天然气再燃降低NOx排放的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤粉燃烧过程中释放的NOx是主要大气污染物之一,对环境、气候和人类健康带来严重影响。随着我国燃煤电站锅炉的装机容量不断增加,NOx排放带来的环境污染问题也越来越严重。为了解决电站煤粉锅炉NOx排放污染问题,许多学者开始了对NOx生成与破坏机理的研究、并研究出低氮燃烧器、空气分级、燃料再燃、烟气再循环、选择性催化还原以及选择性非催化还等诸多NOx控制方法。其中,天然气再燃具有投资小、运行费用低,脱硝效率高等优点。采用天然气再燃技术降低煤粉锅炉NOx排放具有重要的工程实用价值。
     目前,欧美等先进工业国家在已有比较成熟的天然气再燃示范工程应用,然而,其应用的关键性技术未见有公开报道,并且也未见有系统性的研究。因此,要将该技术应用于国内煤粉锅炉上,必须进行系统性的研究,以掌握其中关键技术并进行应用推广。以我国典型的切圆煤粉锅炉为研究对象,进行天然气再燃的系统性的试验和数值模拟,探索和弄清再燃气流在炉内的混合特性、燃烧特性,研究开发再燃系统工业装置,将充实和推动再燃技术的学术研究,也将促进再燃低NOx技术应用的创新及推广。
     文中在深入分析国内外煤粉锅炉再燃技术发展及现状的基础上,通过理论分析和试验相结合的方法首次系统深入地探讨了利用天然气再燃技术降低四角切圆燃烧煤粉锅炉NOx排放的关键性影响因素,重点研究了再燃射流在炉内的混合机理,并首次提出了四角切圆煤粉锅炉上前后墙对冲喷射再燃燃料和燃尽风的技术,强化了炉内气流混合并降低了炉膛出口气流的扭转残余。
     文中的具体研究工作包括再燃喷气在炉内的混合特性试验与数值模拟、一维试验炉再燃热态数值模拟与试验以及天然气再燃工业应用及优化研究。
     ①针对在煤粉锅炉再燃低NOx技术影响因素研究的文献中,未见有关于再燃气体混合机理的具体报道,首次采用不等温射流试验方法,进行了较为系统的冷态试验研究,模拟了再燃射流和燃尽风射流与炉内主气流的混合特性。采用炉内温度场模拟炉内气流混合状况的试验方案,分析了再燃气流流量、再燃气流喷口布置方式、再燃气流喷口安装高度、燃尽风流量、燃尽风喷口布置方式、燃尽风喷口安装高度等参数对炉内气流混合特性(温度分布)的影响。试验结果表明射流流量、喷口布置方式、喷口在炉膛上的安装高度之间存在最佳配置方式。
     ②针对试验研究的局限性,采用计算机数值计算模拟了煤粉锅炉进行再燃改造后的炉内气流混合状况。文中首先通过模拟横向单喷口射流与垂直主气流之间的混合特性,得出了单喷口横向射流在炉内的速度、温度、浓度分布特性,进一
NOx emission from the coal burning is one of the major pollutant sources for atmosphere, and it is a threat to environment, climate and human health. The pollutant problem of NOx emission becomes more and more serious with coal fired boilers increasing. Many scholars begin to research the forming and destroying mechanism of NOx for resolving the problem of NOx emission from coal fired boilers in power plants, and a good many NOx controlling methods are invented such as Low-NOx Burners, Air Staging, Fuel Reburning, Flue Gas Recirculation, Selective Catalytic Reduction and Selective Noncatalytic Reduction. Therefinto, Natural Gas Reburning (NGR) has the advantage of lower investment, low operating expenses and high NOx reduction efficiency. It has very important value of engineering application for reducing NOx emission with Natural Gas Reburning.
