行波微流体驱动的理论分析与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS技术在生物医学分子检测和生化分析领域的广泛应用,微型构件中流体的驱动与控制技术的研究已逐渐成为一个热点。超声行波驱动在原理上不同于当前各种微流体驱动技术,它是利用压电陶瓷的逆压电效应产生超声振动在输送管道壁上激起行波,使管道内的液体产生行波声场,在雷诺切应力、声流、声辐射压力、管壁黏附力和液体分子间的作用力共同作用下,使液体沿行波方向运动,是一种新的微流体驱动技术。作为一种新型微流体驱动技术,超声行波驱动没有可动部件,所需驱动电压低,材料选择较广泛,可适用于各种环境,具有广泛的应用前景。
     本文针对国家自然科学基金(项目编号:10572078)和山东省自然科学基金(项目编号:Y2007A16)项目中有关超声行波微流体驱动与控制技术的基本理论和驱动模型,从声学和动力学分析的角度进行了较为深入的研究。
     首先,概述了微机电系统(MEMS)及微流体系统的发展现状,对目前的几种微流体驱动与控制技术作了介绍。基于压电陶瓷的逆压电效应及其材料特性和频率特性,简述了行波的合成,通过对声辐射压力及声流产生机理的研究,得出驱动机理与模型参数的关系,为超声行波微流体的驱动控制打下理论基础。
     然后,利用ANSYS有限元软件,对圆环形模型结构、动力学特性进行了分析研究。通过有限元模态分析,讨论了模型固有频率与基体结构参数的关系。通过基于逆压电效应的激振响应分析,激励出所需振型,得出了响应位移随频率的变化特性,为模型的进一步优化设计提供指导。通过瞬态动力学分析,得出模型起振过程的响应情况。为以后的课题研究打下了坚实的基础。
     最后,针对接下来的难点耦合场分析,通过ANSYS中的FSI(流固耦合接口),建立模型实现了声学流体单元和固体单元(弹性体和压电体)的耦合,并得到了圆环沟道内声压的分布图,从而对研究声流和声压在流体驱动中的作用又前进了一步。对圆环流固耦合模型进行瞬态动力学分析,得到沟道内流体在超声行波激励下的流场情况,比较不同时间子步时流体域和固体域的位移云图,得到流体随固体振动情况,分析不同时间子步时流体域的速度矢量图,得到流体在超声行波方向上的流动情况,也是对我所做的整个工作的总结。
With the development of MEMS technique, fluid driving and controlling technique in the micron components has become one research issue. The driving and controlling of microfluid is largely different from that of macrofluid. It is mostly because when the dimension decreases to micron level, the flow characteristic of fluid has changed a lot as a result of the influence of scale and surface effect. The change usually makes the transplantation of macrofluid driving and controlling technique to microfluid field unsuccessful or unfavorable, because microfluid driving and controlling technique is more complex and diversified. Ultrasonic traveling wave driving is different from the present microfluid driving techniques in principle. Using the anti-piezoelectric effect of piezoelectric ceramic, ultrasonic vibration is generated and the traveling wave is generated on the bottom surface of microchannel, and acoustic field is generated simultaneously. The liquid in the microchannel move along the direction of traveling wave because of the collective effect of shearing Reynolds stress, acoustic streaming, acoustic radiation pressure, viscous force and molecular force. As a new microfluid driving technique, ultrasonic traveling wave driving technique has no movable components, needs lower driving voltage, can adapt to all kinds of environment, so it will has extensive application in the future.
     This dissertation is supported by Nation Nature Science Foundation of china (No.10572078), Shandong Province Nature Science Foundation (No.Y2007A16). For the feasibility and driving model of ultrasonic traveling wave microfluid driving and controlling technique of the items, this paper has an embedded research from the view of acoustic and dynamics analysis.
     Firstly, the status of microflow driving technique inside and outside the country is introduced, the mechanism of traveling wave's generating are particularly analyzed, and the anti-piezoelectric effect, the character of material and frequency of piezoelectric ceramics, which makes a base for the driving and control of traveling wave microfluid, are also presented. The relation between driving mechanism and model parameters is given from the research on the forming mechanism of acoustic radiation pressure and acoustic streaming.
