基于元胞自动机的行人流疏散模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会和经济的快速发展,城市化进程不断加快,大量的高层建筑、大型的体育场馆、购物中心、车站、会展中心等人员密集的公共场所不断的涌现,近年来火灾、人员踩踏等事故的频繁发生,造成了大量的人员伤亡。在火灾、地震等紧急情况下,公众聚集场所内人群的安全疏散问题引起了社会的广泛关注,并且已成为当前公共安全和消防安全等领域的研究热点。因此,对人群安全疏散进行深入的研究,具有重要的现实意义和实用价值。
     本文在现有元胞自动机模型的基础上,提出了更加符合实际情况的疏散元胞自动机模型,分别对几种典型的公共场所内行人的紧急疏散进行了数值模拟,进而探讨了不同参数对疏散动力学的影响。全文的主要工作如下:
     (1)考虑楼梯出口的瓶颈效应,引入行人选择最佳出口策略和延滞时间,建立了行人流疏散仿真模型,对回形教学楼层内人员疏散过程进行了数值模拟,得到了行人在疏散过程中出现的典型现象,如拥挤、堵塞、快即是慢效应等,并讨论了疏散时间、楼梯出口宽度及走廊宽度等系统参量之间的变化关系,研究结果表明:楼梯出口的对称分布更有利于人员的紧急疏散,这为行人安全疏散管理及建筑物走廊的设计提供了一些有益的参考。
     (2)考虑地铁出口大厅内的结构设置,建立了元胞自动机行人流疏散模型,对出口大厅内人员疏散过程进行数值模拟,得到了疏散时间、出口宽度、检票出口通道长度和宽度等系统参量之间的变化关系,研究结果表明:当检票出口通道宽度d>2时,对疏散时间的影响较小,这为地铁出口大厅出口的设计及行人流紧急疏散管理具有一定的参考意义。
     (3)考虑行人的亲情互助行为,建立了房间内行人流疏散元胞自动机模型,数值模拟发现了堵塞、不连贯、聚集、返回等典型的疏散现象,并针对五种疏散情况进行了深入探讨,结果表明:当行人单自疏散时,疏散效率最高。当出现亲情互助行为时,疏散效率较低。因此,在疏散过程中行人应尽量各自疏散到安全区域,避免慌乱寻找、等待、返回等行为发生。
     总之,本文针对几种典型的公共场所内行人的紧急疏散,建立了相应的元胞自动机模型,数值研究得到了一些有实际意义的结果。在本文的最后,我们对行人流疏散理论的进一步研究做了分析和展望。
With the rapid development of society and economy, acceleration of the urbanization process, a large number of high-rise buildings, large stadiums, shopping malls, railway stations, convention centers and other crowded public places constantly emerging, in recent years, fires and crowd tramples such accidents have occurred frequently, causing heavy casualties. In fires, earthquakes and other emergencies, public assembly places the safety of people within the evacuation issue has aroused wide attention and has become the study hotspot of public safety and fire safety field. Therefore, in-depth study of pedestrian flow evacuation has important practical significance and practical value.
     In this paper, some more realistic models of cellular automata were proposed based on the existing cellular automata model. And then these modified models were applied in several public places for emergency evacuation by the numerical simulation, and discussing the influence of different parameters to evacuation dynamics. The main texts are the followings:
     (1) Some factors including the bottleneck effect of staircases and pedestrian choosing the best exit strategy and the delay time to be considered, a simulation model of pedestrian flow evacuation were established. Some typical phenomenon such as overcrowding, congestion and faster is slower were occurred through the simulation of the evacuation in the circle teaching building. Then the relation of system parameters among evacuation time, width of corridor, width of staircases etc were in-deep discussed. The results showed that the symmetric distribution of staircases is benefit to emergency evacuation, which offers some references to the management of emergency evacuation and design of buildings in the corridor.
     (2) A pedestrian flow evacuation model based on cellular automata was established by considering the setting structure of subway exit hall. Then some relation among system parameters including evacuation time, exit width, length and width of check channel were discussed by the simulation of pedestrian flow evacuation in subway hall. The results showed that the less impact on the evacuation time when the width of check channel d> 2, which would be useful reference to design of hall and emergency evacuation management.
