大鼠饮酒后脑基底动脉组织结构改变及MMP-2、MMP-9蛋白表达情况
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:随着经济的发展及国民生活水平的不断提高,各种酒类开始大量涌现。嗜酒、酗酒、酒依赖逐渐形成普遍性,随之滋生的社会问题日益严重。大量研究表明长期大量饮酒可通过调节脑血流、脑血管舒缩功能,影响血压及血管通透性,改变血液粘稠度及凝血功能等多种途径促进脑血管意外的发生,但其具体机制尚未明了,成为法医学、临床医学及基础医学的研究焦点。在法医学检案中,饮酒后轻度外力作用导致蛛网膜下腔出血的案件较为常见,饮酒的参与度问题成为此类案例鉴定的难点。
     本实验拟以整体动物模型为研究对象,应用HE染色、特殊染色、透射电子显微镜(TEM)技术与免疫组织化学方法,深入观察急慢性饮酒大鼠脑基底动脉的组织结构改变,并对其分子机制进行探讨,进一步阐明饮酒对脑血管的影响及作用机制,为饮酒后轻度外力作用导致蛛网膜下腔出血案件的饮酒参与度鉴定提供理论基础。
     方法:健康雄性Sprague—Dawley(SD)大鼠,体重220g±10g,随机分成对照组、急性组、慢性低剂量组、慢性中剂量组、慢性高剂量组。用市售白酒红星二锅头(56%v/v)制备模型,采用大鼠灌胃器进行灌胃,每天2次,间隔10小时。实验前给予适应性蒸馏水灌胃1周。急性组给酒量为56%v/v 1.2mL/100g/次,分别于实验1天、1周、2周、3周末次灌胃24小时后处死大鼠;慢性各组自实验开始至第3周给酒量、给酒浓度逐渐递增,至第4周达到足量(慢性低剂量组:56%v/v 0.4 mL/100g/次;慢性中剂量组:56%v/v 0.8 mL/100g/次;慢性高剂量组:56%v/v 1.2 mL/100g/次),维持至第12周末。实验期间观察大鼠行为学改变,测量并记录大鼠体重和收缩压,并分别于第4周、8周、12周末次灌胃24小时后处死大鼠。对照组用蒸馏水代替白酒进行灌胃。取脑后全脑固定制作石蜡切片,进行Weigert弹力纤维染色观察大鼠脑基底动脉内弹力膜改变;在体视显微镜下剥离大鼠脑基底动脉,观察基底动脉超微结构改变;进一步应用免疫组织化学方法观察大鼠脑血管基质金属蛋白酶-2(MMP-2)、基质金属蛋白酶-9(MMP-9)蛋白的表达变化。
     数据采用均数士标准差(Mean士SD)表示,用SPSS 16.0统计分析软件进行统计学分析,各组均数的比较行单因素方差分析(ANOVA),用最小显著差法(LSD)作两两比较,以P<0.05为有显著性差异。
     结果:
     1行为学改变及体重变化:单次给酒数分钟后大鼠即出现不同程度的酒后表现,包括:兴奋性增加,平衡不稳,反应迟钝,嗜睡甚至瘫软等。随实验时间的延长,各慢性饮酒组大鼠进食量减少,倦怠少动,反应性差,体重增长缓慢,实验后期甚至不增反降,慢性中剂量组、高剂量组大鼠体重在实验第4周末与对照组相比有显著性差异(P<0.05);慢性低剂量组大鼠体重在实验第12周末与对照组相比有显著性差异(P<0.05)。
     2收缩压变化:对照组大鼠收缩压波动平稳,各慢性组大鼠收缩压随实验时间的延长呈上升趋势,慢性高剂量组大鼠收缩压到实验第10周末与对照组相比有显著性差异(P<0.05);慢性低剂量、中剂量组到第12周末与对照组相比有显著性差异(P<0.05)。
     3组织病理学改变:
     3.1肝脏病理学改变:急性组肝脏主要表现为肝细胞水肿;慢性低剂量组第4周末可见肝细胞水肿,随实验时间延长肝细胞水肿弥漫,且出现脂肪变性;慢性中剂量组较早可见肝细胞水肿伴部分肝细胞轻度脂肪变性,后期出现肝细胞嗜酸性变,炎细胞聚集;慢性高剂量组病变程度较低、中剂量组严重,第8周末可见弥漫性脂肪变性,进而又出现多发片状坏死。
     3.2中枢神经系统病理学改变:急性组可见大脑皮层神经元水肿,毛细血管周围间隙扩大;慢性组大鼠在实验过程中大脑皮层神经元水肿,排列紊乱,神经元细胞、小脑蒲肯野细胞核固缩浓染,可见嗜神经元现象和毛细血管周围间隙扩大等现象。
     3.3脑基底动脉内弹力膜形态改变:急性组内弹力膜(IEL)未见明显改变,慢性各组内弹力膜出现质地松散、局部紊乱,甚至分层、断裂。