     Now, NGR technology have been proven to be an available technology by all industrial demonstrations in USA and Europe, but the critical technologies haven’t been openly reported and the systemic research hasn’t been found. So, before applied NGR technology to pulverized coal boilers in China, the systemic research must been carried for mastering the critical technologies and industrial demonstrating. Using the typical tangentially fired boilers in China as researching object, numerical and experimental investigation on NGR technology for NOx reduction, to explore and understand the mixing characteristic, burning characteristic and to exploit the industrial equipments, all of which will enrich and promote the academic researches and carry forward the technological innovations and engineering applications of NGR technology.
     This paper is in allusion to the development and actuality reburning technologies of coal fired boilers in china and foreign countries. It is firstly to more deeply investigate the critical influencing factors on reducing NOx emission of tangentially coal fired boilers with NGR technology combined numerical and experimental methods. The mixing mechanism of the reburning injection in furnace was emphasis in this paper, and the methods on oppositely injecting reburning gas and over firing air (OFA) in the front and rear walls in tangentially coal fired boiler is the firstly brought forward, which can strengthen the gas flow mixing in furnace and reducing the gas flow swirling remains at the furnace outlet.
     The researches include the cold experimental and numerical studies on mixing
引文
[1] 毛健雄,毛健全,赵树民.煤的清洁燃烧.北京.科学出版社.1998
    [2] 毕玉森. 电站锅炉 NOx 排放现状、预测及技术政策. 中国电力. 1998. 31(12). 59~62
    [3] 张 海, 吕俊复, 徐秀清, 曾瑞良, 岳光溪. 我国燃煤电站锅炉 NOx 排放的现状分析和应对措施. 中国动力工程学报. 2005. 25(1). 125~130
    [4] 岑可法. 姚强. 骆仲泱. 李绚天. 高等燃烧学. 杭州. 浙江大学出版社. 2002. 555~563
    [5] 苏亚欣. 毛玉如. 徐璋. 燃煤氮氧化物排放控制技术. 北京. 化学工业出版社. 2005. 29~34
    [6] 曾汉才等.大型贫煤锅炉 NOx 排放特性试验研究. 热力发电. 1999(2). 15~26
    [7] 国家电力公司热工研究院报告. 我国低 NOx 燃烧技术的回顾与展望. 2000(3). 2~14
    [8] 毕玉森.低氮氧化物燃烧技术的发展状况. 热力发电. 2000 (2). 2~4
    [9] 曹焰等.电站燃煤锅炉控制 NOx 排放的技术策略. 热力发电. 1999(6). 2~4
    [10] The U. S. Department of Energy. Reducing Emissions of Nitrogen Oxides via Low-NOx Burner Technologies. Clean Coal Technology. 1996(5)
    [11] K. McCarthy et al. Advanced Furnace Air Staging and Burner Modifications for ltra-Low NOx Firing Systems. Foster Wheeler Energy Corporation. Clinton. NJ 08809-4000.USA
    [12] 赵坚行. 热动力装置的排气污染与噪声. 北京. 科学出版社.1995
    [13] 王绍某,李国芬译. 固定源排放氮氧化物的控制技术. 北京. 中国环境出版社. 1988
    [14] B. A. Folsom, T. M. Sommer, D. A. Engelhardt, and D. K. Moyeda. Coal Reburning for Cost-Effective NOx Compliance. Power-Gen International '96 Orlando, Florida December 4-6, 1996
    [15] ARUNVEL THANGAMANI, A NOx Reduction Model for Advanced reburning Process Using Biomass Volatiles. Master thesis, Texas A&M University, USA. 2002
    [16] C. Ronald Rostorfer, Michael Dinkelman, Todd M. Sommer. Summary Demonstration of Orimulsion Reburning on a Coal-fired Utility Boiler. http://www.netl.doe.gov/publication
    [17] Enhancing The Use of Coals By Gas Reburning-Sorbent Injection. Volume 2- Gas Rebuming-Sorbent Injection at Hennepin Unit 1. Illinois Power Company. U.S. Department of Energy. March 1996
    [18] 张强,刘艳华,许晋源.再燃烧技术中再燃燃料的选取原则.工业炉. 1998. 21(3). 9~11
    [19] Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boiler by The U.S.Department of Energy and Babcock & Wilcox Company and Energyand Environmental Research Corporation and New York State Electric & Gas Corporati-onBabcock. MAY, 1999
    [20] Reducing Emissions of Nitrogen Oxides via Low-NOx BurnerTechnologies. Clean Coal Technology. The U.S. Department of Energy . Topical Report Number 5. September 1996
    [21] Makino Keiji,etc. Technologies For NOx Reduction in PC Fired Utility Boilers–a Manufacturers Perspective. IFRF Combustion Journal. August 2000. Article No 200007.3~8
    [22] 英国贸工部报告. LOW- NOx Combustion System. 2000.2. 3~4
    [23] K. McCarthy. Long Term Results from the First US Low NOx Conversion of a Tangential Lignite Fired Unit. Foster Wheeler Energy Corporation. Clinton.NJ 08809-4000. USA.
