十六烷基三甲基氯化铵胶束流变和减阻性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了十六烷基三甲基氯化铵(CTAC)与水杨酸钠(NaSal)、反式肉桂酸钠(trans-CANa,简称CA)、反式邻氯肉桂酸钠(trans-Ortho-ClCANa,简称OClCA)等反离子形成胶束的过程,着重考察胶束体系的流变性质和减阻性能,获得以下主要结论:
     1)在一定的浓度配比下获得CTAC/NaSal粘弹性胶束体系,当CTAC与NaSal的摩尔浓度比在0.6左右时,相对粘度出现最大值,粘弹性胶束体系的结构最强。温度对体系的粘度影响显著,当温度升至50℃时,胶束的粘弹性基本消失。丙三醇可显著降低CTAC/NaSal胶束溶液粘度。
     2)以CA和OClCA为新型反离子可分别与CTAC形成粘弹性胶束新体系,具有良好的粘弹性、触变性和剪切变稀性。明确了CA和OClCA对CTAC形成胶束流变性的影响。相同条件下,OClCA与CTAC形成胶束的结构更强。非线性共转Jeffreys本构方程模型可表征上述胶束体系的粘度随剪切速率变化曲线,模拟结果与结果吻合良好。
     3)粘弹性CTAC/CA胶束和CTAC/OClCA胶束体系均具有良好的减阻效果,为减阻、胶束新体系。CTAC/CA体系的减阻率随Re的增大出现最大值,其临界雷诺数Recr随着CTAC浓度的增大而增大;当CTAC与CA的摩尔浓度比为5mM/15mM时,在光滑管和粗糙管中的最大减阻率分别为72%和63%。在一定组成下,CTAC/OClCA胶束体系减阻率随Re的增大而增大;当(CTAC与OClCA摩尔浓度比为5mM/10mM和5mM/15mM时,在光滑管和粗糙管中的减阻率可分别达到85%和77%。进一步明确了反离子对减阻效果的影响。
     本文研究结果对进一步开展表面活性剂胶束减阻研究提供一定基础。
In this paper, the micellization of cetyltrimethyl ammonium chloride (CTAC) and counterions, such as sodium salicylate(NaSal), trans-sodium cinnamate (trans-CANa, abbr.CA) and trans-Ortho-Chloro-sodium cinnamate (trans-Ortho-ClCANa, abbr.OCICA) was studied. The rheological properties and drag reducing behaviors of CTAC micelles were investigated. The main conclusions were made as follows.
     1) The viscoelastic micelle systems could be formed by CTAC and NaSal in certain conditions. Relative viscosity of CTAC/NaSal solutions appeared a peak value and the structure of viscoelastic micelle system was strongest when the molar ratio of CTAC to NaSal was about 0.6.The effect of temperature on the viscosity curves was significant. When the temperature reached 50℃, the viscoelasticity of micelle disappeared. Relative viscosity of CTAC/NaSal solutions would be greatly decreased by adding glycerol into CTAC/NaSal micelle solutions.
     2) The novel viscoelasitic micelle systems could be prepared by mixing CTAC with new counterions CA and OCICA respectively. These micelle systems possessed good properties of shear-thinning, viscoelasticity and thixotropy. The effects of CA and OCICA on the rheology of CTAC micelle solutions were discussed. The micelle structure made of CTAC and OCICA was stronger under the same condition compared with CTAC/CA micelle system. The non-linear co-rotational Jeffreys model was applied to describe the viscosity curves of the above micelle systems.The results showed that the calculated values were in good agreement with the experimental data.
     3) Both CTAC/CA and CTAC/OClCA viscoelastic micelle systems possessed good drag reducing behaviors and were proved to be novel drag reduction micelle systems. The results indicated that drag reduction rate for CTAC/CA micelle appeared a maximum value with the increase of Reynolds number. The critical Reynolds number (Recr) increases with the increase of CTAC concentration. When the molar ratio of CTAC to CA was 5mM/15mM, the maximum drag reduction rates were 72%in smooth pipe and 63%in rough pipe respectively. For the CTAC/OClCA micelle systems, when the molar ratios of CTAC to OCICA were 5mM/10mM and 5mM/15mM, the drag reduction rate could acheieve 85%in smooth pipe and 77%in rough pipe respectively. The Effect of counterions on the drag reduction was further illustrated.
