren X R, et al. The pulsed microwave damage trend of abipolar transistor as a function of pulse parameters. Chinese Physics B,2013,22(2):028502.
    [5.9]马振洋,柴常春,任兴荣等.不同调幅样式的高功率微波对双极晶体管的损伤效应和机理.物理学报,2013,62(12):128501.
    [5.10] Chai C C, Ma Z Y, Ren X R, et al. Hardening measures for bipolar transistorsagainst microwave-induced damage. Chinese Physics B,2013,22(6):068502.
    [5.11]周怀安,杜正伟,龚克.双极型晶体管损坏与强电磁脉冲注入位置的关系.强激光与粒子束,2006,18(04):689-692.
    [5.12]陈曦,杜正伟,龚克.基极注入强电磁脉冲对双极型晶体管的作用.强激光与粒子束,2007,19(03):449-452.
    [5.13]范菊平,张玲,贾新章.双极型晶体管高功率微波的损伤机理.强激光与粒子束,2010,(06):1319-1322.
    [5.14]李智群,王志功.射频集成电路与系统.北京:科学出版社,2008.
    [5.15] Chai C C, Yang Y T, Zhang B, et al. The effect of injection damage on a siliconbipolar low-noise amplifier. Semiconductor Science and Technology,2009,24(3):035003.
    [5.16]李志国,赵瑞东,孙英华等. GaAs MESFET中肖特基势垒接触退化机理的研究.半导体学报,1996,17(01):65-70+84.
    [5.17] Wemple S H, Niehous W C, Fukui H, et al. Long-term and instantaneousburnout in GaAs power FET's: Mechanisms and solutions. IEEE Transactionson Electron Devices,1981,28(7):834-840.
    [5.18] Christou A, Tseng W, Peckerar M, et al. Failure Mechanism Study of GaAsMODFET Devices and Integrated Circuits.23rd Annual Proceedings-ReliabilityPhysics1985, Orlando, FL, USA,1985:54-59.
    [5.19] Buot F A, Anderson W T, Christou A, et al. A mechanism for radiation-induceddegradation in GaAs field-effect transistors. Journal of Applied Physics,1985,57(2):581-590.
    [5.20] Kyechong K, Iliadis A A. Impact of Microwave Interference on DynamicOperation and Power Dissipation of CMOS Inverters. IEEE Transactions onElectromagnetic Compatibility,2007,49(2):329-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700