    [24] Tom Steitz et al. Wall fired low NOx Burner Evolution For Global NOx Compliance. The 23rd International Technical Conference on Coal Utilization & Fuel Systems. Clearwater, Florida USA. March 9-13, 1998
    [25] K. Mc Carthy et al. Improved Low NOx Firing Systems for Pulverized Coal Combustion. Foster Wheeler Energy Corporation Clinton. NJ 08809-4000, USA
    [26] The U. S. Department of Energy. Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers. Clean Coal Technology. 1999(13)
    [27] 大气污染控制手册编写组. 电力工业大气污染控制手册. 北京. 中国环境科学出版社. 1999.12. 161~163
    [28] S.C. Christoforou, E.F. Iliopoulou, E.A. Efthimiadis et al. Novel Bifunctional Catalytic Systems for the SCR of NOx Using Hydrocarbons as Reductants: Step One, NO Oxidation. http://www.netl.doe.gov/publication. 2000.
    [29] SNCR Committee of Institute of Clean Air Companies, Inc, US. Selective Non-Catalytic Reduction (SNCR) for Controlling NOx emissions. http://www.netl.doe.gov/publication. May 2000
    [30] Control of Nitrogen Oxide Emissions: Selective Catalytic Reduction (SCR). Clean Coal Technology. Department of Energy and Southern Company Services. Topical Report Number 9. July 1997
    [31] H. Farzan, G. Maringo, A. Yagiela, A. Kokkinos. B&W’s Reburning Experience. 2004 Conference on Reburningfor NOx Control. USDOE NETL. 2004
    [32] B.A.Folsom,T.M.Sommer,et al. Coal Reburning for Cost-Effective NOx Compliance. Power-Gen International’96v. Orlando USA. December 1996
    [33] Department of Energy, US. Enhancing The Use Of Coals By Gas Reburning-Sorbent Injection. Volume 2- Gas Rebuming-Sorbent Injection at Hennepin Unit 1 Illinois Power Company .U.S. March 1996
    [34] Takahashi Y., Sakai M., Kunimoto T., Ohme S., et al., EPRI Report No.CS-3182. Proceedingsof the 1982 Joint Symposium on Stationary NOx Control. 1, July, 1983
    [35] Reduction of NOx and SO2 Using Gas Reburning, Sorbent Injection and Integrated Technologies. Clean Coal Technology. Energy and Environmental Research Corporation. The U.S. Department of Energy .Topical Report Number 3 .Sep 1993
    [36] Jamal B. Mereb. Micronized Coal Reburn Demostration Project for NOx Control at the New York Station Electric & Gas Tangentially-Fired Milliken Unit 1. July 14,1999. www.lanl. gov/ projects/cctc/ resources/pdfs
    [37] C. Andrew Miller. Overview of EPA’s Reburn Demonstrations in Ukraine. www.netl.doe.gov / publications/ proceedings/99/99reburn
    [38] B. A. Folsom,R. G. Rock, D. T. O'Dea. et al. Coal Reburning for Cost-Effective NOx Compliance. Power-Gen International '96. Orlando, Florida. December 4-6, 1996
    [39] 吴创之. 生物质气化发电技术讲座. 可再生能源. 2003(4). 55~56
    [40] 王晶红,刘皓,陆继东等.生物质燃料与煤混燃时 NOx/N2O 排放的研究.华中理工大学学 报. 1998. 26(1). 72~74
    [41] L.D.Smoot, S.C.Hill, H.Xug. NOx Control through Reburning. Prog Energy Combust. Sci. 1998. 385~408
    [42] N. Stanley Harding, Bradley R. Adams. Biomass as a reburning fuel: a specialized co-firing application. Biomass and Bioenergy. 2000(19). 429~445
    [43] Peter M.Maly, Vladimir M.Zamansky, Loc Ho, Roy Payne. Alternative Fuel Reburning. Fuel 1999(78). 327~334.