     (3) A pedestrian flow evacuation model based on cellular automaton was established when considering the kin-behavior between pedestrians. The results of numerical simulations indicate that the typical phenomenon such as congestion, no coherence, aggregation, return and so on. And the in-depth discussion of five kinds of evacuation showed that: when a pedestrian insisted on evacuating solely, the evacuation was the most efficient. When the kin-behavior between pedestrians to be considering, evacuation is less efficient. Therefore the pedestrian during the evacuation should be evacuated to the safety regions, respectively, avoiding the behaviors such as confusion to find, waiting, returning and so on.
     In short, this paper focused on the emergency evacuation in several typical public places and setted up the corresponding cellular automaton model. Some meaningful results have been concluded by the numerical simulation studies. At the end of the paper, some further research on pedestrian flow evacuation theory were analyzed and prospected.
引文
[1]中国要闻,今日中国http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [2]赵道亮.紧急条件下人员疏散特殊行为的元胞自动机模拟[D].合肥:中国科学大学,2007.
    [3]吕春杉,翁文国,杨锐,等.基于运动模式和元胞自动机的火灾环境下人员疏散模型[J].清华大学学报:自然科学版,2007,47(12): 2163-2167.
    [4] Weng W G, Shen S F, Yuan H Y, et al. A behavior-based model for pedestrian counter flow[J]. Physica A,2007,375:668-678.
    [5] Song W G, Xuan X, Wang B H, et al. Simulation of evacuation processes using a multi-grid model for pedestrian dynamics[J]. Physica A, 2006,363: 492-500.
    [6]崔喜红,李强,陈晋,等.基于多智能体技术的公共场所人员疏散模型研究[J].系统仿真学报,2008,20(4):1006-1010.
    [7] Helbing D.,Farkas I.J, Molnar P and Vicsck T. simulation of pedestrian crowds in normal and evacuation situations,pedestrian and evacuation dynamics[J].Springer,in M.schreckenberg and S.Sharma(Eds.), 2002,21-58.
    [8]邱冰.楼房内人员逃生流的自动机模拟研究[D].桂林:广西师范大学,2004.
    [9]郭谨一,刘爽,陈绍宽等.行人运动仿真研究综述[J].系统仿真学报, 2008, 20(9) :2237-2242.
    [10] Henderson L F. The statistic of crowd fluids[J].Nature, 1971,229:381-383.
    [11] Helbing D, Farkas I, Vicsek T.Simulating dynamical features of escape panic[J].Nature, 2000, 407: 487-490.
    [12] Helbing D, Molnar P. Social force model for pedestrian dynamics[J].Physics Review E, 1995, 51: 4282-4286.
    [13] Seyfried A, Steffen B, Lippert T. Basics of modellling the pedestrian flow[J].Physica A, 2006,368:232-238.
    [14] Parisi D.R, Dorso C.O.Microscopic dynamics of pedestrian evacuation[J].Physica A,2005,354:606-618.
    [15] Parisi D.R, Dorso C.O.Morphological and dynamical aspects of the room evacuation process[J]. Physica A, 2007, 385:343-355.
    [16]Helbing D,Molnar P and Farkas I.J.Self-organizing pedestrian movement[J].Enviroment and Planning B:Planning and Design,2001,28:361-383
    [17] Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow[J].Physica A, 1999,267:487-498.
    [18]Muramatsu M, Nagatani T.Jamming transition in two-dimensional pedestrian traffic[J].Physica A, 2000, 275:281-291.
    [19] Qiu B, Tan H L, Kong L J, et al.Lattice-gas simulation of escaping pedestrian flow in corridor[J].Chinese Physics,2004,13(7):990-995.
    [20] Guo R Y, Huang H J.A mobile lattice gas model for simulating pedestrian evacuation[J]. Physica A, 2008,387:580-586.
    [21] Kuang H,Song T, Li X L,et al. Subconscious effect on pedestrian counter flow[J].Chinese Physics Letters.2008,25(4):1498-1501.
    [22] Kuang H, Li X L, Song T, et al. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model[J]. Physical Review E, 2008,78: 066117.
    [23] Muramatsu M, Nagatani T. Jamming transition of pedestrian traffic at a crossing with open boundaries[J]. Physica A, 2000, 286:377-390.