     3.4脑基底动脉超微结构改变:实验第4周末慢性高剂量组出现内弹力膜质地不均,薄厚不一;第8周末慢性各组普遍可见内皮细胞形态不规则,表面微绒毛减少,内皮细胞内及内皮细胞与内弹力膜之间出现空泡,内弹力膜质地不均,厚薄不一,甚至出现分叉、分层、断裂。
     4 MMP-2、MMP-9免疫组织化学结果:对照组脑实质毛细血管、小血管和基底动脉血管壁在各观察点均无明显MMP-2、MMP-9蛋白表达;急性组1周、2周末脑实质内毛细血管、小血管血管壁可见MMP-9阳性表达;而各时间点脑实质内毛细血管、小血管血管壁均未出现MMP-2阳性表达;急、慢性各组大鼠脑基底动脉动脉壁未见明显MMP-2,MMP-9阳性表达。
     结论:
     1本实验中慢性中剂量组大鼠饮酒8周后(第1周:56%V/V白酒用蒸馏水1:1稀释,大鼠单次饮酒0.4mL/100g;第2周:56%V/V白酒用蒸馏水2:1稀释,大鼠单次饮酒0.6mL/100g;第3周:56%V/V白酒,大鼠单次饮酒0.6mL/100g;第4~8周,56%V/V白酒,大鼠单次饮酒0.8mL/100g)脑血管损伤明显,可作为探讨饮酒对脑血管影响的较为理想的实验模型。
     2慢性饮酒对大鼠脑基底动脉壁具有损伤作用,使该血管可能成为在机械外力、各种应激、疾病等因素刺激下容易发生破裂出血的部位。
Objective: With development of economy and improvement of living standards, all kinds of alcoholic drinks became popular. The phenomenon of drinking, alcohol abuse and alcohol dependence was widespread. These social problems should not be ignored. Long-term drinking promoted the occurrence of cerebrovascular disease by regulating the blood flow and vasomotor function of cerebral vessels, raising blood pressure and vascular permeability, disordering blood viscosity and coagulation and so on. But the mechanisms were not clear, and were brought to the researchers’notice in forensic medicine field, clinical medicine field and preclinical medicine field. The cases of subarachnoid hemorrhage(SAH) due to slight violence after drinking were frequently reported. It was troublesome problem to assess the relationship between drinking and SAH.
     Our experiment intended to establish the model of alcohol-treated rats and observe pathological changes of cerebral blood vessels in acute and chronic groups with HE stain, Weigert elastic fiber staining, transmission electron microscopy(TEM) and immunohistochemical staining, explore the mechanisms, and provide a reliable theoretical basis to assess the relationship between drinking and SAH.