    [44] C. Ronald Rostorfer, Michael Dinkelman, Todd M. Sommer. Demonstration of Orimulsion Reburning on a Coal-Fired Utility Boiler. www.netl.doe.gov/publications/ proceedings/ 99/ 99reburn
    [45] Richard D. Frederiksen et al. Lim Simulations of Gas Injection and Reburning in Two Coal-Fired Utility Boilers. AFRC International Symposium. www.ngbtech.com /subpages/ soft/AFRC97/AFRC97. 1997
    [46] Richard D. Frederiksen et al. Fuel-lean Gas Reburning (FLGR?) Technology for Achieve NOx Emissions Compliance: Application to a Tangentially Fired Boiler. Joint American/Japanese Flame Research Committee International Symposium. Maui, Hawaii. October 11-15. 1998
    [47] John Pratapas, Roger Glickert, Werner J. A. Dahm. Application of Fuel Lean Gas Reburn (FLGRTM) Systems. 1999 Conference on Reburning for NOx Control. www.netl. doe. gov/ publications/ proceedings/99/99reburn
    [48] James E.Staudt. Technologies and Cost Effectiveness of Post-Combustion NOx Controls.www.netl.doe.gov/publications/ proceedings/99/99scr-sncr
    [49] 张晓鲁.中国火力发电洁净煤技术的发展.中国洁净能源技术研讨会论文集.2002
    [50] 毕玉森. 我国电站锅炉低 NOx 燃烧器的应用状况及运行实绩. 热力发电. 1998(1). 4~11
    [51] 文军,许传凯. 分级燃烧对 NOx 生成及燃烧经济性的影响. 中国电力. 1997(4)
    [52] 闫志勇,张惠鹃等.锅炉分级燃烧降低 NOx 排放的技术改造及分析. 动力工程. 2000. 20 (4). 754~759
    [53] 张良. 300MW 直流锅炉采用燃烧技术降低 NOx 排放量试验研究. 中国电力. 1998(4)
    [54] 原国家电力公司低 NOx 燃烧技术研讨会. 燃贫煤、无烟煤的低 NOx 燃烧技术. 河南省电力公司等. 2000.5
    [55] 钟北京,傅维标. 气体燃料再燃对 NOx 还原的影响. 热能动力工程. 1999(6). 419~422
    [56] 沈毅敏等. 天然气再燃还原炉内 NOx 的扩散机制分析. 上海交通大学学报. 2000. 34(9)
    [57] 欧大武,方磊,李戈等. 利用三次风再燃降低 NOx 排放研究. 电站系统工程. 2003. 19(1). 24~26
    [58] 池作和,徐璋,潘维等. 三次风中超细煤粉再燃降低 NOx 排放的几个关键问题分析.浙江电力. 2003(1). 1~5
    [59] 卢啸风,郑先国,刘汉周.天然气再燃低 NOx 技术的冷模试验分析.重庆大学学报.2003. 26(5). 40~45
    [60] 刘振琪. 三级燃烧降低 NOx 生成量试验. 热力发电. 1999(2). 27~30
    [61] The U.S. Department of Energy .Software Systems in Clean Coal Demonstration Projects. Clean Coal Technology. Topical Report Number 17. December 2001
    [62] 钟北京,徐旭常.燃烧过程中 NOx 形成的数学模拟.燃烧科学与技术.1995. 1(2). 120~127
    [63] Visona S P,Stanmore B R.Modeling NOx release from a single particle:Ⅰ.Formation of NO from volatile nitrogen,Combustion and Flame.1996,105. 92~103
    [64] Visona S P,Stanmore B R.Modeling NOX release from a single particle:II.Formation of NO from char-nitrogen [J].Combustion and Flame.1996,106. 207~218
    [65] DONGHEE HAN and M. G. MUNGAL. Prediction of NOx Control by Basic and Advanced Gas Reburning Using the Two-Stage Lagrangian Model. COMBUSTION AND FLAME. May 1999. 483~493
    [66] Tyson, T. J., Kau, C. J., and Broadwell, J. E. A Model of Turbulent Diffusion Flames and Nitric Oxide Generation Part II, Energy and Environmental Research Corporation. Irvine, CA. 1981
