高压电缆绝缘用可交联聚乙烯结构、性能及交联过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文概述了电力电缆的种类及特点、交联聚乙烯绝缘电缆料的优势、国内外现状及发展趋势、聚乙烯的不同交联工艺、交联机理、交联配方及交联动力学的相关知识;系统分析了两种商业化绝缘电缆料的结构参数及完全交联后试样的热性能、拉伸性能、凝胶含量及交联密度;研究了聚乙烯交联过程的流变行为,考察交联温度及交联时间对交联结构的影响,以建立结构-性能关系。
     选择两种国产低密度聚乙烯(PE-1,PE-2)作为基础树脂,通过配方筛选和工艺优化制备可交联聚乙烯(XLPE);比较了不同基础树脂的结构参数,考察了交联剂(DCP)的含量对完全交联后试样的热性能、拉伸性能、凝胶含量及交联密度的影响;随着交联剂含量的增加,凝胶含量及交联密度增加,熔融温度、结晶温度及结晶度降低,拉伸强度增大,断裂伸长率减小。2份交联剂含量的试样的综合性能与两种商业化的电缆料的性能接近。
     采用稳态流变学方法研究不同加工温度下交联反应对不同配方试样流动性的影响;采用动态流变学方法研究试样在不同温度下交联过程的流变行为,考察不同配方试样化学交联过程中结构演化与线性粘弹行为的关系;根据橡胶弹性理论,尝试利用完全交联试样的频率扫描末端区的动态储能模量(G′)计算体系交联点之间的平均分子量(Mc),并与用常规的平衡溶胀法测得的Mc相比较;探索用流变学方法研究聚乙烯交联过程结构演化的新方法。
     采用动态流变学方法及DSC测试法研究不同配方试样的交联动力学特征,经计算,得到体系交联活化能在140 kJ/mol-170 kJ/mol之间,其反应趋于一级反应;同时考察了振荡剪切频率、预剪切对交联活化能的影响。根据交联不同时间下试样的红外谱图,分析不同牌号LDPE基础树脂中,不同种类双键的含量在交联过程中的变化,从而推断双键对聚乙烯交联的贡献,以指导基础树脂的结构设计,为交联聚乙烯电缆绝缘料的生产提供理论指导和实验基础。
Characteristics of different kinds of power cable insulation,advantages,current conditions and developments of crosslinkable polyethylene(XLPE) insulation granules,the crosslinking techniques and mechanism of polyethylene,the main component of insulation granules and the studies of cure kinetics were summarized. Two kinds of commercial cable insulation granule were chosen as samples to study. The structure parameters of LDPE resin,the thermal properties,mechanical properties, gel content and crosslinking density of totally crosslinked samples were analyzed systematically.The rheological behavior during crosslinking process was measured, and the effects of crosslinking temperature and time on network structure were investigated.The relationship between structure and property was discussed.
     Two kinds of low density polyethylene(LDPE) resins(labeled as PE-1,PE-2, respectively) were bought in the domestic market,and LDPE cable insulation granules with different amounts of DCP were prepared through optimization of process.Some structure parameters such as molecular weight,molecular weight distribution,melting point,crystallization temperature and crystallinity degree were measured.The effects of DCP content on thermal properties,mechanical properties,gel content and crosslinking density for totally crosslinked samples were investigated.The gel content and crosslinking density increased and the melting point,crystallization temperature and crystallinity degree of totally crosslinked samples decreased with the increase of DCP content.Also the tensile strength increased but elongation at break decreased with the increase of DCP content(less than 2 phr).Sample that contains 2 phr amount of DCP had similar performances with the two kinds of commercial cable insulation granules.
     The influence of crosslinking reaction on the viscosity of different samples at different temperatures was investigated by steady rheology test.The rheological behaviors of different samples at different temperatures were measured through dynamic time sweep,and the relationship between structural evolution and linear viscoelastic response during crosslinking process was investigated.As a characterization of crosslinking density,number-average molecular weight between the junctions of the network for crosslinked samples,Mc,was calculated on the theoretical basis for the rubber elasticity,using the data of dynamic modulus G′getting from the curve of G′vs.frequencyωat terminal zone whereω→0.The values of Mc of totally crosslinked insulation cable getting from rheological method and conventional equilibrium swelling method were compared and it was found that rheological measurement can be a feasible method to calculate Mc.