     Methods: Sprague—Dawley(SD) rats (220g±10g) were randomly divided into following groups:control group, acute group, chronic low-dose group, chronic medium-dose group and chronic high-dose group. Rats were treated with wine of Beijing Hongxing (56%v/v) orally through blunt tipped needle, two times each day at interval of over 10 hours. Water were given orally through blunt tipped needle to adapt all rats to the process in advance. The acute group was treated with 56%v/v 1.2 mL·100g-1 dose each time and rats were respectively sacrificed after 1-day, 1-week, 2-week and 3-week treatment. The concentration and volume given to chronic groups increased gradually until the 4th week(chronic low-dose group: 56%v/v 0.4mL·100g-1 each time, chronic medium-dose group: 56%v/v 0.8mL·100g-1 each time, chronic high-dose group: 56%v/v 1.2mL·100g-1 each time), and then the full dose was supplied until the end of the 12th week. Observe behavior changes and record the weights and the systolic blood pressure using the tail-cuff method. Rats from each chronic group were respectively sacrificed after 4-week, 8-week and 12-week treatment. Water instead of wine was given to control group. Brains fixed were used for Weigert elastic fiber staining to observe the morphological changes of rat basilar artery walls. Basilar arteries dissected with stereomicroscope were observed by TEM. And expression of metrix metalloproteinase-2(MMP-2) and metrix metalloproteinase-9(MMP-9) was detected by immunohistochemical stain.
     Data were presented as Mean±SD and analyzed with one way ANOVA and least significant difference test(LSD) by SPSS 16.0 statistical program. A level of P<0.05 was considered statistically significant.
     Results:
     1. Behavior changes and weight changes: excitation, unsteadiness on feet, torpidity to stimulus, lethargy and debilitation came out a few minutes after treated with alcohol each time. With prolonged alcohol-treatment, rats appeared anepithymia, torpidity to stimulus, weight-decrease and so on. A significant weight lose in chronic high-dose group and chronic medium-dose group was observed at the 4th week compared to control group(P<0.05). And then significant lose in chronic low-dose group was also observed at the 12th week compared to control group(P<0.05).
     2. Systolic blood pressure changes: Systolic BP fluctuated smoothly in control group, but rose in each chronic group with the prolonged treatment. Systolic BP in chronic high-dose group rose most apparently, and it had increased at the 10th week significantly(P<0.05). There was also a significant increase in chronic medium-dose and low-dose groups at the 12th week(P<0.05) .
     3. Pathological changes
     3.1 Pathological changes of liver: In acute group cellularedema of liver was observed. In chronic low-dose group, cellularedema was observed and aggravated since the 4th week, and then mild microvesicular adipose degeneration emerged. In chronic medium-dose group, there was mild microvesicular adipose degeneration, and acidophilic degeneration and inflammatory infiltration were observed later. In chronic high-dose group, the pathological changes were more serious: diffuse microvesicular adipose degeneration was obvious at the 8th week, and then multiple necrosis emerged.
     3.2 Pathological changes of central nervous system: In acute group, neuron edema and expansion of the space surrounding capillaries were seen. In chronic groups, there were neuron edema, disorder of cell-scatterring, karyopyknosis and nuclear condensation of neurons or purkinje cells, neuronophagia and expansion of the space surrounding capillaries.
     3.3 Changes of internal elastic lamina(IEL) by Weigert elastic fiber staining: There was no significant change of IEL in acute group. IEL in chronic groups had loose texture, delamination and disruption.
     3.4 Changes of rat basilar artery ultra-structure: The chronic hige-dose group began to appear uneven texture and unhomogeneous thickness of IEL at the 4th week. Each chronic group at the 8th week showed reduction of endothelial cell microvillus, vacuolation in or under endothelial cells(EC), uneven texture, unhomogeneous thickness, bifurcation, delamination and even fragmentation of IEL.