    [67] 周力行. NOx 生成湍流反应率数值模拟的进展. 力学进展.2001. 30(1). 77~82
    [68] Glarborg P, Miller J A, Kee R J. Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-stirred Reactors. Combust. Flame, 1986 (65). 177~202
    [69] Visona S P, Stanmore B R. Modelling NO Formation in a Swirling Pulverized Coal Flame. Chemical Engineering Science, 1998. 53(11). 2013~2027
    [70] Miller James A, Bowman Craig T. Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prog. Energy Combustion. Sci. 1989(15). 287~338
    [71] Gustavsson Lennart, Glarborg Peter, Leckner Bo. Modeling of Chemical Reaction in After burning for the Reduction of N2O. Combustion and Flame. 1996(106). 345~358
    [72] Xu Minghou, Fan Yanguo, Yuan Jianwei et al.. Modeling NOx Emissions during Staged Combustion. Int. J. Energy Research,1999(23). 683~693
    [73] Bilbao Rafael, AlzuetaMaria U, Millera Angela et al.. Simplified Kinetic Model of the Chemistry in the Reburning Zone. Ind. Eng. Chem. Res., 1995(34). 4540~4548
    [74] Visona S P, Stanmore B R. Modeling Nitric Oxide Formation in a Drop Tube Furnace Burning Pulverized Coal. Combustion and Flames. 1999(118). 61~75
    [75] Hill S C, SmootL Douglas. Modeling of Nitrogen Oxides Formation and Destruction in Combustion System. Progress in Energy and Combustion Science, 2000, 26. 417~458
    [76] Han Xiaohai, Wei Xiaolin, Schnell Uwe et al.. Detail Modeling of Hybrid Reburn/SCR Process for NOx Reduction in Coal-Fired Furnaces. Combustion and Flames, 2003(132). 374~386
    [77] Faravelli T, Frassoldati A, Ranzi E. Kinetic Modeling of the Interaction between NO and Hydrocarbons in the Oxidation of Hydrocarbons at Low Temperatures. Combustion and Flames. 2001(132). 188~207
    [78] Bian J, Vandooren J, Van Tiggelen P J. 21st Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh. 1986. 953~956
    [79] Thorne L R, Branch M C, Chandler D W et al.. 21st Symp. (Int.) on Combustion, The Combustion Institue, Pittsburgh. 1986. 965~977
    [80] Kilpinen Pia, Glarborg Peter, Hupa Mikko. Reburning Chemistry: a Kinetic Modeling Study. Ind. Eng. Chem. Res. 1992(31). 1477~1490
    [81] Glarborg P, Hadvig S. Reaction Rate Survey for Natural Gas Combustion. Modeling and Chemical Reactions. NGC Report, Nordic Gas Technogy Center: Horsholm, Demark, Jan.1991
    [82] Chen A T and Malte P C. Influence of Fuel-N Compound type and SO2 in Nitrogen Reactions in Stirred Flames. Paper WSS/-CI 84-86 Presented at the 1984 Fall Meeting of Wewstern States Sections, The Combustion Institute, Standford, CA, Oct. 22~23,1984
    [83] GlarborgP, Lilleheie N I, Byggstoyl S et al.. A Reduced Mechanism for Nitrogen Chemistry in Methane Combustion. Proc. 24th Symp. (Int.) on Combustion, The Combustion Institute,Pittsburgh. 1992. 889~898