     The kinetic parameters of the crosslinking reaction for different samples were measured through rheological test and DSC measurement.The activation energy of the crosslinking reaction for samples with different DCP contents ranged from 140 kJ/mol to 170 kJ/mol and the order of the reaction approach 1.The effects of measurement frequency and preshear on activation energy were also investigated.Content changes for different kinds of double bond in the LDPE resin during crosslinking process were investigated through the IR measurement data for samples which have been crosslinked for different times.The contribution of different kinds of double bond to crosslinking reaction was learnt,and it supplied usefull information to the structure design of LDPE molecular chain.The structure parameters of LDPE resin and kinetic parameters of the crosslinking reaction were of great importance from the economic point of view,since they provided experimental foundation and theoretical basis for the production of cable insulation and insulation granules.
引文
[1]黎三雄,可交联LDPE高压电力电缆绝缘料的研制,成都,四川大学,2003,1-7
    [2]江目洪,交联聚乙烯电力电缆线路,北京:中国电力出版社,2009,1-3,15
    [3]蒋佩南,郑长胜,王国兴,交联电缆的发展动向与需求预测,供用电,1995,(1):10-12
    [4]郭述禹,刘东立,王金刚,LDPE电力电缆料的发展趋势,合成树脂及塑料,2001,18(4):60-62
    [5]韩雪梅,交联聚乙烯绝缘料在电线电缆中的地位,化学与黏合,2008,30(3):53-56
    [6]刘新民,交联聚乙烯的实验研究,青岛,中国海洋大学,2003,4-7
    [7]Fwkwda T.Technological Progress in High-Voltage XLPE Power Cables in Japan-Part Ⅰ,IEEE Electrical Insulation Magazine,1988,4(5):9-16
    [8]Fwkwda T.Technological Progress in High-Voltage XLPE Power Cables in Japan-Part Ⅱ,IEEE Electrical Insulation Magazine,1988,4(6):15-20
    [9]Vaughan A.S.,Zhao Y.,Barre L.L.,Sutton S.J.,Swingler S.G.On additives,morphological evolution and dielectric breakdown in low density polyethylene,European Polymer Journal,2003,39:355-365
    [10]李巧娟,谢大荣,有机硅接枝改性低密度聚乙烯的研究,绝缘材料,2004,(1):8-11
    [11]张建耀,交联电缆用LDPE树脂性能及其应用,现代塑料加工应用,2005,17(6):8-11
    [12]Khonakdar H.A.,Morshedian J.,Wagenknecht U.,Jafari S.H.An investigation of chemical crosslinking effect on properties of high-density polyethylene,Polymer,2003,44:4301-4309
    [13]Shah G.B.,Fuzail M.,Anwar J.Aspects of the Crosslinking of Polyethylene with Vinyl Silane,Journal of Applied Polymer Science,2004,92:3796-3803
    [14]黄德骏,交联聚乙烯管的应用及评价方法,现代塑料加工应用,1993,5(2):45-47
    [15]Krupa I.,Luyt A.S.,Mechanical properties of uncrosslinked and crosslinked linear low-density polyethylene/wax blends,Journal of Applied Polymer Science,2001,81:973-980
    [16]甄建,我国XLPE电缆料及基础树脂的发展概况,合成树脂及塑料,2003,20(6):43-46
    [17]朱爱荣,曹晓珑,不同交联方式对交联聚乙烯电缆结晶形态影响的研究,绝缘材料,2005,(3):38-40
    [18]甘兴忠,电线电缆绝缘交联聚乙烯交联工艺的分析和对比,电线电缆,2008,2:8-11
    [19]刘颖,吴大鸣,陈卫红,丁玉梅,许红,化学交联超高分子量聚乙烯的结晶行为与力学性能分析,塑料,2004,33(1):1-4
    [20]聂颖,燕丰,交联聚乙烯的生产应用及发展前景,化工文摘,2006,6:22-25
    [21]Smedberg A.,Hjertberg T.,Gustafsson B.Crosslinking reactions in an unsaturated low density polyethylene,Polymer,1997,38(16):4127-4138
