圆形压电单晶执行器的挠度特性的模拟、分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆形压电单晶执行器(Circular piezoelectric unimorph actuator, CPUA)由圆形压电陶瓷片通过环氧树脂粘结在金属基层上构成,由于结构简单、输出位移相对较大,在采用压电执行器作为力或位移发生器的领域得到广泛应用。为对圆形压电单晶执行器以及基于圆形压电单晶执行器的系统进行性能预测和/或结构优化,建立其分析模型是关键。由于粘结层相对压电层和基层很薄,很多圆形压电单晶执行器模型只考虑了压电陶瓷晶片和基层,忽略了粘结层。如果在建模的过程中考虑粘结层应该能更精确模拟圆形压电单晶执行器的挠度变形。
     本文利用圆形薄板小挠度弯曲理论建立了固支边部分覆盖圆形压电单晶执行器在作用电压控制下的挠度数学模型,在建模过程中将粘结层作为单独一层考虑。根据建立的数学模型,分析了电压、压强及圆形压电单晶执行器的几何参数和材料特性对其挠度的影响。建立了实验装置对圆形压电单晶执行器静态和动态挠度进行了测试。根据本文建立的模型以圆形压电单晶执行器变形体积最大为目标对圆形压电单晶执行器的几何结构进行了优化。
     本文主要的研究工作和成果包括:
     1.利用圆形薄板小挠度弯曲理论、压电本构方程和轴对称的平衡方程建立了固支边部分覆盖圆形压电单晶执行器在作用电压控制下的挠度数学模型,在建模过程中将粘结层作为单独一层考虑。
     2.根据建立的数学模型,分析了作用于圆形压电单晶执行器的电压、压强及圆形压电单晶执行器的几何参数和材料特性对其挠度的影响。当圆形压电单晶执行器结构一定时,改变作用电压或压强可得到圆形压电单晶执行器不同的挠度,且圆形压电单晶执行器的中心挠度与作用电压和压强成正比;当压电层和基层的半径比在0.85-0.9左右时圆形压电单晶执行器中心挠度达到最大值,圆形压电单晶执行器变形最大;粘结层与基层厚度比越小,圆形压电单晶执行器挠度越大,实际设计圆形压电单晶执行器时,为了得到较大的挠度,可以在不影响压电层和基层的粘结的情况下减小粘结层的厚度;粘结层的柔性系数对圆形压电单晶执行器挠度影响很小,在优化设计圆形压电单晶执行器时可以不考虑粘结层的柔性系数。
     3.建立了实验装置并对两种半径比的圆形压电单晶执行器的静态和动态挠度进行了测试。实验结果表明由建立的模型预测的圆形压电单晶执行器的静态挠度与实际测得值吻合,比忽略粘结层的模型更精确,相对最大误差最多可减小8.45%;忽略粘结层影响的情况下部分覆盖圆形压电单晶执行器挠度模拟误差明显大于半覆盖圆形压电单晶执行器挠度模拟误差;由于未考虑压电陶瓷的迟滞特性,本文建立的模型在预测圆形压电单晶执行器的动态特性时存在较大误差,需进一步研究。
     4.根据本文建立的圆形压电单晶执行器的挠度模型,以圆形压电单晶执行器变形体积最大为目标对圆形压电单晶执行器的几何结构运用遗传算法进行了优化。优化结果表明,当基层半径一定时,压电层和基层的半径比为0.865,压电层、粘结层和基层的厚度为允许值的最小值时,圆形压电单晶执行器变形体积最大。
     本文的研究工作对圆形压电单晶执行器以及基于圆形压电单晶执行器的系统进行性能预测和/或结构优化奠定了理论基础。
A circular piezoelectric unimorph actuator (CPUA), by bonding a circular polarized piezoelectric layer and a substrate layer to each other using the conducting epoxy as the bonding layer, is widely used for a variety of force and/or displacement generators because of the compact structure and relative large deflection. In order to predict and optimize the behavior of CPUAs and CPUAs based systems, the key problem lies in establishing the analytical model for CPUAs. The bonding layer of the CPUA is relatively very thin compared with the piezoelectric layer and the substrate layer, most models for the CPUAs took both the piezoelectric layer and the substrate layer into account while always neglected the bonding layer. Theoretically speaking, it is reasonable that the static deflection model for CPUAs considering the influence of the bonding layer can accurately model the deflections of CPUAs.