    [24] Tajima Y, Nagatani T.Scaling behavior of crowd flow outside a hall[J].Physica A, 2001, 292:545-554.
    [25] Tajima Y, K.Takimoto, Nagatani T.Scaling of pedestrian channel flow with a bottleneck[J]. Physica A, 2001,294:257-268.
    [26] Tajima Y,Nagatani T.Clogging transition of pedestrian flow in T-shaped channel[J]. Physica A, 2002, 303:239-250.
    [27] Okazaki S.A Study of Pedestfian Movement in Architectttra1 Space. Part 1:Pedestrian M ovement by the Application on of M agnetic Models[J].Trans.ofAI J.(S1348-0685),1979,283(3):l11-l19.
    [28] Okazaki S.M atsushita S.A Study of Simulation Mode1 for Pedestrian Movement with Evacuation and Queuing[c]. Proceeding of the International Conferen ce on Engineering for Crowd Safety,1993.London:Elsevie~ 1993:271-280.
    [29] Okazaki,S.A Study of Pedestrian Movement in Architectural Space Part 2:Concentrated Pedestrian Movement[J].Trans.of AIJ.(S1348-0685),1979,284(2):101-l10.
    [30] Okazaki S.A Study of Pedestrian Movement in Architectural Space Part 3:Along the Shortest Path,Taking Fire, Congestion and Unrecognized Space into Account[J]. Journal of Architecture,Planning Environment Engineering AI J(S1340-4210),1979,285(2)137-147.
    [31] Matsushita,Okazaki.A study of Simulation Model for Way Finding Behavior by Experiments in Mazes[J].Journal of Architecture,Planning,Environm ent Engineering A I J(S1340-4210),1991,429(5):51-59.
    [32] Okazaki S,Yamamoto C.A Study of Pedestrian Movement in Ar chitectural Space Part 4:Pedestrian Movement Represented in Perspective[J].Journal of Architecture.Planning.Environment EngineeringAI J(S1340-4210),1981,299(4):105-113.
    [33] Burstedde C, Klauck K, Schadschneider A, et al,Simulation of pedestrian dynamics using a two-dimensional cellular automaton [J].Physica A, 2001,295:507-52.
    [34] Yuan W F, Tan K H. A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability cond ition[ J]. Physica A, 2007, 379:250-262.
    [35] Yang L Z, Fang W F, Huang R, et al. Occupant evacuation model based on cellular automata in fire[J].Chinese Science Bulletin. 2002,47(17):1484-1488.
    [36] Yuan W F,Tan K H.An evacuation model using cellular automata[J]. PhysicaA,2007,384:549-566.
    [37] Yue H, Hao H R, Chen X M, et al. Simulation of pedestrian flow on square lattice based oncellular automata model[J]. Physica A,2007,384: 567-588.
    [38] Zhao D L, Yang L Z, Li J.Occupants’behavior of going with the crowd based on cellular automata occupant evacuation model[J].Physica A, 2008,387:3708-3718.
    [39] Weng W G, Pan,L L, Shen S F,et al.Small-grid analysis of discrete model for evacuation from a hall[J].Physica A, 2007,374:821-826.
    [40] Zhang J, Song W G, Xu X. Experiment and multi-grid modeling of evacuation from a classroom[J].Physica A, 2008,387:5901-5909.
    [41] Zhao D L, Yang L Z, Li J.Exit dynamics of occupant evacuation in an emergency[J].Physica A, 2006,363:501-511.
    [42] Zhao D L, Li J, Zhu Y, et al. The application of a two-dimensional cellular automata random model to the performance-based design of building exit[J]. Building and Environment, 2008,43:518-522.
    [43] Nishidate K, Baba M. Cellular automaton model for random walkers[J]. Physical Review Letters,1996,77(9):1675-1677.
    [44] Schreckenberg M, Sharma S D. Pedestrian and evacuation dynamics[M]. NewYork:Springer, 2001:21-58.
    [45] Kirchner A, Schadschneider A.Simulation of evacuation process using a bionics-inspired cellular automaton model for pedestrian dynamics[J].Physica A, 2002,312: 260-276.
    [46] Song W G, Yu Y F, Wang B H, et al. Evacuation behaviors at exit in CA model with force essentials:A comparison with social force model[J]. Physica A,2006,371:658-666.