    [22]Smedberg A.,Hjertberg T.,Gustafsson B.Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene,Polymer,2003,44(11):3395-3405
    [23]马岩,硅烷交联聚乙烯电缆材料的制备与反应动力学研究,哈尔滨,哈尔滨工业大学,2006.2-11
    [24]项健,汪晓明,郭颜,高原,硅烷交联聚乙烯电缆绝缘料,电线电缆,2007,6:35-39
    [25]尹燕,姜玉峰,张宗军,硅烷交联聚乙烯电缆交联方式的改进,电线电缆,2006,1:43-44
    [26]谢侃,张建耀,刘少成,许平,陈冬梅,张佐光,硅烷交联聚乙烯电力电缆绝缘料基础树脂的性能,高分子材料科学与工程,2006,1:127-130
    [27]Ciuprina F.,Teissedre G.,Filippini J.C.Polyethylene crosslinking and water treeing,Polymer,2001,42(18):7841-7846
    [28]李星,刘东辉,杨明,徐兴伟,汪必全,辐射交联聚乙烯薄膜的研究,现代塑料加工应用,2002,14(2):5-8
    [29]涂春潮,齐暑华,周文英,武鹏,张翔宇,辐射交联热收缩聚乙烯的研究进展,现代塑料加工应用,2005,17(5):58-61
    [30]李静辉,交联聚乙烯开发应用与发展建议,现代塑料加工应用,2004,16(2):61-64
    [31]冯江,交联聚乙烯绝缘在低压电缆中的应用,高电压技术,2001,27(7):9-10
    [32]安彦杰,纪春怡,柳春山,LDPE HDPE LLDPE的硅烷接枝反应,塑料工业,2005.33(S1):63-75
    [33]Wang Z.Z.,Hu Y.,Gui Z.,et al.Halogen-free flame retardation and silane crosslinking of Polyethylenes,Polymer Testing,2003,22(5):533-538
    [34]Sirisinha K.,Kamphunthong W.,Rheological analysis as a means for determining the silane crosslink network structure and content in crosslinked polymer composites,Polymer Testing,2009,28(6):636-641
    [35]Jiao C.M.,Wang Z.Z.,Liang X.M.,Hu Y.,Non-isothermal crystallization kinetics of silane crosslinked polyethylene,Polymer Testing,2005,24(1):71-80
    [36]刘新民,崔涛,李琳,交联聚乙烯的应用及技术进展,合成树脂及塑料,2003.20(5):52-60
    [37]张建耀,刘少成,许平等,硅烷交联聚乙烯电力电缆绝缘料的研制,合成树脂及塑料.2005,22(6):4-8
    [38]段景宽,罗炎,王雅珍,硅烷接枝交联聚乙烯技术,桂林电子工业学院学报,2005.25(3):84-88
    [39]张勇,谭风洁,吴春霜等,硅烷交联聚乙烯管材专用料的研制,中国塑料,2004.18(3):36-39
    [40]胡发亭,郭亦崇,聚乙烯交联改性研究进展,现代塑料加工应用,2002,14(2):61-64
    [41]Bengtsson M.,Oksman K.The use of silane technology in crosslinking polyethylene/wood flour composites,Composites Part A:Applied Science and Manufacturing,2006,37(5):752-765
    [42]程向前,一步法硅烷交联电缆工艺研究,石油机械,2005,33(4):38-40
    [43]杨玮,江平开,王寿泰,硅烷交联聚乙烯电缆绝缘料的生产工艺,上海化工,2003,12:17-19
    [44]陈宝胜,交联电缆的发展状况和硅烷交联的生产工艺,电线电缆,1997,2:17-22
    [45]汪浩,王勋林,王寿泰,聚乙烯接枝不饱和硅烷工艺研究,电线电缆,2004,5:33-36
    [46]聂颖,交联聚乙烯的生产应用及发展前景,化工科技市场,2007,30(3):30-32
    [47]Oster G.Crosslinking of polyethylene with selective wave lengths of ultraviolet light,Journal of Polymer Science,1956,22(100):185
    [48]Oster G.,Oster G.K.,Moroson H.Ultraviolet induced crosslinking and grafting of solid high polymers,Journal of Polymer Science,1959,34(127):671-684
    [49]Qu B.J.,Xu Y.H.,Shi W.F.,Ranby B.Photoinitiated crosslinking of low-density polyethylene.6.Spin-trapping ESR studies on radical intermediates,Macromolecules,1992,25(20):5215-5219
    [50]Qu B.J.,Ranby B.Photocrosslinking of LDPE and Its Application for Wires and Cables,Journal of Photopolymer Science and Technology,1989,2:269-276
    [51]Qu B.J.,Recent developments in photo-initiated crosslinking of polyethylene and its industrial applications,Chinese Journal of Polymer Science,2001,19(2):189-207
    [52]王正洲,瞿保钧,范维澄,聚乙烯的交联技术研究进展,高分子材料科学工程,2001,17(1):7-9
    [53]祝景云,李敬泽,甄建等,可辐照交联聚乙烯热收缩管专用料的研制,合成树脂及塑料,1998,15(3):10-23