     In this paper, based on the classical laminated plate theory, a new static deflection model for CPUAs subjected to applied voltage is established and the bonding layer is taken into account as an individual layer. According to the established analytical model, the influences of the voltage, pressure, structural parameters, and material properties of the CPUA on the transverse deflection are numerically simulated and the static and dynamic characteristics of the CPUA are experimentally tested. Based on the established analytical model, the structural parameters are optimized aiming at getting the maximum volume caused by deflection.
     The major research works completed in this dissertation include:
     1. A new static deflection model for CPUAs subjected to applied voltage is established based on the classical laminated plate theory, the constitutive equations for the piezoelectric layer, and the equilibrium equations for the axisymmetric plate. When modeling, the bonding layer is taken into account as one of single layers.
     2. According to the established analytical model, the influences of the voltage and pressure applied to the CPUA and the structural parameters and material properties of the CPUA on the transverse deflection are numerically simulated. When the structure of the partially covered CPUA is determined, the different deflections can be available by changing the applied voltage and the pressure. The central deflection is directly proportional to the applied voltage and pressure and reaches a peak value when the radius ratio of the piezoelectric layer and the substrate layer is around 0.85-0.9. The smaller the thickness ratio of the bonding layer and the substrate layer is, the larger the central deflection is. When designing the CPUA, the large central deflection of the partially covered CPUA can be realized by reducing the thickness of the bonding layer on the promise that the cementation between the piezoelectric layer and the substrate layer can be ensured. There is a little influence of the elastic compliance constant of the bonding layer on the deflection of the partially covered CPUA and the influence of the elastic compliance constant of the bonding layer can be neglected when optimizing the performance of the partially covered CPUA.
     3. The static and dynamic characteristics of the CPUAs with different radius ratio are experimentally tested by the established experimental setup The experimental results show that the predicted static deflections of the CPUA by the established deflection model in this paper agree well with the experimentally measured results, the established static deflection model considering the bonding layer is more accurate than the existed model neglecting the bonding layer, and the maximum relative error is reduced by 8.45%. The predicted deflection errors for the partially covered CPUA by the deflection model neglecting the bonding layer are obviously larger than those for the half covered CPUA. Because the hysteresis of the piezoelectric material is not considered when establishing the static deflection model, the error apparently exists when utilizing the static deflection model to predict the dynamic characteristic of the CPUA. If the deflection model for CPUAs is used to predict the dynamic deflections, the further research is needed.
     4. According to the established analytical model for the CPUA, the structural parameters are optimized aiming at getting the maximum volume caused by deflection based on genetic algorithm. The results show that the volume caused by deflection reaches its maximum value when the radius of the substrate layer is constant and the radius radio of the piezoelectric layer and the substrate layer is 0.865 with the minimum value of the thickness of the piezoelectric layer, bonding layer, and substrate layer.
     The research work in this paper lays the theoretic foundation for predicting and optimizing the behavior of CPUAs and CPUAs based systems.
引文
[1] Christopher N, Diann B, Sivakumar B, and Andrew M. Piezoelectric Actuation: State of the Art [J]. The Shock and Vibration Digest, 2001, 33: 269-280.
    [2]张福学,王丽坤.现代压电学(上册中册)[M].北京:科学出版社, 2002.
    [3]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社, 2004.
    [4] Dorojkine L M, Volkov V V, Doroshenko V S. Lavrenov A A, Mourashov D A, and Rozanov I A, Thin-film piezoelectric acoustic sensors. Application to the detection of hydrocarbons [J]. Sensors and Actuators B: Chemical, 1997, 44(1-3): 488-494.
    [5] Laser D J and Santiago J G. A review of micropumps, Journal of Micromechanics and Microengineering [J]. 2004, 4(6): R35–R64.