     Secondly, based on the analysis of the Finite Element Method (FEM), it discusses the relation between model's natural frequency and elastic body parameters. By the harmonic response analysis based on the anti-piezoelectric effect, the anticipated vibration mode is successfully excited at the point of resonance frequency, and the frequency characteristic of response amplitude is obtained. To the coupling field analysis, the following difficult issue, by the FSI in ANSYS, a model is built to accomplish the coupling between acoustic-fluid units with solid ones. The acoustic pressure distribution of circular panel channel is obtained, which make a great contribution to the study of acoustic streaming and pressure function in microfluidic driving.
     Finally, transient dynamic was made to the circle model, and the streamline in the fluid domain and velocity vector of the interface is obtained, which prove the feasibility of microfluidic driving and summarize my whole work.
引文
[1]Kreith F. The MEMS Handbook[M]. Boca Raton:CRC Press,2002.
    [2]Andrew Mason. A Low-power Wireless Micro-instrumentation System. Digest of Technical Papers from Transducers'95.1995,1:107-110.
    [3]朱键.MEMS技术的发展与应用[J].半导体技术.2003,28(1):29-32.
    [4]Patankar NA, Hu HH. Numerical simulation of electrosmotic flow. Analytical Chemistry. 1998,70(9):1870-1881.
    [5]Moussa W A, Gonzalez U F. Simulation of MEMS piezoelectric micropump for biomedical applications [C]. Proceedings of the International Mechanical Engineering Congress and Exposition. New Orleans, LA,2002:187-192.
    [6]Yun K S, Cho I J, Bu J U, et al. A surface-tension driven micropump for low-voltage and low-power operations [J]. J. Microelectromech. Syst,2002,11:454-461.
    [7]Selvaganapathy P, Carlen E T, Mastrangelo C H. Electrothermally actuated inline microfluidic valve [J]. Sensors and Actuators A,2003,104:275-282.
    [8]ZhenYang, Sohei Matsumoto, HiroshiGoto, et al. Ultrasonic micromixer for microfluidic systems [J]. Sensors and Actuators A,2001,93:266-272.
    [9]Arnau Bertsch, Heimgartner S, Cousseau P, et al. Static micromixers based on large-scale industrial mixer geometry [J]. Lab on a Chip,2001, 1(1):56-60.
    [10]Stroock A D, Dertinger S K, Ajdari A, et al. Chaotic mixer for microchannels [J]. Science, 2002,295:647-651.
    [11]Bassous E, Taub H H, Kuhn L. Ink jet printing nozzle arrays etched in silicon [J]. Appl. Phys. Lett.,1977,31(2):135-137.
    [12]冯焱颍,周兆英,叶雄英,等.微流体驱动与控制技术研究进展[J].力学进展,2002,32(1):1-13.
    [13]Smits J G. Piezoelectric micropump with three valves working peristaltically [J]. Sensors& Actuators A,1990,21-23:203-206.
    [14]Van Lintel H T G, Van De, Pol F C M, Bouwstra S. A piezoelectric micropump based on micromachining of silicon [J]. Sensors & Actuators A,1988,15:153-167.
    [15]Esashi M, Shoij S, Nakano A. Normally close microvalve and micropump fabricated on a silicon wafer [J]. Sensors & Actuators,1989,20:163-167.
    [16]Zengerle R, Rihter A, Sandmaier H. A micro membrane pump with electrostatic actuation [C]. Proc. MEMS'92. Travemunde, Germany,1992,19-24.
    [17]Wang Xiaohao, Zhou Zhaoying, Ye Xiongying, et al. A PZT-driven micropump [C]. Proceedings of the International Symposium on Micromechatronics and Human Science. MHS, Nagoya, Japan,1998,269-272.
    [18]Stemme E, Stemme G. A valveless diffuser/nozzle based fluid pump [J]. Sensors& Actuators A,1993,39:159-167.
    [19]Olsson A, Stemme G, Stemme E. A valve-less planar fluid pump with two pump chamber [J]. Sensors & Actuators A,1995:549-556.
    [20]Stehr M, Messner S, Sandmaier H, et al. A new micropump with bidirectional fluid transport and self-blocking effect[C]. Proc. MEMS'96. San Diego, USA,1996,485-490.
    [21]Nquyen N T, Truong T Q. A fully polymeric micropump with piezoelectric actuator [J]. Sensors and Actuators B,2004,97(1):137-143.