     4. Expression of MMP-2 and MMP-9: Negative expression of MMP-2 or MMP-9 was observed in walls of capillaries, small vessels or basilar arteries of control group. There were positive expression of MMP-9 in walls of capillaries and small vessels at the 1st week and 2nd week of acute treatment. Negative expression of MMP-2 was observed in capillaries or small vessels. And there were negative of MMP-2 or MMP-9 in basilar artery walls in each group.
     Conclusions:
     1. There is obvious impairment of rat cerebral vessels in medium-dose group for 8 weeks(At 1st week: 28%V/V wine, 0.4mL/100g each time; At 2nd week: 37.3%V/V wine, 0.6 mL/100g each time; At 3rd week: 56%V/V wine, 0.6 mL/100g each time; At 4th ~8th week: 56%V/V wine, 0.8mL/100g each time). These rats are ideal models to study the alcohol effect on cerebral vessels.
     2. Chronic alcohol treatment brings impairment in basilar artery, which makes the basilar artery fragile to external force, various stress and diseases.
引文
1 Husain K, Mejia J, Lalla J, et al. Dose response of alcohol-induced changes in BP, nitric oxide and antioxidants in rat plasma. Pharmacol Res, 2005, 51(4): 337-343
    2 Iso H, Baba S, Mannami T, et al. Alcohol consumption and risk of stroke among middle-aged men: the JPHC Study Cohort I. Stroke, 2004, 35(5): 1124-1129
    3 Mukamal KJ, Ascherio A, Mittleman MA, et al. Alcohol and risk for ischemic stroke in men: the role of drinking patterns and usual beverage. Ann Intern Med, 2005, 142(1):11-19
    4 Fazio M, Bardelli M, Fabris B, et al. Large-artery hemodynamics after acute alcohol administration in young, healthy volunteers. Angiology, 2004, 55(2): 139-145
    5 Williams JK, Baptista PM, Daunais JB, et al. The Effects of Ethanol Consumption on Vasculogenesis Potential in Nonhuman Primates. Alcoholism: Clinical and Experimental Research, 2008, 32(1): 155-161
    6徐广涛,于晓军,吕俊耀.饮酒促发外伤性蛛网膜下隙出血6例及死因分析.汕头大学医学院学报, 2006, 19(03) : 174
    7 Bunai Y, Nagai A, Nakamura I, et al. Traumatic rupture of the basilar artery: report of two cases and review of the literature. Forensic Med Pathol, 2000, 21(4): 343-348
    8 Adalsteinsson E, Sullivan EV, Mayer D, et al. In vivo quantification of ethanol kinetics in rat brain. Neuropsychopharmacology, 2006, 31(12): 2683-2691
    9 Brecher AS, Adamu MT. The effect of glycosaminoglycans with acetaldehyde on the activation of prothrombin. Physiol Pharmacol, 2005, 83(5): 431-438
    10 Husain K, Mejia J, Lalla J, et al. Time response of alcohol-induced alterations in blood pressure, nitric oxide and oxidant to antioxidant balance in the plasma of rats. Exp Clin Cardiol, 2004, 9(4): 229-234
    11 Zhang Y, Sun T, Jiang F, et al. Effects of alcohol on blood pressure and production of vascular aldosterone and corticosterone. Horm Res, 2001, 55(5): 245-248
    12 Cowpland C, Su GM, Murray M, et al. Effect of alcohol on cytochrome p450 arachidonic acid metabolism and blood pressure in rats and its modulation by red wine polyphenolics. Clin Exp Pharmacol Physiol, 2006, 33(3): 183-188
    13赖江华,胡炳蔚.酒精在人体内的代谢动力学研究.中国法医学杂志. 1996, 11(01): 1-5
    14史清海,付建峰,路西春等.酒精灌胃大鼠血浆中乙醇浓度变化.实用预防医学, 2006, 13(05): 1322-1323