    [54]韩飞译,交联技术的研究进展,塑料加工与应用,1995,(1):37-46
    [55]Andersson L.H.U.,Hjertberg T.,The effect of different structure parameters on the crosslinking behaviour and network performance of LDPE,Polymer,2006,47(1):200-210
    [56]Hulse G.E.,Kersting R.J.,Warfel D.R.Chemistry of dicumyl peroxide-induced crosslinking of linear polyethylene,Journal of Polymer Science Part A:Polymer Chemistry,1981,19(3):655-667
    [57]Hendra P.J.,Peacock A.J.,Willis H.A.,The morphology of linear polyethylenes crosslinked in their melts.The structure of melt crystallized polymers in general,Polymer,1987,28(5):705-709
    [58]Bremner T.,Rudin A.,Haridoss S.Effects of polyethylene molecular structure on peroxide crosslinking of low density polyethylene,Polymer Engineering and Science,1992,32(14):939-943
    [59]Klein P.G.,Ladizesky N.H.,Ward I.M.The contribution of molecular entanglements to the rubber-elastic behaviour of electron-irradiated linear polyethylene,Polymer 1987,28(3):393-398
    [60]Smedberg A.,Hjertberg T.,Gustafsson B.Characterisation and crosslinking properties of a poly(ethylene-co-divinylsiloxane),Polymer,2004,45(14):4845-4855
    [61]卢育书,超高压干式电缆的发展和应用,国际电力,1999,(2):40-43
    [62]应启良,交联聚烯烃、特别是交联聚乙烯材料及绝缘技术发展前景,电线电缆,1999.(4):2-5
    [63]陈中强,国外电缆材料的研究及发展的趋势,电线电缆,2001,(3):12-13
    [64]周韫捷,张丽,XLPE和OF电缆国内外发展近况及选型之我见,华东电力,2001.(3):56-57
    [65]王文英,聚乙烯树脂专用料的需求量和构成及新产品开发,现代化工,2000,20(1):43-46
    [66]辅才,我国电缆料行业的现状及发展,电工技术杂志,2001.(5):57-59
    [67]蒋佩南,国产交联聚乙烯电力电缆击穿故障的评定和分析,电线电缆,2007,2:1-6
    [68]Kubota T.,Takahashi Y.,Sakuma S.Development of 500-kV XLPE Cables and Accessories for Long Distance Underground Transmission Line Part Ⅰ:Insulation Design of Cables,IEEE Transactions on Power Delivery,1994,9(4):1741-1749
    [69]Gao L.Y.,Guo W.Y,Tu D.M.Interfaclal microstructure and withstand voltage of polyethylene for power cables,IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(2):233-238
    [70]Zhang C.,Mizutani T.Space charge behavior of LDPE with a blocking electrode,Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2002,614-617
    [71]屠德民,刘文斌,庄国平等,空间电荷自身反电场的介质击穿理论及电荷发射屏的研究.西安交能大学学报,1987,21(增刊1):1-11
    [72]Tanaka T.,Okamoto T.,Hozumi N.,Suzuki K.Interfacial improvement of XLPE cable insulation at reduced thickness,IEEE Transactions on Dielectrics and Electrical Insulation,1996,3(3):345-350
    [73]Tanaka Y.,Chen G.,Zhao Y.,Davies A.E.et al.Effect of additives on morphology and space charge accumulation in low density polyethylene,IEEE Transaction on Dielectrics and Electrical Insulation,2003,10(1):148-154
    [74]Hosier I.L.,Vaughan A.S.Structure-property relationship in polyethylene blends:the effect of morphology on electrical breakdown strength,Journal of materials science,1997,32:4523-4531
    [75]吴廷禄,改性塑料在通讯电缆和光缆中的应用,中国塑料,1996,10(5):49-53
    [76]周祥兴,聚乙烯通讯电缆料的生产工艺,塑料技术,1994,(1):40-42
    [77]吴廷禄,LLDPE通信电缆绝缘料性能,塑料科技,1995,(6):12-14