    [84] Bilbao Rafael, Alzueta Maria U. Millera Angela, Experimental Study of the Influence of Operating Variable on Natural Gas Reburning Efficiency. Ind. Eng. Chem. Res. 1995(34).4531~4539
    [85] KeeR J, M iller J A . Sandia Report. 1989. SAND 89- 8009B
    [86] Aiken R C. Stiff Computation, Lond on: Oxford University Press. 1985. 21
    [87] Bilger R W, Starners S H. Combust Flame. 1990. 80 (2). 135
    [88] Glarborg Petal. 24th Symposium on Combust ion. The Combustion Institute. Pittsburgh. 1992
    [89] Alison S T, Michael J P et al. Combust Flame. 1992. 91 (1). 107
    [90] Steele, Robert C., Malte, Philip C.. NOx and N2O in Lean-Premixed Jet-Stirred Flames. Combustion and Flame. 1995.100(3). 440~449
    [91] Smoot L D, Sm ith P J. Coal Combustion and Gasification. Plenum Press. 1985
    [92] 范耀国,徐明厚,袁建伟. 甲烷-空气燃烧中 NO x 生成的简化模型研究. 燃料化学学报. 1997. 25(1). 78-84
    [93] Schlatter M, Flury M. Modeling of NO formation in turbulent H2 flames. In: Carvallho M G,ed. Proc 3rd Inter Conf on Comb Tech for a Clean Environ(3ICCTCE), Paper 18.1. Lisbon. 1995
    [94] Okasanen A, Maki-Mantila E. Use of PDF in modeling of NO formation in methane combustion. In: Carvalhe M G, ed. Proc 3ICCTCE, Paper 18.3. Lisbon. 1995
    [95] Beretta A, Mancini N, Podenzani F, Vigevano L. The influence of the temperature fluctuation variance on NO predictions for a gas flame. In: Carvalhe M G, ed. Proc 3ICCTCE, Paper 18.4. Lisbon. 1995
    [96] Zhou L X. Theory and Modeling of Turbulent Gas-Particle Flows and Combustion. Beijing: Science Press and Florida CRC Press. 1993
    [97] Libby P A, Williams F A, ed. Turbulent Reacting Flows. Berlin: Springer-Verlag. 1979
    [98] Liao C, Liu Z, Liu C. NOx prediction in 3-D turbulent diffusion flames by using impl-icit multigrid methods. Combustion Science and Technology. 1996(119). 219~260
    [99] Faltsi-Saravelon O, Wild P N. Prediction of NO emissions from a swirling coal flame. In: Carvalhe M G, ed. Proc 3ICCTCE, Paper 20.2. Lisbon. 1995
    [100] DalSecco S, Mechitoua N, Simonin O. Three-dimensional modeling of coal combustion and NO formation in a 250 MW coal-fired furnace. In: Carvalhe M G, ed.. Proc 3ICCTCE, Paper 31.2. Lisbon. 1995
    [101] Smoot L D, Smith P J. Coal Combustion and Gasification. New York: Plenum Press. 1985
    [102] Smoot L D. Fundamentals of Coal Combustion. Amsterdam: Elsevier. 1993
    [103] 郭印诚,林文漪,周力行. 煤粉燃烧过程中 NO 二生成的数值模拟. 燃烧科学与技术. 1998. 4(1). 18~24
    [104] Zhou Lixing. An improved second-order moment model of turbulent combustion. Third Asian-Pacafic Symp on Comb and Enery Utiliz. Hong Kong. 1995. 461~465