    [22]Harrison D Jed. Fluri K, Seiler K, et al. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip [J]. Science,1993,261:895-897.
    [23]Fukui S, Kaneko R. A Database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems [J]. Trans. ASME,1990,112:78-83.
    [24]Schasfoort R B M, Schlautmann S, Hendrikse J, et al. Field-effect flow control for microfabricated fluidic networks [J]. Science,1999,286:942-945.
    [25]Bianchi F, Ferrigno R, Girault H H. Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions [J]. Analytical Chemistry,2000, 72(9):1987-1993.
    [26]Pittman J L, Henry C S, Gilman S D. Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments [J]. Analytical Chemistry, 2003,75:361-370.
    [27]Sun Y, Lim C S, Liu A Q, et al. Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting [J]. Sensors and Actuators A,2007,133(2):340-348.
    [28]Lin Y C, Wu W D. Arrayed-electrode design for moving electric field driven capillary
    electrophoresis chips [J]. Sensors and Actuators B,2001,73:54-62.
    [29]Lin Y C. Design of low voltage-driven capillary electrophoresis chips using moving electrical fields [J]. Sensors and Actuators B,2001,80:33-40.
    [30]Fu L M, Yang R J. Low-voltage driven control in electrophoresis microchips by traveling electric field[J]. Electrophoresis,2003,24:1253-1260.
    [31]吴英,温志渝,张正元,等.低电压集成电泳芯片的研制[J].光学精密工程,2003,11(2):130-135.
    [32]李霞,温志渝,李星海,等.电泳芯片的低电压分离模型及控制系统[J].微纳电子技术,2003,8(7):344-346.
    [33]刘岗,温志渝,李霞,等.影响低压电泳芯片分离的主要因素[J].微纳电子技术,2003,40(7):347-350.
    [34]陈超,赵湛,张搏军.基于线阵电极电泳芯片的微全分析系统[J].微纳电子技术,2003,362-364.
    [35]陈超,赵湛.线阵电极电泳芯片与单片机控制系统[J].传感器技术,2004,23(1):77-80.
    [36]Pablo Garcia Sanchez, Antonio Ramos Reyes, Nicolas Green, et al. Experiments on AC Electrokinetic Pumping of Liquids Using Arrays of Microelectrodes [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(3):670-677.
    [37]张善亮,Nithin Narayananb,徐波.微流道交流电水力泵的数值模拟机优化[J].传感技术学报,2006,19(05):2000-2003.
    [38]吴建刚,岳瑞峰,曾雪锋,等.用于微全分析系统的数字化微流控芯片的研究[J].分析化学,2006,34(7):1042-1046.
    [39]Bart S F, Tavrow L S, Mehregany M, et al. Microfabricated electrohydrodynamic pumps [J]. Sensors & Actuators A,1990,21-23:193-197.
    [40]Richter A, Sandmaier H. An electro-hydrodynamic micropump[C]. Proc. MEMS'90. Napa Valley, USA,1990,99-104.
    [41]Fuhr G, Hagedorn R, Muller T, et al. Pumping of water solutions in microfabricated electrohydrodynamic systems[C]. Proc. MEMS'92. Travemunde, Germany,1992,25-30.
    [42]Chaudbury M K, Whitesides G M. How to make water run uphill [J]. Science,1992, 256:1539-154.
    [43]Ozaki K. Pumping mechanism using periodic phase changes of a fluid [C]. Proc. MEMES'95. Amsterdam, Netherlands,1995,31-36.
    [44]Thomas K J, Kim G J. Valveless pumping using traversing vapor bubbles in microchannels [J]. Journal of Applied Physics,1998,83(11):5658-5664.
    [45]Mandou M J, Kellogg G J. The LabCD:A centrifuge-Based microfluidic platform for diagnostics [C]. Proc. SPIE.1998,3259:80-93.
    [46]陈宏,方群,殷学锋,等.重力驱动多相层流分离离子选择性电极检测集成化微流控芯片系统[J].高等学校化学学报,2004,25(8):1428-1431.
    [47]Wu Xingzheng, Mari Suzuki, Tsuguo Sawada, et al. Chemiluminescence on a Microchip [J]. Analytical Science,2000,16:321-323.
    [48]黄艳贞,方群,李丹妮.连续进样的重力驱动微流控芯片流动分析系统[J].高等学校化学学报,2004,25(9):1628-1631.