    [78]Zheng Q.,Du M.,Yang B.B.,Wu G.Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends,Polymer,2001,42(13):5743-5747
    [79]Wu D.F.,Zhou C.X.,Hong Z.,Mao D.L.,Bian Z.Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites,European Polymer Journal,2005,41(9):2199-2207
    [80]Charlot A.,Auzely-Velty R.Novel Hyaluronic Acid Based Supramolecular Assemblies Stabilized by Multivalent Specific Interactions:Rheological Behavior in Aqueous Solution,Macromolecules,2007,40(26):9555-9563
    [81]Tribut L.,Fenouillot F.,Carrot C.,Pascault J.P.Rheological behavior of thermoset/thermoplastic blends during isothermal curing:Experiments and modeling,Polymer,2007,48(22):6639-6647
    [82]Romani F.,Corrieri R.,Braga V.,Ciardelli F.Monitoring the chemical crosslinking of propylene polymers through rheology,Polymer,2002,43(4):1115-1131
    [83]刘建叶,周持兴,俞炜,DCP引发的熔融POE偶合反应的流变动力学,高分子材料科学与工程,2007,23(5):182-185
    [84]吴刚,郑强,江磊,宋义虎,HDPE氧化交联与动态流变行为,高等学校化学学报,2004,2:357-360
    [85]曹艳霞,郑强,杜淼,EPDM受热氧化与动态流变行为,高分子学报,2005,3:408-412
    [86]Lee J.Y.,Choi H.K.,Shim M.J.,Kim S.W.Kinetic studies of an epoxy cure reaction by isothermal DSC analysis,Thermochimica Acta,2000,343:111-117
    [87]Um M.K.,Daniel I.M.,Hwang B.S.A study of cure kinetics by the use of dynamic differential scanning calorimetry,Composites Science and Technology,2002,62(1):29-40
    [88]李秀倩,韩立军,邱海鹏,芳基乙炔树脂的固化反应动力学及流变行为研究,热固性树脂,2008,23(4):9-12
    [89]Rosu D.,Cascaval C.N.,Mustata F.,Ciobanu C.Cure kinetics of epoxy resins studied by non-isothermal DSC data,Thermochimica Acta,2002,383:119-127
    [90]Harsch M.,Kocsis J.,Holst M.Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin,European Polymer Journal,2007,43(4):1168-1178
    [91]周涛,张爱民,徐建波,邬智勇,夏金魁,梁红文,热分析动力学方法研究SEBS化学交联的机理,高分子材料科学与工程,2008,24(4):118-120
    [92]Rosca I.D.,Vergnaud J.M.New way of using rheometers in scanning mode for the cure of rubbers,Polymer,2002,43(1):195-202
    [93]Rosca I.D.,Vergnaud J.M.Rheometers with square root of time-temperature programming for the cure of rubbers,Polymer,2003,44(14):4067-4074
    [94]Barton J.M.,Wright W.W.A study of the cure characteristics of an epoxy resin system by differential scanning calorimetry and torsional braid analysis,Thermochimica Acta,1985, 85:415-418
    [95]Rochette B.,Sadr A.,Abdul M.,Vergnaud J.M.Determination of the kinetic data of rubber cure and industrial application,Thermochimica Acta,1985,85:419-433
    [96]张乾,聚乙烯结晶度测定及结晶机理的研究,西安,西北工业大学,2003,99
    [97]宋鸿文,一种110kV级XLPE电缆绝缘材料的生产方法,中国,200410096614.0,2007-03-21
    [98]Flory P.J.,Rehner J.,Statistical mechanics of cross-linked polymer networks Ⅰ.rubberlike elasticity,The Journal of Chemical Physics,1943,11:512-520
    [99]何曼君,陈维孝,董西侠,高分子物理,修订版.上海,复旦大学出版社,2000.326-334
    [100]Michael Rubinstein,Ralph H.Colby(励杭泉 译),高分子物理.北京:化学工业出版社,2007.166-167.183-188
    [101]张建耀,刘少成,交联电缆用低密度聚乙烯树脂QLT17的性能及应用,绝缘材料,2005,4:6-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700