西部小城镇水库的水质分析与水处理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,面对西部地区日益加剧的水源水污染和水资源短缺等问题,国内外研究学者针对这类微污染水源水的水处理技术已经开展了许多研究工作。本研究以陕西省蓝田县汤峪水库水为主要研究对象,从2008年3月至2010年2月份通过对该水库水质进行水质监测,分析其各项水质指标的变化情况和变化原因,对特定时期的水质分别进行实验室烧杯混凝试验以及运用高效固液分离器对汤峪水库原水进行处理的现场中试试验。
     监测结果表明:汤峪水库源水的pH值基本在8左右,浊度和总氮超标,氨氮和总磷含量符合一级生活饮用水水源水质标准,只有偶尔会超标。夏季,水中藻类爆发,由于藻类的大量繁殖、代谢、死亡导致水中的有机质含量较高。夏季是暴雨多发季节,暴雨会引起水位的急剧上涨以及水质的严重恶化,尤其是浊度。高温高藻期,对水库表层水以及不同深度的水进行强化混凝试验,采用单一混凝剂进行试验,投加PAC25mg/L时的水质处理效果最佳。采用助凝剂进行混凝试验,当PAC投加25mg/L、PAM投加0.4mg/L时净化的效果最佳。
     冬季,水库处于低温低浊期,采用高效固液分离器对汤峪水库源水进行现场中试试验。试验期间,源水浊度在4-6NTU,水温在4-14℃,PAC投加点在静态混合器之前,PAM投加点在静态混合器和管式反应器之间。试验的主要目的是确定PAC、PAM的最佳投药量、最佳搅拌强度、最大上升流速、污泥回流比、采用PAC和铁盐两种混凝剂进行对比确定最优的混凝剂种类等。试验表明,当PAC投加量为3.0mg/L、PAM投加量为0.4mg/L、搅拌强度为4r/min、上升流速为35cm/min、回流污泥比为49.2L/h时出水水质效果较好,混凝剂采用PAC的效果优于铁盐。
In recent years, facing the problem of increasing water pollution and water shortage,domestic and overseas research on the treatment of micro-polluted source water (MPSW) is available. This study selected Tangyu Reservoir as its research object, which is located in Lantian City, Shaanxi Province, China. Based on monitoring water quality from April,2009 to January,2010 about ten monthes, we analyzed the change trend and reasons of pollutants measures. Enhanced coagulation laboratory tests of static beaker and using highly efficient solid-liquid separation were done for treating the water quality of a particular period.
     The monitoring results indicated:pH of source is approximately 8, turbidity and the concentrations of TN exceed the allowed standard, the concentrations of NH4+-N and TP consistent with a drinking water quality standards, but occasionally exceed the allowed standard.In the summer, the concentration of organism is caused to be high as a result of massive reproductions, metabolism and death of algae.More rain in summer,the rainstorm will cause water levels rise sharply and the serious deterioration of water quality particularly turbidity. In high-temperature and high-alga water quality phase, the best option is PAC dosage of 25mg/L if only sole coagulant was used to enhanced coagulation, while the best option is PAC dosage of 25mg/L and PAM dosage of 0.4mg/L if the coagulant-aid was added.
     In low-temperature and low-turbidity water quality phase, efficient solid-liquid separator used on the source of the water reservoir conducted Tangyu pilot test site.Source water turbidity in the 4-6NTU, source water temperature in 4-14℃.In the test,PAC adding point is before the static mixer,while PAM adding point is between the static mixer and the pipe reactor. The primary purpose is to determine the best dosage of PAC and PAM、Best stirring intensity、the largest increase in flow rate、sludge recycle ratio、comparison of PAC and ferric salt test and so on. Results show that, the best dosage of PAC is 3.0mg/L、dosage of PAM is 0.4mg/L、stirring intensity is 4r/min、the return sludge flow is best to be 49.2L/h、PAC is better than using ferric.Concluded from the experiments:the technique has a promising potential to be applied in the drinking water treatment, and it should to be father deeply studied.
引文
[1]蓝楠.完善西部地区水资源市场当务之急[J].中国环保产业,2002,(10):11-13.
    [2]王静.低温低浊水处理技术研究应用现状[J].低温建筑技术,2003,(4):49-50.
    [3]张云.湘江水源低温低浊度水处理试验研究[D].2003,2-11.
    [4]孟凡良,崔福义.低温低浊地表水处理技术的探讨[J].哈尔滨商业大学学报(自然科学版),2003,2(19):187-190.
    [5]王毅力,李大鹏,郭瑾珑.絮凝-溶气气浮处理低温低浊水(中试)[J].中国给水排水,2002,11(18):9-12.