    15 Berger K, Ajani UA, Kase CS, et al. Light-to-moderate alcohol consumption and risk of stroke among U.S. male physicians. N Engl J Med, 1999, 341(21): 1557-1564
    16 Gill JS, Shipley MJ, Tsementzis SA, et al. Alcohol consumption--a risk factor for hemorrhagic and non-hemorrhagic stroke. Am J Med, 1991, 90(4): 489-497
    17 Asai T, Kataoka K, Uejima T, et al. Traumatic laceration of the intracranial vertebral artery causing fatal subarachnoid hemorrhage: case report. Surg Neurol, 1996, 45(6): 566-569
    18 Partridge CR, Sampson HW, Forough R. Long-term alcohol consumption increases matrix metalloproteinase-2 activity in rat aorta. Life Sci, 1999, 65(13): 1395-1402
    19 Stendel R, Irnich B, Hassan AA, et al. The influence of ethanol on blood flow velocity in major cerebral vessels. A prospective and controlled study. Alcohol, 2006, 38(3): 139-146
    20 Bradford BU, Kono H, Isayama F, et al. Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology, 2005, 41(2): 336-344
    21 Rimondini R, Thorsell A, Heiling M, et al. Suppression of ethanolself-administration by the neuropeptide Y (NPY) Y2 receptor antagonist BIIE0246: evidence for sensitization in rats with a history of dependence. Neurosci Lett, 2005, 375(2): 129-133
    22 Zeng LQ, Wei AN, Wang ZB, et al. Changes of blood pressure and pulse rate and the microstructure of celiac ganglion in rabbits with damaged celiac ganglion induced by high intensity focused ultrasound and alcohol. Sichuan Da Xue Xue Bao Yi Xue Ban, 2008, 39(3): 451-454
    23 Tirapelli CR, Legres E, Brochu I, et al. Chronic ethanol intake modulates vascular levels of endothelin-1 receptor and enhances the pressor response to endothelin-1 in anaesthetized rats. Br J Pharmachol, 2008, 154(5): 971-981
    24高英兰.酒精对大鼠血管内皮细胞的促凋亡作用.延边大学, 2005
    25赵丽.酒精中毒大鼠脑血管病变及相应脑组织损伤的病理观察研究.吉林大学, 2004
    26 Sun H, Zheng H, Molacek E, et al. Role of NAD(P)H oxidase in alcohol-induced impairment of endothelial nitric oxide synthase-dependent dilation of cerebral arterioles. Stroke, 2006, 37(2): 495-500
    27 Schlorff EC, Husain K, Somani SM. Dose and time dependent effects of ethanol on antioxidant system in rat testes. Alcohol, 1999, 18(2): 203-214
    28 Radek KA, Kovacs EJ, Gallo RL, et al., Acute ethanol exposure disrupts VEGF receptor cell signaling in endothelial cells. Am J Physiol Heart Circ Physiol, 2008, 295(1): H174-184
    29彭芳,汤强,胡本容.氧化应激在乙醇诱导内皮细胞凋亡中的作用.医药导报. 2008, 27(2): 135-137
    30 Cantor JO, Keller S, Parshley MS, et al. Synthesis of crosslinked elastin by an endothelial cell culture. Biochemical and Biophysical Research Communications, 1980, 95(4): 1381-1386
    31 Carnes WH, Abraham PA, Buonassisi V. Biosynthesis of elastin by an endothelial cell culture. Biochemical and Biophysical Research Communications, 1979, 90(4): 1393-1399
    32 Sauvage M, Hinglasis N, Mandet C, et al. Localization of elastin mRNA and TGF -β1 in rat aorta and caudal artery as a function of age. Cell T issue Res, 1998, 291(2): 305 -314
    33温进坤,韩梅.血管平滑肌细胞.科学出版社, 2005年5月
    34 Fonck E, Feigl GG, Fasel J, et al. Effect of aging on elastin functionality in human cerebral arteries. Stroke, 2009, 40(7): 2552-2556