     The studies in this paper can provide good basis for the future study of surfactant drag reduction.
引文
[1]赵志勇,董守平.沟槽面在湍流减阻中的应用[J].石油化工高等学校学报,2004,17(3):76-79
    [2]Toms B A. Some observations on the flow of linear polymer solutions through straight tubes at large reynolds numbers[J].Proceeding of the first International Congress of Rheology[C].North Holland:Amsterdam,1948(2):135-141
    [3]Qi Y, Littrell K, Thiyagarajan P, et al. Small-angle neutron scattering study of shearing effects on drag-reducing surfactant solutions [J]. Journal of Colloid and Interface Science 2009,337 (1):218-226
    [4]戴福俊,鲍旭晨,张志恒,等.成品油管道应用减阻剂研究[J].油气储运,2009,20(1):19-23
    [5]Kawaguchi Y, Segawa T, Feng Z P, et al. Exprimental study on drag-reducing channel flow with surfactant additives——spatial structure of turbulence investigated by PIV system[J].International Journal of Heat and Fluid Flow,2002,23:700-709
    [6]周静瑜,王德忠,张伟骏,等.集中式空调水系统减阻流体性能研究[J].暖通空调,2004,34(7):82-87
    [7]李建生,李霞,魏清.工业水处理表面活性剂的减阻性能研究[J].工业水处理,2010,30(1):19-21
    [8]焦丽芳,李凤臣.添加剂湍流减阻流动与换热研究综述[J].力学进展,2008,38(3):339-357
    [9]庞明军,魏进家,李凤臣.表面活性剂减阻溶液湍流传热结构研究进展[J].热能动力工程,2010,25(2):127-133
    [10]Rops C M, Lindken R, Velthuis J F M,et al. Enhanced heat transfer in confined pool boiling [J].International Journal of Heat and Fluid Flow,2009,30(4):751-760
    [11]Yang H Y, Zhang S C, Liu H, et al. Studies on the micellization and intermicellar interaction of CTAB in dilute solution [J]. Journal of Materials Science,2005, 40(17):4645-4648
    [12]宁爱民,孟磊,宛新生,等.温度和添加剂对季铵盐Gemini表面活性剂CMC的影响[J].科技导报,2009,27(11):48-51
    [13]莫春生,钟前.温度对十六烷基三甲基溴化铵胶束盐溶液粘度的影响[J].江西师范大学学报(自然科学版),1997,21,(4):347-353
    [14]Kim W J, Yang S M. Effects of Sodium Salicylate on the Microstructure of an Aqueous Micellar Solution and its Rheological Responses [J]. Journal of Colloid and Interface Science,2000,232(2):225-234
    [15]Kuperkar K, Abezgauz L, Danino D, et al.Structural investigation of viscoelastic micellar water/CTAB/NaNO3 solutions[J].Pramana-journal of physics,2008,71(5):1003-1008
    [16]蒋炳英,黄忠,王茜,等.胺类添加物对离子表面活性剂胶束化的影响[J].四川大学学报(自然科学版),2003,40(6):1148-1152
    [17]张为灿,李于佐,沈强,等.正戊醇对CTAB/KBr胶束体系流变性的影响[J].化学学报,2000,58(4):374-377
    [18]凌锦龙,莫勤华,练小祥.混合极性溶剂乙二醇/水中正负离子表面活性剂SDS/CTAB的界面性质研究[J].化学研究与应用,2008,20(10):1363-1366
    [19]牟建海,李干佐,肖洪地等.阴离子表面活性剂AES虫状胶束的形成[J].科学通报,2001,46(9):723-726
    [20]胡忠前,马喜平,王红.粘弹性蠕虫状胶束及其应用[J].高分子通报,2007(8):24-28
    [21]郭拥军,李健.复合表面活性剂体系:一种新型流变控制剂[J].西南石油学报,1999,21(3):56-60
    [22]聂立宏,孙文丽,管玉荣等.粘弹性表面活性剂压裂液的化学和流变学原理[J].油田化学,2005,22(3):47-51
    [23]贾振福,钟静霞,牛红彬,等.新型清洁压裂液的实验室合成[J].钻井液与完井液,2006,23(6):4245
    [24]Wolff T, Lehnberger C.Photorheological Effects in Aqueous Micellar Tetramethylammoniumhydrogen-2-dodecyl Malonate via Photodimerization of Acridizinium Bromide[J] Journal of Colloid Interface Science,1999,213 (1):187-192
    [25]Shin J Y, Abbott N L. Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants [J]. Langmuir,1999,15(13):4404-4410
    [26]Eastoe J, Dominguez M S, Wyatt P. Properties of a stilbene-containing Gemini photosurfactant:light-Triggered changes in surface tension and aggregation [J]. Langmuir,2002,18(21):7837-7844
    [27]Ketner A M, Kumar R, Davies T S, et al. A simple class of photorheological fluids: surfactant solutions with viscosity tunable by light [J]. Journal of the American Chemical Society,2007,129(30),1553-1559.
