结团凝聚工艺处理西北小城镇低温低浊水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用由西安建筑科技大学研发的新型高效水处理设备—高效固液分离器进行了低温低浊水处理试验。试验分两部分进行,第一部分为高效固液分离器处理低浊度水中试试验,对系统运行工况、悬浮层特性和系统稳定性做了研究分析;第二部分为现场中试试验,用高效固液分离器处理汤峪水库低温低浊水,重点研究了管式反应器的微絮凝特性和系统的优化运行条件。主要研究成果包括:
     (1)优选了微絮凝反应器及药剂投加条件。高效固液分离器混合反应装置选用二级静态混合器串联管式反应器,PAC投加在一级静态混合器之前,污泥回流条件下,PAM投加在管式反应器之前,回流污泥在两级静态混合器之间处理效果较好。
     (2)实验室中试试验人工模拟了汤峪水库原水水质,进水浊度4NTU左右,进水CODMn含量3-4 mg/L,水温17-21℃。在PAC投量为3.2mg/L, PAM投量为0.4mg/L,污泥回流比4.8%左右,污泥浓度在21.2-23.8 g/L运行工况下,滤前出水浊度能达到0.8-1.9NTU;系统对有机物也有良好的处理效果,CODMn的去除率能达到27.42-36.64%左右;系统抗冲击负荷能力强,系统水力负荷最大为27 m/h。
     (3)高效固液分离器处理低温低浊水现场中试试验结果表明,在平均水温3.8℃,浊度6NTU左右时,系统最佳运行工况为:混凝剂PAC投量为3mg/L,混凝后的初始颗粒表面Zeta电位为一12.2mV,助凝剂PAM投加量为0.27-0.4mg/L,污泥回流比7.46%,回流污泥浓度约为12.4 g/L。对管式反应器的管长、管径进行了优化,确定出适宜管径为DN25mm,适宜管长为40米,此时对应管式反应器G值为156.47s-1,同时确定管式反应器GT值在14777.63-19164.22之间系统处理效果最好。系统连续运行试验结果表明,处理后出水浊度能够达到2.07NTU左右,系统抗冲击负荷能力强,水力负荷最大为27m/h。系统增加了强制搅拌,使悬浮层中的絮体颗粒受力更加均匀,改善了悬浮层的流化性能,避免了结团絮凝区内局部积泥及短流现象,从而保证了系统的稳定高效运行。
     (4)高效固液分离装器用于低温低浊水处理是可行有效的,系统稳定性高、处理效果显著,操作简单;采用水力混合,能耗低;利用回流污泥的助凝作用,降低了药剂投加量,节约了水处理成本,适合于西北地区小城镇冬春季低温低浊水的处理。
The low temperature and low turbidity water was treated by using a high efficient solid-liquid separator, which invented by Xi'An University of Architecture and Technology. The study includes two parts, part 1 is about the low turbidity water treatment, the system operation, the characteristics of suspended layer and the stability of the system was studied in this part; Part 2 is about the research of the pilot experiments on low temperature and low turbidity water treatment, mainly including the characteristic of tubular reactor and the stability of the system. The main contents and achievements are as follows:
     (1) The coagulation equipment is constituted with two static mixers and tubular reactor in series. Good effect could obtain when PAC injection point is before two static mixers, PAM injection point before tubular reactor, and backflow sludge injection point is between two static mixers.
     (2) The water used in the pilot experiment is artificial and simulated the characteristics of TangYu raw water with raw turbidity 4NTU, CODMn 3-4 mg/L, temperature 17-21℃. The treatment effect was satisfactory for the effluent turbidity before filtration reaching 0.8-1.9 NTU, the CODMn removal efficiency 27.42-36.64% and the flow rate 30cm/min-50cm/min When PAC dosage of 3.2 mg/L, PAM dosage of 0.4 mg/L, sludge backflow ratio is 4.8% and sludge concentration about 21.2-23.8 g/L.