    [6]丛海兵,黄廷林,周楠等.西北高原地区的低温低浊水处理[J].中国给水排水,2003,19(7):60-61.
    [7]Tien C.Et al.advance in deep bed filtration[J].ALChE Joural,1979,6 (111).
    [8]赵奎霞,李晓粤,张传义.微絮凝-直接过滤技术的研究与应用进展[J].环境保护科学,2003,119(29):12-14.
    [9]龚云峰,吴春华,丁桓如.低温低浊水处理技术[J].华东电力,2004,11(32):14-16.
    [10]Clarification with microsand seeding:A state of the art [J]. Water Research (5):1281-1290.
    [11]巴宾科夫著,郭连起译.论水的絮凝[M].北京:中国建工出版社,1982.
    [12]洪觉民.欧洲水厂观感[J].给水排水,1998,3(24).
    [13]Pujol R, Hamon M, Kandel X, et al. Biofilters:flexible, reliable biological reactors [J].Wat Sci Tech,1994,29(10-11):33-38.
    [14]吴建磊.污水处理新工艺——DENSADEG+BIOFOR[J].中国给水排水,2003,1(19):103-104.
    [15]陆晓如,周雅珍,黄竹君.高效澄清池在黄浦江原水中的应用试验[J].净水技术,2002,2(21).
    [16]蒋玖璐,李东升,陈树勤.高密度澄清池的设计[J].给水排水,2002,9(28):27-29.
    [17]龚云峰,吴春华,丁桓如.低温低浊水处理技术[J].华东电力,2004,11(32):14-16.
    [18]黄廷林,曹翀.投药条件对结团凝聚工艺的影响[J].西安冶金建筑学院学报.1991,23(4):404-41.
    [19]周楠.西宁市低温低浊水处理试验研究与工艺优化[D],2001.6.
    [20]于泮池等.结团凝聚工艺的研究(一)[J].西安冶金建筑学院学报,1986,18(3):12-15.
    [21]于泮池等.结团凝聚工艺的研究(二)[J].西安冶金建筑学院学报,1987,19(2):32-26.
    [22]黄廷林.结团体流化床的运动平衡[J].给水排水,1996,22(3):8-11.
    [23]黄廷林.结团体致密的动力条件研究[J].西安冶金建筑学院学报,1993,25(1):53-59.
    [24]总后勤部军需部.XCY91饮水保障车[R].军事后勤装备设计定型评审意见书,1991.
    [25]Tambo N,Matsui Y.Performance of fluidized bed pellet bed separator for high-concentration suspension removal[J] J. Water SRT-Aqua,1989,38(1):16.
    [26]黄廷林等.污泥浓缩的造粒流化床理论与技术[J].给水排水.1997,23(7):9-11.
    [27]黄廷林等.结团絮凝工艺处理洗煤废水的研究[J].工业用水与废水,2002,33(4):23-25.
    [28]黄廷林等.水厂生产废水结团凝聚处理的中试研究[J].给水排水,2003,29(3):9-12.
    [29]王晓昌等.造粒流化床技术用于活性污泥分离浓缩的试验研究[J].给水排水,2003,29(7):29-31.
    [30]黄廷林等.西宁市低温低浊水增效澄清池处理动态试验研究报告[D].西安建筑科技大学,2005.
    [31]黄廷林.结团造粒流化床中造粒动力条件研究[J].给水排水,1998,24(5):25-29.
    [32]Tambo N,Watanabe YPhysical characteristics of floc(Ⅰ)[J].Water Research,1979,13:409-419.
    [33]Tambo N,Wang X C.The mechanism of pellet flocculation in a fluidized-bed operation[J].Water SRT-Aqua,1993,(42)2:67-76.
    [34]于泮池,王晓昌.结团凝聚工艺的研究(二)—结团凝聚体形成过程的动力分析[J].西安冶金建筑学院学报,1987,50(2):1-11.
    [35]黄廷林.管式絮凝器用于结团凝聚工艺的研究[J].西安冶金建筑学院学报.1991,23(2),213-222.
    [36]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨(Ⅱ)—致密型絮凝体形成操作模式[J].环境科学学报,2000,20(4).
    [37]Edzwald.J.K.Polymer Coagulation of Humic Acid Waters[J].Envir.Eng.Div(ASCE),1997, 103(7):989.
    [38]彭芳.水处理系统中藻类监测及去除实验研究[D].西安:西安建筑科技大学,2008.
    [39]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [40]丰敏.强化混凝处理微污染水源水[D].武汉:武汉科技大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700