    [28]Kumar R, Raghavan S R. Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles [J]. Soft Matter,2009,5(1),797-803
    [29]乔振亮,熊党生.减阻表面活性剂的研究进展[J].精细化工,2007,24(1):39-43
    [30]Zbigniew M, Tadeusz M, Barbara G. The influence of polymer-surfactant aggregates on drag reduction [J]. Thin Solid Films,2008,516(24):8848-8851
    [31]Wu G, Ellina K, Yeshayahu T, et al. Effects of chemical structures of para-halobenzoates on micelle nanostructure, drag reduction and rheological behaviorsof dilute CTAC solutions [J] Journal of Non-Newtonian Fluid Mechanics,2008,154(1):1-12
    [32]Lin Z Q, Lu B, Zakin J L,et al. Influence of surfactant concentration and counterion to surfactant ratio on rheology of wormlike micelles [J]. Journal of Colloid and Interface Science,2001,239(2):543-554
    [33]Lin Z, Zheng Y, Davis H T,et al. Unusual effects of counterion to surfactant concentration ratio on viscoelasticity of a cationic surfactant drag reducer[J]. Journal of Non-Newtonian Fluid Mechanics,2000,93(2-3):363-373
    [34]Lu B, Li X, Zakin J L,et al. A non-viscoelastic drag reducing cationic surfactant system[J].Journal of Non-newtonian Fluid Mechanics,1997,71(1-2):59-72
    [35]Bewersdorff H W, Ohlendorf D. The behavior of drag-reducing cationic surfactant solutions [J].Colloid and Polymer Science,1988,266(10):941-953
    [36]My ska J, Stern P. Significance of shear induced structure in surfactants for drag reduction [J]. Colloid and Polymer Science,1998,276(9):816-823
    [37]Myska J, Mik V.Degradation of surfactant solutions by age and by a flow singularity [J].Chemical Engineering and Processing,2004,43(12):1495-1501
    [38]Stem P, Myska J.Viscous and elastic properties of a cationic and a zwitterionic drag reducing surfactant[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,183-185(15):527-531
    [39]蔡书鹏.表面活性剂水溶液的减阻机理分析[J].湖南工业大学学报,2010,24(4):43-49
    [40]朱蒙生,邹平华,蔡伟华.添加剂减阻及其在供热系统中的应用[J].暖通空调,2009,39(7):48-59,
    [41]蔡书鹏,李大美CTAB表面活性剂水溶液的减阻特性[J].石油化工高等学校学报,2006,19(4):68-71
    [42]陈拥军,沈自求.添加表面活性剂减阻的试验研究[J].化学工业与工程,1999,16(2):110-114
    [43]陈学生,陈在礼,陈维山.湍流减阻研究的进展与现状[J].高技术通讯,2000,12:91-94.