    [6] Woias P. Micropumps–past, progress and future prospects [J]. Sensors and Actuators B: Chemical, 2005, 105(1): 28-38.
    [7] Rife J C, Bell M I, Horwitz J S, Kabler M N, Auyeung R C Y and Kim W J. Miniature valveless ultrasonic pumps and mixers [J]. Sensors and Actuators, 2000, 86(1-2): 135-140.
    [8] Mailefer D, Gamper S, Frehner B and Balmer P. A high-performentce silicon micropump for disposable drug delivery systems [A]. Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems, 2001: 413–417.
    [9] Woias P. Micropumps–summarizing the first two decades [A]. Proceedings of SPIE Conference on Microfluidics and BioMEMS, SPIE, 2001, 4560: 39-52.
    [10] Schomburg W K, Vollmer J, Bustgens B, Fahrenberg J, Hein H and Menz W. Microfluidic components in LIGA technique [J]. Journal of Micromechanics and Microengineering, 1994, 4(4): 186-191.
    [11] Shoji S, Esashi M. Microflow devices and systems [J]. Journal of Micromechanics and Microengineering, 1994, 4 (4): 157-171.
    [12] Elwenspoek M, Lammerink T S J, Miyake R and Fluitman J H J. Towards integrated microliquid handling systems [J]. Journal of Micromechanics and Microengineering, 1994, 4(4): 227-245.
    [13] Jang L S, Li Y J and Lin S J. A stand-alone peristaltic micropump based on piezoelectric actuation [J]. Biomedical Microdevices, 2007, 9(2): 185-194.
    [14] Li J H, Kan W H, Jang L S. A portable micropump system based on piezoelectric actuation. [C]. Piscataway, NJ 08855-1331, United States, Institute of Electrical and Electronics Engineers Computer Society, 2007.
    [15] Suzuki T, Teramura Y, Hata H. Development of a micro biochip integrated traveling wave micropumps and surface plasmon resonance imaging sensors [J]. Microsystem Technologies, 2007, 13(8-10): 1391-1396.
    [16] Ma H K, Hou B R, Wu H Y. Development and application of a diaphragm micro-pump with piezoelectric device [J]. Microsystem Technologies, 2008, 14(7): 1001-1007.
    [17]焦小卫,黄卫清,赵淳生.压电泵技术的发展及其应用[J].微电机, 2005, 38(5): 66-69.
    [18] Nisar A, Afzulpurkar N, Mahaisavariya B. MEMS-based micropumps in drug delivery and biomedical applications [J]. Sensors and Actuators, B: Chemical, 2008, 130(2): 917-942.
    [19] Kan J W,Yang Z G, Peng T J. Design and test of a high-performance piezoelectricmicropump for drug delivery [J]. Sensors and Actuators A: Physical, 2005, 121(1): 156-161.
    [20] Yun K S, Cho I J, Bu J U, Kim C J and Yoon E. A surface-tension driven micropump for low-voltage and low-power operations [J]. Microelectromech. Syst. 2002, 11:456-461.
    [21] Geipel A, Doll A, Goldschmidtboing F. Pressure-independent micropump with piezoelectric valves for low flow drug delivery systems[C]. Istanbul, Turkey: Institute of Electrical and Electronics Engineers Inc, Piscataway, NJ 08855-1331, United States, 2006.
    [22] Berg J M. A two-stage discrete peristaltic micropump[J]. Sensors and Actuators A, 2003, 104: 6–10.
    [23] Cui Q F, Liu C L, Zhan X F. Study on a piezoelectric micropump for the controlled drug delivery system [J]. Microfluidics and Nanofluidics, 2007, 3(4): 377-390.
    [24] Cui Q F, Liu C L, Zhan X F. Design and simulation of a piezoelectrically actuated micropump for the drug delivery system. 2007[C]. Shanghai, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States.
    [25] Chafraborty I, Tang W C, Bame D P. MEMS micro-valve for space applications [J]. Sensors and Actuators, A: Physical, 2000, 83(1): 188-193.