    [47] Xu X, Song W G, Zheng H Y.Discretization effect in a multi-grid egress model[J].Physica A, 2008,387:5567-5574.
    [48] Helbing D.A Mathematical Model for the Behavior of Pedestrians [J].Behavioral Science(S0005-7940),1991,36(3):298-310.
    [49]Helbing D,Vicsek T.Optimal Self-Organization[J].New Journal of Physics(S1367-2630),1999,1(13):1-13,17.
    [50] Chopard B, Droz M著.祝玉学,赵学龙译.物理系统的元胞自动机模拟[M].北京:清华大学出版社,2003:5-59.
    [51] Frisch U, Hasslacher B, Pomeau Y, Lattice-gas automata for the Navier-Stokes equation[J], Physical Review Letter. 1986,56:1505-1508.
    [52]贾斌,高自友,李克平,李新刚著.基于元胞自动机的交通系统建模与模拟[M].北京:科学出版社,2007:3-52.
    [53]杨立中,方伟峰,黄锐,等.基于元胞自动机的火灾中人员逃生的模型[J].科学通报,2002,47 (12):896-901.
    [54] Blue V.J,Adler J.L.Cellular automata microsimulation for modeling bi-directional pedestrian walkways[J].Transportation Researsh B, 2001,35:293-312.
    [55] Liu Shaobo, Yang Lizhong, Fang Tingyong, Li Jian Evacuation from a classroom considering the occupant density around exits[J]. Physica A,2009 ,388 :1921-1928
    [56] Lovas G G Modeling and Simulation of Pedestrian Flow[J].Transport Research B(S0191-2615),1994,28(3):429-43.
    [57] Thompson P A.M archant E W.A Computer Model the Evacuation of Large Building Populations[J].Fire Safety Journal(S0379-71 12),1995,24(1): 131-148.
    [58] Thompson P A, Marchant E W.Testing and Application of the Computer Model’SIMULEXl[J].Fire Safety Journal(S0379-71 12),1995.24(3):149-166.
    [59] Gipps P G,Marksjo B.A Micro-Simulation Model for Pedestrian Flows[J].Mathematics and Computers in Simulation(S0378-4754),1985,27(2):95-105.
    [60] Nagatani T.Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck[J].Physica A, 2001, 300: 558-566.
    [61] Yanagisawa D, Nishinari K.Mean-field theory for pedestrian outflow through an exit[J].Physical Review E, 2007,76 061117.
    [62] Zheng R S,Qiu B, Deng M Y,et al. Cellular automaton simulation of evacuation process in tory[J]. Communications in Theoretical Physics.2008,49(1):166-170.
    [63] Huang H J, Guo R Y.Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J]. Physical Review E,2008,78: 021131.
    [64] Yuan W F, Tan K H. An evacuation model using cellular automata[J]. PhysicaA,2007,384:549-566.
    [65]宋卫国,于彦飞,范维澄,等.一种考虑摩擦与排斥的人员疏散元胞自动机模型[J].中国科学E辑工程科学&材料科学, 2005,35(7):725-736.
    [66] Teknomo K.,Takeyama Y. and Inamura H.,Review on Microscopic pedestrian simulation model,Proceedings Japan Society of Civil Engineering Conference,Morioka,Japan,March,2000
    [67] Yamamoto K, Kokubo S, Nishinari K.Simulation for pedestrian dynamics by real-coded cellular automata (RCA)[J]. Physica A, 2007,379:654-660.
    [68]李君霞,曹菡,周影,等.基于智能体的行人路径查找微观模型研究[J].计算机工程与科学,2008, 30(3):145-148.
    [69] Guo R. Y,Huang H. J.A modified floor field cellular automata model for pedestrian evacuation simulation.[J].Journal of Physics A:Mathematical and Theoretical,2008,41:385104
    [70] Nagai R, Fukamachi M, Nagatani T., Experiment and simulation for counterflow of people going on all fours.[J] Physica A, 2005,358:516-528.
    [71] Fukamachi M, Nagatani T.Sidle effect on pedestrian counter flow[J]. Physica A, 2007,377:269-278.
    [72]胡清梅,方卫宁,邓野.一种基于社会力的行人运动模型研究[J].系统仿真学报,2009,21(4):977-980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700