    [44]徐诚,李玉胜,吴海浩,等.表面活性剂减阻试验研究[J].油气储运,2010,29(1):124-126
    [45]Hu Y T, Matthys E F. Effect of metal ions and compounds on the rheological properties of a drag-reducing cationic surfactant solution exhibiting shear-induced structure formation[J]. Journal of Colloid and Interface Science,1997,186(2):352-359
    [46]Aguilar G, Gasljevic K, Matthys E F. Coupling between heat and momentum transfer mechanisms for drag reducing polymer and surfactant Solutions [J]. Journal of Heat Transfer,1999,121:796-802
    [47]Oba G, Coleman B E, Zakin J L, et al. Synthesis of aminimides derived from oleic acid: a new family of drag-reducing surfactant [J]. Tetrahedron,2006,62(43):10193-10201
    [48]Wei J J, Kawaguchi Y, Li F C, et al. Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution [J]. International Journal of Heat and Mass Transfer,2009,52(15-16):3547-3554
    [49]Qi Y, Kawaguchi Y, Lin Z, et al. Enhanced heat transfer of drag reducing surfactant solution with fluted tube-in-Tube heat exchanger [J].International Journal of Heat and Mass Transfer,2001,44(8):1495-1550
    [50]Qi Y, Weavers L K, Zakin J L. Enhancing heat-transfer ability of drag reducing surfactant solutions with ultrasonic energy [J]. Journal of Non-Newtonian Fluid Mechanics,2003,116(1):71-93
    [51]Zhang Y, Schmidt J, Talmon Y, et al. Cosolvent effects on drag reduction, rheological properties and micelle microstructures of cationic surfactants [J]. Journal of Colloid and Interface Science,2005,286(2):696-709
    [52]Myska J, Lin Z, Zakin J L, et al.Influence of salts on dynamic properties of drag reducing surfactants[J].Journal of Non-Newtonian Fluid Mechanics,2001,97(2-3):251-266
    [53]Qi Y, Kawaguchi Y, Zakin J L, et al. Enhancing heat transfer ability of drag reducing surfactant solutions with static mixers and honeycombs[J].International Journal of Heat and Mass Transfer,2003,46(26):5161-5173
    [54]Zheng Y, Lin Z, Zakin J L, et al. CryOTEM imaging the flow-induced transition from vesicles to threadlike Micelles [J].Journal of Physical Chemistry B,2000, 104:5263-5271
    [55]Yu B, Li F C, Kawaguchi Y. Numerical and experimental investigation of turbulent characteristics in a drag-reducing flow with surfactant additives [J]. International Journal of Heat and Fluid Flow,2004,25(6):961-974
    [56]马祥琯,陶进.表面活性剂管道减阻及传热特性的研究[J].水动力学研究与进展,1993,8:636-642
    [57]官峰,许鹏,王德忠,等.氯化十六烷基三甲基季铵盐减阻流体实验[J].上海交通大学学报,2002,36(2):193-197
    [58]扈黎光,王德忠,金浩,等.中等质量分数CTAC表面活性剂溶液减阻性能试验研究[J].化学工程,2003,31(1):43-46
    [59]许鹏,王德忠,扈黎光,等.应用PDA对氯化十六烷基三甲基季铵盐溶液的实验研究[J].应用科学学报,2003,21(3):268-271
    [60]张红霞,王德忠,顾卫国,等.供热水系统CTAC减阻流体与传热性能研究[J].暖通空调,2007,37(9):45-49
    [61]董正方,顾卫国,张红霞,等.表面活性剂减阻流体传热与阻力关系试验研究[J].水动力学研究与进展,2007,21(4):494-498
    [62]张红霞,王德忠,顾卫国,等.表面活性剂减阻流体热边界层温度脉动及传热特性实验研究[J].水动力学研究与进展,2008,23(1):42-47
    [63]张杰,王德忠,董正方,等.添加网格对增强表面活性剂减阻流体传热性能的试验研究[J].水动力学研究与进展,2005,20(6):744-749