    [26] Roberts D C, Li H, Steyn J L. A piezoe-lectric microvalve for compact high-frequency, high-differential pressure hydraulic micropumping systems [J]. Journal of Microelectro mechanical Systems, 2003, 12(1): 81-92.
    [27] Yang E H, Lee C, Mueller J. Leak-tightpiezoelectric microvalve for high-pressure gas micro-propulsion [J]. Journal of Microelectromechanical Systems, 2004, 13(5): 799-807.
    [28]王代华,明亮.基于压电致动的微流体主动控制阀的研究[J].压电与声光, 2008, 30(5): 547-550.
    [29]明亮.一种具有圆环面边界的微流体主动控制阀的研究[D].重庆:重庆大学光电工程学院, 2008.
    [30]李婷,傅波.压电阀的发展及应用[J].流体传动与控制, 2009, 37(6):1-5.
    [31] Jong M P, Ryan P T, Allan T E. A piezoelectric microvalve for cryogenic applications [J]. Journal of micromechanics and microengineering, 2008,18 (1): 15-23.
    [32] Park J M, Evans A T, Rasmussen K. A Microvalve with Integrated Sensors and Customizable Normal State for Low-Temperature Operation [J]. Journal of microelectromechanical systems, 2009, 18 (4): 868-877.
    [33]林敬国.整体开启阀式压电泵理论与试验研究[D].长春:吉林大学机械科学与工程学院, 2005.
    [34] Nguyen N T, Truong T Q. A fully polymeric micropump with piezoelectric actuator [J]. Sensors and Actuators B: Chemical, 2004, 97(1): 137-143.
    [35]孙晓锋,杨志强,刘晓论,等.整体开启阀与悬臂梁阀压电泵性能研究[J].光学精密工程, 2006, 14(4): 648-651.
    [36]刘国君,程光明,杨志刚.微型压电泵的实验研究[J].仪器仪表学报, 2006,27(4):336-340.
    [37]刘国君,程光明,杨志刚.一种压电式精密输液微泵的试验研究[J].光学精密工程, 2006, 14(4): 612-616.
    [38]刘国君.迭片式系列微型压电泵的设计理论及试验研究[D].长春:吉林大学机械科学与工程院, 2006.
    [39]李庆祥,李玉和.微装配与微操作技术[M].北京:清华大学出版社, 2004.
    [40] Cohn M B, B?hringer K F, Novorolski J M, Singh A, Keller C G, Goldberg K Y, and Howe R T. Microassembly technologies for MEMS [A]. Proceedings of the SPIE Conference on Micromachining and Microfabrication Process Technology IV, Santa Clara, CA, September 1998, 3511: 2-16.
    [41] Koyano K and Sato T. Micro object handling system with concentrated visual fields and new handling skills [A]. Proceedings of the IEEE International Conference on Robotics and Automation, April 1996, 3: 2541-2548.
    [42] Brussel H Van, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N, Weck M, and Zussman E. Assembly of Microsystems [J]. Annals of the CIRP, 2000, 49(2): 451-472.
    [43] Tsui K, Geisberger A A, Matt Ellis, and Skidmore G D. Micromachined end-effector and techniques for directed MEMS assembly [J]. Journal of Micromechanics and Microengineering, April 2004, 14(4): 542-549.
    [44] Fahlbusch St., Mazerolle S, Breguet J M, Steinecker A, Agnus J, Perez R, and Michler J. Nanomanipulation in a scanning electron microscope [J]. Journal of Materials Processing Technology, August 2005, 167(2-3): 371-382.
    [45] Sanchez A J, Lopez T R, Guzman D R, and Ricolfe V C. Recent development in micro-handling systems for micro-manufacturing [J]. Journal of Materials ProcessingTechnology, 2005, 167(2-3): 499-507.
    [46] Wang L D, Mills J K, and Cleghorn W L. Automatic microassembly using visual servo control [J]. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(4): 316-325.
    [47]杨群.一种夹爪平行移动的压电致动微夹钳的研究[D],重庆大学光电工程学院, 2009.
    [48] Seki H. Modeling and impedance control of a piezoelectric bimorph microgripper [A]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, July 7-10 1992: 958-965.