    35 Goto Y, Hojo M, Yamagata S, et al. Fatal bleeding from arterial dissection after clipping of a ruptured aneurysm--case report. Neurol Med Chir (Tokyo), 2003, 43(12): 608-611
    36 Mizutani T, Kojima H, Asamoto S, et al. Pathological mechanism and three-dimensional structure of cerebral dissecting aneurysms. J Neurosurg, 2001, 94(5): 712-717
    37 Ro A, Kageyama N, Takatsu A, et al. Differential diagnosis between traumatic and nontraumatic rupture of the intracranial vertebral artery in medicolegal autopsy. Legal Medicine, 2009, 11(Supplement 1): 66-70
    38 Yasmin, McEniery CM, Wallace S, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol, 2005, 25(2): 372
    39 Sergey L, Oliver D, Gerd B. Expression ofα2-macroglobulin, neutrophil elastase, and interleukin-1αdiffers in early-stage and late-stage atherosclerotic lesions in the arteries of the circle of Willis. Acta Neuropathol, 2007 113(1): 33-43
    40 Kolpalov V, Rekhter MD, Gordon D, et al. Effect of mechanical forces on growth and matrix protein synthesis in the in vitro pulmonary artery. Analysis of the role of individual cell types. Circ Res, 1995, 77(4): 823- 831.
    41 Xu C, Zarins CK, Glagov S. Gene expression of tropoelastin isenhanced in the aorta proximal to the coarctation in rabbits. Expmol pathol, 2002, 72(2): 115-123
    42李奋,周爱卿,陈树宝等.肺动脉高压及高肺血流对肺小动脉壁弹性蛋白离解与原弹性蛋白mRNA表达的影响.中华儿科杂志, 2000, 38(12): 733-737
    43徐丹令,沈金根,范冷艳等.不同年龄的正常和高血压大鼠脑动脉内弹性膜的变化.解剖学杂志, 1994, 17(2): 144-148
    44 Wright JW, Masino AJ, Reichert JR, et al. Ethanol-induced impairment of spatial memory and brain matrix metalloproteinases. Brain Research, 2003, 963(2): 252-261
    45 Fiotti N, Tubaro F, Altamura N, et al. Alcohol reduces MMP-2 in humans and isolated smooth muscle cells. Alcohol, 2008, 42(5): 389-395
    46徐广涛.灌酒大鼠脑组织tPA、MMP-9表达变化与外伤性蛛网膜下腔出血的关系研究.汕头大学, 2004
    47 Sillanaukee P, Kalela A, Seppa K, et al. Matrix metalloproteinase -9 is elevated in serum of alcohol abusers. Eur J Clin Invest, 2002, 32(4): 225-229
    48 Nikkari ST, Hoyhtya M, Isola J, et al. Macrophages contain 92-kd gelatinase (MMP-9) at the site of degenerated internal elastic lamina in temporal arteritis. Am J Pathol, 1996, 149(N5): 1427-1433
    49 Sehba FA, Mostafa G, Knopman J, et al. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg, 2004, 101(4): 633-640
    50 Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 1998, 29(10): 2189-2195
    51 Hawkins BT, Lundeen TF, Norwood KM, et al. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia, 2007, 50(1): 202-211
    52 Haorah J, Schall K, Ramirez SH, et al., Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: Novel mechanism for neurodegeneration associated with alcohol abuse. Glia, 2008, 56(1): 78-88
    1 Fewings JD, Hanna MJ, Walsh JA, et al. The effects of ethyl alcohol on the blood vessels of the hand and forearm in man. Br J Pharmacol Chemother, 1966, 27(1): 93-106
    2张永生,孙铁军,姜枫, et al.长期摄入乙醇或高糖对大鼠动脉血压及血浆皮质醇和醛固酮水平的影响.中国心血管杂志, 2002, 7(2): 118-119
    3 Yang ZW, Wang J, Zheng T, et al. Ethanol-induced contractions in cerebral arteries: role of tyrosine and mitogen-activated protein kinases. Stroke, 2001, 32(1): 249-257