     (3) It could be observed that the Optimal operating conditions were the dosage of PAC 3 mg/L, the initial particle's surface Zeta potential-12.2mV after coagulation, PAM 0.27-0.4 mg/L, sludge backflow ratio 7.46% and sludge concentration about 12.4 g/L under the conditions of the raw water average temperature 3.8℃and the raw turbidity about 6 NTU in the pilot experiment. Based on G and GT,40m and 25mm was respectively the optimal length and diameter of tubular reactor according to effluent effects while the value of G is 156.47s-1. The tubular reactor could obtain a good effect when the value of GT was between 14777.63 to 19164.22. The effluent turbidity could reach 2.07 NTU after continuous operation, and the system had a strong impact resistance on max load capacity with 27m/h. The function of compulsory mixing could contribute to stable operation for the suspended particles uniformly forced, the improvement of the fluidization effect of suspended layer, the avoidance of short flow and local deposits, the persistent balance and replacement of the suspended layer.
     (4) It is feasible using the efficient solid-liquid separator to treat low temperature and low turbidity water. The results showed that the system has the advantages of high stability, good treatment effects and simple operation, also a low energy consumption by using hydraulic mixing, a lower dosage costs of PAM by using backflow sludge as flocculants, and is suitable for the treatment of low temperature and low turbidity water in small cities and towns of northwest regions.
引文
[1]2008-2020年中国环境经济形势分析与预测[M].中国环境科学出版社.2008.
    [2]彭珂.西部大开发生态环境重建面临的严竣挑战[J].科技导报,2002,9.
    [3]唐然,龙腾锐,姜文超等.西部小城镇集中式供水现状与存在的问题[J].中国给水排水,2006,22(24).
    [4]王东田,海老,江邦雄.低浊水混凝沉定处理研究[J]给水排水,2005,31(11).
    [5]范晓金.加快发展小城镇供水的思路[J].海河水利,1999,(4):37.
    [6]蒋绍阶,智敏.小城镇供水系统存在的问题及对策[J].重庆大学学报,2005,28(11).
    [7]霍明昕,刘馨远.低温低浊水特性的分析[J].中国给水排水,1998 14(6):33-34.
    [8]许保玖.给水处理理论与设计[M].北京:中国建筑工业出版社,1990.
    [9]陈培康.给水净化新工艺[M].北京:学术书刊出版社,1990.
    [10]Marjorie J Vold. Computer simulation of floc formation in a colloidal suspension [J].J. Coloid Sci,1987,18:684.
    [11]Morris J K. Temperature effects on the use of metal-ion coagulants for water treatment [J].J.AWWA,1984,76(3).
    [12]D.H. Everett. Basic Principles of Colloid Science[M]. Royal Society of Chemistry, London:, 1988.
    [13]丛海兵,黄廷林,周楠等.西北高原地区的低温低浊水处理[J].中国给水排水,2003,19(7):60-61
    [14]王静.低温低浊水处理技术研究应用现状[J].低温建筑技术,2003,4:49-50.
    [15]马军,刘伟,李圭白.高铁酸盐复合药剂强化混凝处理低温低浊水的试验研究[J].给水排水,1997,23(11):9-11.
    [16]孟凡良,崔福义.低温低浊地表水处理技术的探讨[J].哈尔滨商业大学学报(自然科学版),Vol.19 No.2 Apr.2003:187-190.
    [17]王毅力,李大鹏,郭瑾珑絮凝-溶气气浮处理低温低浊水(中试)[J].中国给水排水,2002,Vol18, No11:9-12.
    [18]赵奎霞,李晓粤,张传义.微絮凝-直接过滤技术的研究与应用进展[J].环境保护科学,2003.10 Vol119, No29:12-14.
    [19]马军,陈忠林,李圭白,等.高锰酸盐复合药剂助凝处理高稳定性地表水[J].中国给水排水,1999,15(9):1-4.
    [20]刘洋,张声,张晓健.活性炭深床浮滤池以直接过滤方式运行处理低温低浊水研究[J].环 境污染治理技术与设备,2005,6(12):101-104.
    [21]李冬梅.低温低浊水的微絮凝一深床直接过滤技术研究[J].广东工业大学学报,2003,20(2):65-69.