    [49] Yao. Q, Bjorno L. Depth restrictions and solutions for barrel stave flextensional trandsducers [A]. Proceeding of the 3rd European conference on Underwater acoustics, Heraklion, Crete, Greece, 1996: 3-13.
    [50]袁易全,陈思忠,近代超声原理与应用[M].南京:南京大学出版社, 1996.
    [51]张金铎,奕桂冬,刘伏虎,双迭片弯曲换能器接受特性的分析与研究[J],声学技术, 1999, 18(3): 107一111.
    [52] Dorojkine L M, Volkov V V, Doroshenko V S. Thin-film piezoelectric acoustic sensors. Application to the detection of hydrocarbons [J]. Sensors and Actuators B: Chemical, 1997, 44(1-3): 488-494.
    [53] Liu R H, Yu Q and Beebe D J. Fabrication and characterization of hydrogel-based microvalves [J]. Microelectromech. Syst. 2002, 11: 45–53.
    [54] Saravanos D A, Heyliger P R. Mechanics and computational models for laminated Piezoelectic beams, plates, and shells [J]. APPlied Meehanies Review, 1999, 52(10): 305-319.
    [55]徐芝纶.弹性力学(第二版) [M].下册.北京:人民教育出版社, 1980.
    [56]吴家龙.弹性力学(第一版) [M].上海:同济大学出版社, 1993.
    [57] Chee C K, Tong L, Steven G P. A review on the modeling of piezoelectric sensorsand actuators incorporated in intelligent structures [J]. Intel. Mater. Syst.Str. 1998, 9: 3–19.
    [58] Reddy J N. A Review of Refined Theories of Laminated Composite Plates [J]. Shock and Vibration Digest, 1990, 22: 3-17.
    [59] Nosier A, Kapania R K and Reddy J N. Free Vibration Analysis of Laminated plates Using a Layerwise Theory [J]. AIAA Journal 1993, 8: 335-2346.
    [60] Dobrucki A B and Pruchnicki P. Theory of piezoelectric axisymmetric bimorph [J]. Sensor and Actuator A: Physical, 1997, 58(3): 203-232.
    [61] Ding H J, Xu R Q, Chi Y W and Chen W Q. Free axisymmetric vibration of transversely isotropic piezoelectric circular plates [J]. International Journal of Solids and Structures, 1999, 36(30): 4629-4652.
    [62] Heyliger P R and Ramirez G. Free vibration of laminated circular piezoelectric plates and discs[J]. Journal of Sound and Vibration, 2000, 229(4): 935-956.
    [63] Li S F and Chen S C. Analytical analysis of a circular PZT actuator for valveless micropumps [J]. Sensors and Actuators A: Physical, 2003, 104(2), 151-161.
    [64] Mo C, Wright R, Slaughter S W and Clerk W W. Behaviour of a unimorph piezoelectric actuator [J]. Smart Materials and Structures, 2006, 15(4): 1094-1102.
    [65] Prasad S, Sankar B, Cattafesta L, Horowitz S, Gallas Q and Sheplak M. Analytical electroacoustic model of a piezoelectric composite circular plate [J]. AIAA Journal, 2006, 44(10): 2311-2318.
    [66] Deshpande M and Saggere L. An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator [J]. Sensors and Actuators A: Physical, 2007, 136(2): 673-689.
    [67]刘品宽,孙立宁.双压电复合薄圆板驱动器的理论分析[J]压电与声光, 2002 24(2): 111-115.
    [68]黎毅力,张建辉,夏齐霄.泵用压电振子动态特性的研究[J].中国机械, 2007, 18(17): 2088-2093.
    [69] Kunkel H A, Locke S and Pikeroen B. Finite element analysis of vibrational modes in piezoelectric ceramic discs [J]. IEEE Transaction of Utrasonics, Ferro-electrics, and Frequency Control, 1995, 37: 316-328.
    [70] Gou N, Cawley P and Hitchings D. The finite element analysis of the vibration characteristics of piezoelectric discs [J]. Journal of Sound and Vibration, 1992, 159: 115-138.