    [64]焦利芳,李凤臣,董泳,等.表面活性剂溶液在不规则管件内的湍流减阻特性[J].节能技 术,2009,27(153):7-13
    [65]蔡书鹏,杨林,唐川林.边界层中CTAB表面活性剂减阻水溶液的湍流特性[J].力学学报,2008.40(2):250-254
    [66]蔡书鹏,唐川林.表面活性剂减阻水溶液在紊流边界层中的流动结构[J].四川大学学报(工程科学版),2007,39(3):52-56
    [67]魏进家,川口靖夫,Hart D J一种新型两性界面活性剂的减阻特性[J].化工学报,2006,57(11):2750-2754
    [68]魏进家,川口靖夫.零下温度时二维通道内界面活性剂减阻流动的实验研究[J].西安交通大学学报,2006,40(1):79-83
    [69]魏进家,姚志强.一种界面活性剂减阻溶液的流变特性[J].化工学报,2007,58(2):335-340
    [70]夏国栋,王敏,鹿院卫,等.表面活性剂添加对气液两相流摩阻压降特性的影响[J].化工学报,2004,55(5):727-731
    [71]刘启明,夏国栋,齐景智,等.表面活性剂添加对歧管式微通道阻力特性的影响[J].化工学报,2006,57(11):2525-2530
    [72]Xiong X P, Liu W H, Ang H S, et al. Simulation of microstructure and rheological properties of surfactant solution [J].Transactions of Nanjing University of Aeronautics and Astronautics,2007,24(3):232-238
    [73]宇波,王艺,侯磊,等.不同流变性质的表面活性剂湍流减阻的直接数值模拟研究[J].工程热物理学报,2007,28(3):469-471
    [74]Wei J J, Kawaguchi Y,Yu B,et al. Brownian Dynamics Simulation of Microstructures and Elongational viscosities of micellar surfactant solution [J].Chinese Physics Letters, 2008,25(12):4469-4472
    [75]Ezrahi S, Tuval E, Aserin A. Properties, main applications and perspectives of worm micelles[J]. Advances in Colloid and Interface Science,2006,128-130:77-102
    [76]Myska J, Mik V. Application of a drag reducing surfactant in the heating circuit[J].Energy and Buildings,2003,35(8):813-819
    [77]焦利芳,李凤臣,苏文涛.等.表面活性剂减阻剂在集中供热系统中的应用试验研究[J].节能技术,2008,26(3):195-201
    [78]Kolay S, Ghosh K K., Quagliotto P. Micellization behavior of [C16-12-C16],2Br-gemini surfactant in binary aqueous-solvent mixtures [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,348(1-3):234-239
    [79]Raghavan S R, Kaler E W. Highly Viscoelastic Wormlike Micellar Solutions Formed by Cationic Surfactants with Long Unsaturated Tails [J]. Langmuir.2001,17:300-306
    [80]Kim W J, Yang W M. Flow-induced microstructure in aqueous cationic surfactant solution in the presence of structure-enhancing additives[J].Journal of Chemical Engineering of Japan,2001,34(2):227-231
    [81]Shikata T, Shiokawa M, Itatani S, et al. Viscoelastic behavior of aqueous surfactant micellar solutions [J]. Korea-Australia Rheology Journal,2002,14(3):129-138
    [82]江体乾.工业流变学[M].北京:化学工业出版社,1995:284-295
    [83]陈敏恒,丛德滋,方图南,等.化工原理(上册)[M].化学工业出版社,2005
    [84]王德忠,胡友情,王松平,等.低浓度表面活性剂减阻流体的性能[J].上海交通大学学报,2005,39(2):225-233
    [85]许鹏,王德忠,扈黎光,等.低浓度CTAC减阻流体流动性能试验研究[J].热能动力工程,2002,102(17):585-588
    [86]Zhang Y, Oba G, Hart, J H, et al. The effects of cosolvent, temperature and salt concentration on drag reduction, micelle microstructions and rheological properties of a zwitterionic surfactant [J]. Advances in Rheology and its Applications,2005:556-560
    [87]顾卫国,王德忠,川口靖夫,等.基于小波分析的表面活性剂减阻流体二维流场流动特性研究[J].水动力学研究与进展,2009,24(4):389-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700