    [22]Chang F Y, Gutshall M, Skradski. Microsand enhanced clarification for wastewater treatment:results from pilot studies in primary tertiary and CSO applications [R].Florida: Orlando,1998.08
    [23]Clarification with microsand seeding:A state of the art [J]. Water Research,15:1281-1290.
    [24]王静.浮沉池一滤池工艺在低温低浊水处理应用[J].低温建筑技术,2002,(4):47-48.
    [25]刘继平.污泥回流发处理低温低浊水的试验研究[J].给水排水,1995,No.1.
    [26]Integrated sludge thickening and lamellar separation performance in Scottish water applications [J].Case Study, Nov.2003:22-23
    [27]Bruce R Johnson, Linda Ferguson. Advanced Clarification Basics [J]. W E and T, Dec 2005, 17,12:64-69
    [28]洪觉民.欧洲水厂观感[J].给水排水,Vol.24 No.3 1998.
    [29]Pujol R, Hamon M, Kandel X, et al. Biofilters:flexible, reliable biological reactors [J].Wat Sci Tech,1994,29(10-11):33-38.
    [30]舒玉芬,胡永龙.保定市地表水厂污泥处理设计特色[J].给水排水Vol.30 No.4 2004.
    [31]于泮池、王晓昌等.结团凝聚工艺的研究(一)[J],西安冶金建筑学院学报,1986,3:5.
    [32]Marjorie J Vold. Computer simulation of floe formation in a colloidal suspension [J].J. Coloid Sci,1987,18:684.
    [33]D N Sutherland. A theoretical model of floc structure [J].J.Colloid and Interface Sci, 1967(25):373.
    [34]李润生,李凯.聚氯化铝盐基度与混凝效果的关系[J].中国给水排水,2001,Vol.17 No.8:71-73
    [35]汤鸿霄.无机高分子絮凝剂的几点新认识[J].工业水处理,17(4):1-5.
    [36]张晓盈.浅谈聚丙烯酰胺在水处理中的作用[J].江西化工,2000年第1期:49-50.
    [37]黄廷林,曹翀.投药条件对结团凝聚工艺的影响[J].西安冶金建筑学院学报,1991,23(4):404-410.
    [38]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨(Ⅰ)——从絮凝体分形构造谈起.环境科学学报,2000,20(3):257-262.
    [39]Tambo N, Wang XC. The mechanism of pellet flocculation in a fluidized pellet bed operation.[J].J. Water SRT-Aqua,1993,42(2):47.
    [40]黄廷林、曹翀.管式絮凝器用于结团凝聚工艺的研究[J].西安冶金建筑学院学报,1991,23(2):213-221.
    [41]刘继平.污泥回流法处理低温低浊水的试验研究[J]给水排水,1995,No.1.
    [42]黄廷林.污泥浓缩的造粒流化床理论与技术[J].给水排水,1997,23(7).
    [43]黄廷林.结团造粒流化床中造粒动力条件研究[J].给水排水,1998,24(5).
    [44]黄廷林,岳晓勤.结团体流化床的运动平衡[J].给水排水,1996,22(3).
    [45]黄廷林.结团体致密的动力条件研究[J].西安冶金建筑学院学报,1993,25(1).
    [46]黄廷林,张刚,聂小保.造粒流化床浓缩技术处理给水厂排泥水的中试研究[J].给水排水,2005,31(11).
    [47]聂小保,黄廷林,张刚.造粒流化床处理深圳梅林水厂的生产废水研究[J]中国给水排水,2006,4.
    [48]黄廷林,聂小保.南方某水厂生产废水处理工艺运行中存在的问题及应对措施[J].环境工程,2004,12.
    [49]郭宁.水厂排泥水高效处理技术研究[D].西安建筑科技大学硕士论文.2008.
    [50]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨——Ⅱ[J].致密性絮凝体形成操作模式[J].环境科学学报,2000,20(4):385-390.
    [51]何纯提.净水厂排泥水处理[M].北京:中国建筑工业出版社,2006:89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700