    4 Altura BM, Altura BT. Microvascular and vascular smooth muscle actions of ethanol, acetaldehyde, and acetate. Fed Proc, 1982, 41(8): 2447-2451
    5 Criscione L, Powell JR, Burdet R, et al. Alcohol suppresses endothelium-dependent relaxation in rat mesenteric vascular beds. Hypertension, 1989, 13(6 Pt 2): 964-967
    6 Venkov CD, Myers PR, Tanner MA, et al. Ethanol increases endothelial nitric oxide production through modulation of nitric oxide synthase expression. Thromb Haemost, 1999, 81(4): 638-642
    7 Kuhlmann CR, Li F, Ludders DW, et al. Dose-dependent activation of Ca2+-activated K+ channels by ethanol contributes to improved endothelial cell functions. Alcohol Clin Exp Res, 2004, 28(7): 1005-1011
    8 Tawakol AT, Omland T, Creager MA. Direct effect of ethanol on human vascular function. Am J Physiol Heart Circ Physiol, 2004, 286(6): H2468-473
    9 Klingman GI, Goodall M. Urinary epinephrine and levarterenol excretion during acute sublethal alcohol intoxication in dogs. Pharmacol Exp Ther, 1957, 121(3): 313-318
    10 Altura BM, Altura BT, Gebrewold A. Alcohol-induced spasms of cerebral blood vessels: relation to cerebrovascular accidents and sudden death. Science, 1983, 220(4594): 331-333
    11 Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol, 1994, 266(6 Pt 2): H2568-H2572
    12 Sun H, Zheng H, Molacek E, et al. Role of NAD(P)H oxidase in alcohol-induced impairment of endothelial nitric oxide synthase-dependent dilation of cerebral arterioles. Stroke, 2006, 37(2): 495-500
    13 Sun H, Mayhan WG. Temporal effect of alcohol consumption on reactivity of pial arterioles: role of oxygen radicals. Am J Physiol Heart Circ Physiol, 2001, 280(3): H992-H1001
    14 Schlorff EC, Husain K, Somani SM. Dose and time dependent effects of ethanol on antioxidant system in rat testes. Alcohol, 1999, 18(2-3): 203-214
    15高英兰.酒精对大鼠血管内皮细胞的促凋亡作用.延边大学, 2005
    16 Li W, Li J, Liu W, et al. Alcohol-induced apoptosis of canine cerebral vascular smooth muscle cells: role of extracellular and intracellular calcium ions. Neurosci Lett, 2004, 354(3): 221-224
    17 Le Bras M, Clement MV, Pervaiz S, et al. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol, 2005, 20(1): 205-219
    18 Spyridopoulos I, Wischhusen J, Rabenstein B, et al. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism. Arterioscler Thromb Vasc Biol, 2001, 21(3): 439-444
    19 Koehler KM, Baumgartner RN, Garry PJ, et al. Association of folate intake and serum homocysteine in elderly persons according to vitamin supplementation and alcohol use. Am J Clin Nutr, 2001, 73(3): 628-637
    20王祥贵,冯义柏,朱利民.同型半胱氨酸对人血管平滑肌细胞凋亡及bax、bcl-2表达的影响.中国全科医学, 2005, 8(6): 446-449
    21 Hristova EN, Rehak NN, Cecco S, et al. Serum ionized magnesium in chronic alcoholism: is it really decreased? Clin Chem, 1997, 43(2):394-399
    22 Mayhan WG, Didion SP. Acute effects of ethanol on responses of cerebral arterioles. Stroke, 1995, 26(11): 2097-2101; discussion 2102
    23 Altura BM, Altura BT. Association of alcohol in brain injury, headaches, and stroke with brain-tissue and serum levels of ionized magnesium: a review of recent findings and mechanisms of action. Alcohol, 1999, 19(2): 119-130