    [49]Cai Z X, Chen H W, Chen B, et al. A gravity driven micro flow injection wetting film extraction system on a polycarbonate chip [J]. Talanta,2006,68(3):895-901.
    [50]Jong W R, Kuo T H, Ho S W, et al. Flows in rectangular microchannels driven by capillary force and gravity [J]. International Communications in Heat and Mass Transfer,2007, 34(2):186-196.
    [51]Monnier H, Wilhelm A M, Delmas H. Delmas. The influence of ultrasound on micromixing in a semi-batch reactor[J]. Chemical Engineering Science,1999,6:67-94.
    [52](日)田中哲郎编.陈俊彦,王余君译.压电陶瓷材料[M].北京:科学出版社,1982.
    [53]何芳钧.压电陶瓷滤波器[M].北京:科学出版社,1980.
    [54]陈永校,郭吉丰.超声电动机[M].杭州:浙江大学出版社,1994.
    [55]张沛霖,张仲源.压电测量[M].北京:国防工业出版社,1983.
    [56]潘景程,吴展.石英晶体元件设计导论[M].北京:宇航出版社,1987.
    [57]石斌.环形行波型超声马达的研究[D].南京:东南大学机械学院,2001.
    [58]Flynn A M, Tavrow L S, Bart S F, et al. Piezoelectric Micromotors for Microrobots [J]. Journal of Microelectromechanical Systems,1992,44-51.
    [59]钱祖文.非线性声学[M].北京:科学出版社,1992.
    [60](美)莫尔斯PM著.杨训仁译.理论声学.北京:科学出版社,1986.
    [61]Chun P Lee, Taylor G Wang. Outer acoustic streaming[J]. J. Acoust. Soc.Am.,1990,88(5): 2367-2375.
    [62]Paolo Luchini, Francois Charru. Acoustic streaming past a vibrating wall[J].Physics Of Fluids,2005,122106:1-7.
    [63]刘景全,杨斌,周光华,等.非接触压电马达驱动机理分析[J].压电与声光,2005,27(5):562-565.
    [64]Wesley L Nyborg. Acoustic Streaming near a Boundary [J]. The Journal of the Acoustical Society of America,1958,30(4):329-339.
    [65](美)Darly L Logan著.伍仪生,吴永礼译.有限元方法基础教程(第三版)[M].北京:电子工业出版社,2003.
    [66]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [67]黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004.
    [68](美)Saeed Moaveni著.欧阳宁,王崧译.有限元分析-ANSYS理论与应用[M].北京:电子工业出版社,2003.
    [69]胡仁喜,王庆五,闫石,等.ANSYS8.2机械设计高级应用实例[M].北京:机械工业出版社,2005.
    [70]赵海峰,蒋迪.ANSYS8.0工程结构实例分析[M].北京:中国铁道出版社,2004.
    [71]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003.
    [72]Takao Tsuchiya, Yukio Kagawa, Naoto Wakatsuki, et al. Finite Element Simulation of Piezoelectric Transformers [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2001,48(4):872-878.
    [73]Y Kagawa. Modal analysis and finite element [J]. J. Eng. Design,1985,2(4):82-89.
    [74]小飒工作室.最新经典ANSYS及WORKBENCH教程[M].北京:电子工业出版社,2004.
    [75]杜功焕,朱哲民,龚秀芬.声学基础(第二版)[M].南京:南京大学出版社,2001.
    [76]E Verpoorte, N F Derooij. Microfluidics Meets MEMS[C]. Proceedings of the IEEE,2003, 91:930-953.
    [77]R M Moroney, F M White, R T Howe. Microtransport induced by ultrasonic Lamb waves[C]. Appt. Phys. Lett,1991,59 (7):774-776.
    [78]Huang Dai, Kim Eun Sok. Micromachined Self-focusing acoustic-wave liquid ejector[J]. Journal of Microelectromechenical systems,2001,10(3):442-449.
    [79]Monnier H, Wilhelm A M, Delmas H. Delmas. The influence of ultrasound on micromixing in a semi-batch reactor[J]. Chemical Engineering Science,1999,6:67-94.
    [80]H Yu, E S Kim. Noninvasive Acoustic-Wave Microfluidic Driver[C]. IEEE International Microelectromechanical Systems Conference, Las Vegas,2002,125-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700