    [71] Andrzej B D and Piotr P. Theory of piezoelectric axisymmetric bimorph [J]. Sensor and Actuator A, 1997, 58: 203-212.
    [72] Morris C J and Forster F K. Optimization of a circular piezoelectric bimorph for a micropump driver [J]. Journal of Micromechics and Microengineering, 2000, 10(3): 459-465.
    [73] Muralt P, Baborowski J, Ledermann N. Piezoelectric MEMS with PZT thin films: integration and application [J]. Issues Piezoelectr MEMS Technol, 2002, 3(12): 231–260.
    [74] Mason W P. Electromechanical Transducers and Wave filters [M]. New York: Wan Nostrand, 1948.
    [75] Mason W P. Piezoelectric Crystals and their application to ultrasonics [M]. New York: Van Nostrand, 1950.
    [76] Schumacher M, Manetta S, Waser R. Dielectric relaxation phenomena in superparaelectric and ferroelectric ceramic thin films and the relevancewith respect to high density DRAM and FRAM applications[J]. J Phys IV (Proceedings), 1998, 8(9): 117–120.
    [77] Brown L F and Carson D L. Ultrasound transducer models for piezoelectric polymer films [J].IEEE Trans Ultrason Ferroelectr Freq Control, 1989, 36(3): 313–318.
    [78] Hiroshi S and Shigemi S. An improved equivalent circuit of piezoelectric transducers including the effect of dielectric loss [J]. Journal of the Acoustical Society of Japan (E), 1985, 6(3): 225–233.
    [79] Prasad A N, Sankar B V. Two-port electroacoustic model of an axisymmetric piezoelectric composite plate [J]. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, 2006, 44(10): 2311-2318.
    [80] Robert B Meyer. Piezoelectric Effects in Liquid Crystals [J]. Physical Review Letters, 1969, 22(18): 918-921.
    [81] Park S H, Chuang S L. Piezoelectric effects on electrical and optical properties of wurtzite GaN/AlGaN quantum well lasers [J]. Applied Physics Letters, 1998, 2(24): 3103-3109.
    [82]倪振华.振动力学[M].西安:西安交通大学出版社, 1988.
    [83]孙元宝.现代执行器技术[M].吉林:吉林大学出版社, 2003.
    [84] S.铁摩辛柯, S.沃诺斯基(美).板壳理论[J].北京:科学出版社, 1977.
    [85] Fernandes A and J Pouget. Accurate modelling of piezoelectric plates: single-layered plate [J]. Archive of Applied Mechanics, 2001, 71(8): 509-524.
    [86] Liu C, Cui T and Zhou Z. Modal analysis of a unimorph piezoelectrical transducer [J]. Microsystem Technologies, 2003, 9(6-7): 474-479.
    [87] Wang G Q, Sankar B V and Louis N C. Analysis of a composite piezoelectric circular plate with initial stresses for MEMS [A]. Proceedings of 2002 ASME International Mechanical Engineering Congress and Exposition, 2002, 11: 17-22.
    [88] Zhang T and Wang Q M. Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices [J]. Journal of Power Sources, 2005, 140(1): 72-80.
    [89] Timoshenko S and Woinowsky-Krieger S. Theory of Plates and Shells [M]. New York: McGraw-Hill, 1959.
    [90] Vinson J R. Structural Mechanics: The Behavior of Plates and Shells [M]. New York: Wiley-Interscience, 1974.
    [91] Papila M, Sheplak M and Cattafesta N. Optimization of clamped circular piezoelectric composite actuators [J]. Sensors and actuators A: Physical, 2008, 147(1), 310-323.
    [92] [EB/OL] http://www.annon.com.cn/medical-transducer.htm.
    [93] [EB/OL] http://www.yt178.com/Html/chaoshengbochanpinzhanshi/product/904366.html.
    [94] [EB/OL] http://www.rishengele.com/cailiao.htm.
    [95]陈国良,王煦法,庄镇来等.遗传算法及其应用[M].北京:人民邮电出版社, 1996.
    [96]周明,孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700