    24 Hendrickson RJ, Okada SS, Cahill PA, et al. Ethanol inhibits basal and flow-induced vascular smooth muscle cell migration in vitro. Surg Res, 1999, 84(1): 64-70
    25 Ghiselli G, Chen J, Kaou M, et al. Ethanol inhibits fibroblast growth factor-induced proliferation of aortic smooth muscle cells. Arterioscler Thromb Vasc Biol, 2003, 23(10): 1808-1813
    26 Liu MW, Anderson PG, Luo JF, et al. Local delivery of ethanol inhibits intimal hyperplasia in pig coronary arteries after balloon injury. Circulation, 1997, 96(7): 2295-2301
    27 Williams JK, Baptista PM, Daunais JB, et al. The Effects of Ethanol Consumption on Vasculogenesis Potential in Nonhuman Primates. Alcoholism: Clinical and Experimental Research, 2008, 32(1): 155-161
    28 Radek KA, Matthies AM, Burns AL, et al. Acute ethanol exposure impairs angiogenesis and the proliferative phase of wound healing. Am J Physiol Heart Circ Physiol, 2005, 289(3): H1084-1090
    29 Gu JW, Elam J, Sartin A, et al. Moderate levels of ethanol induce expression of vascular endothelial growth factor and stimulate angiogenesis. Am J Physiol Regul Integr Comp Physiol, 2001, 281(1): R365-372
    30 Radek KA, Kovacs EJ, Gallo RL, et al. Acute ethanol exposure disrupts VEGF receptor cell signaling in endothelial cells. Am J Physiol Heart Circ Physiol, 2008, 295(1): H174-184
    31刘扬,赵莉.饮酒对血脂的影响及与脑血管病的关系.吉林医学, 2008, 29(21): 1885-1886
    32 Panayiotou A, Griffin M, Georgiou N, et al. ApoB/ApoA1 ratio and subclinical atherosclerosis. Int Angiol, 2008, 27(1): 74-80
    33 Berger K, Ajani UA, Kase CS, et al. Light-to-moderate alcohol consumption and risk of stroke among U.S. male physicians. N Engl J Med, 1999, 341(21): 1557-1564
    34 Gill JS, Shipley MJ, Tsementzis SA, et al. Alcohol consumption--a risk factor for hemorrhagic and non-hemorrhagic stroke. Am J Med, 1991, 90 (4): 489-497
    35 Stamler JS, Osborne JA, Jaraki O, et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest, 1993, 91(1): 308-318
    36 Kristensen B, Malm J, Nilsson TK, et al. Hyperhomocysteinemia and hypofibrinolysis in young adults with ischemic stroke. Stroke, 1999, 30(5): 974-980
    37 Fiotti N, Tubaro F, Altamura N, et al. Alcohol reduces MMP-2 in humans and isolated smooth muscle cells. Alcohol, 2008, 42(5): 389-395
    38 Sillanaukee P, Kalela A, Seppa K, et al. Matrix metalloproteinase-9 is elevated in serum of alcohol abusers. Eur J Clin Invest, 2002, 32(4): 225-229
    39 Partridge CR, Sampson HW, and Forough R. Long-term alcohol consumption increases matrix metalloproteinase-2 activity in rat aorta. Life Sci, 1999, 65(13): 1395-1402
    40 Fazio M, Bardeli M, Fabris B, et al. Large-artery hemodynamics after acute alcohol administration in young, healthy volunteers. Angiology, 2004, 55(2): 139-145
    41 Gdovinova Z. Blood flow velocity in the middle cerebral artery in heavy alcohol drinkers. Alcohol Alcohol, 2001, 36(4): 346-348
    42 Stendel R, Irnich B, Hassan AA, et al. The influence of ethanol on blood flow velocity in major cerebral vessels. A prospective and controlled study. Alcohol, 2006, 38(3): 139-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700