    [105] Subha K. Kumpaty et al . Computational Modeling and Experimental Studies on NOx Reduction Under Pulverized Coal Combustion Conditions. U.S. Department of Energy,Pittsburgh Energy Technology Center. Technical Progress Report. Eighth Quarter October 1, 1996 - December 30, 1996
    [106] John Grusha , Sara Woldehanna. Application of Simulation Tools and Experimental Me-thodologies in the Design and Performance Optimization of Low NOx Retrofits to a L-ignite Tangential Fired Boiler. Foster Wheeler Energy Corporation, Clinton. NJ 08809-4000
    [107] Philip J. Stopford. Recent Application of CFD modelling in the Power Generation and Combustion Industries. Applied Mathematical Modelling. 2002(26). 351~374
    [108] 沈毅敏等.天然气再燃还原炉内 N0x 的扩散机制分析.上海交通大学学报. 2000. 34(9). 1249~1252
    [109] 张强等. 天然气再燃烧还原 NOX 的数值模拟. 西安石油学院学报. 1999.14(6). 44~46
    [110] 危师让.研究开发和采用发电高新技术促进西部大开发和电力可持续发展.中国洁净能源技术研讨会论文集.1999
    [111] 孙茂远.煤层气在我国能源发展中的战略地位及其发展要素.中国能源.1999(4). 4~6.
    [112] 孙春,唐耀等.西气东输访谈录.石油规划设计. 1999. 10(3) . 10~12.
    [113] 岑可法. 锅炉燃烧实验研究方法及测量技术. 北京. 水利电力出版社. 1985. 1~98
    [114] 王致均. 锅炉燃烧过程. 重庆. 重庆大学出版社. 1987
    [115] 许晋源. 徐通模. 燃烧学. 北京. 机械工业出版社. 1982
    [116] 林宗虎. 锅炉测试. 北京. 中国计量出版社. 1996. 236~244
    [117] 岑可法,樊建人. 燃烧流体力学. 杭州. 浙江大学出版社. 1991. 302~314
    [118] Patanker S.V. 传热与流体流动的数值计算. 张正译. 北京. 科学出版社. 1984. 146~170
    [119] 周力行. 湍流气粒两相流动和燃烧的理论与数值模拟. 北京. 科学出版社.1994
    [120] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemisphere Publishing Corporation, Washington D.C. 1992
    [121] Niksa S, Kerstein A.R. Flash chain theory for rapid coal devolatilization kinetics. 2. Impact of operation conditions. Energy and Fuels, 1991(5). 673-683
    [122] 周向阳,郑楚光等.大型炉膛燃烧过程的模拟预示.华中理工大学学报,1994.22(3).11~15
    [123] R. K. Boyd and J. H. Kent. Three-dimensional furnace computer modeling. In 21st Symp. (Int’L) on Combustion, pages 265~274. The Combustion Institute. 1986
    [124] Faeth GM. Prog Energy Combust Sci. 1987(13). 293
    [125] Kuo, KKY. Principles of combustion, New York: Wiley. 1986
    [126] Sirignano WA. In: Chung TJ, editor. Numerical modeling in combustion. Washington DC: Taylor and Francis. 1993. 457
    [127] Elghobashi S, Abou-Arab T, Rizk M, Mostafa A. Int J Multiphase Flow. 1984(10). 697
    [128] Crowe CT, Sharma MP, Stock DE. J Fluids Engng. 1977(99). 325
    [129] Boysan F, Ayers WH, Swithenbank J. Tran Inst Chem Engng. 1982(60). 222
    [130] Melville WK, Bray KNC. Int J Heat Transfer. 1979(22). 647
    [131] Yakhot V, Orszag SA, J Sci Comput. 1986(1). 1
    [132] Shuen JS, Chen LD, Faeth GM. AIChE J. 1983(29). 167
    [133] Gosman AD, Ioannides E. AIAA 19th Aerospace Science Meeting, 81-0323. 1981
    [134] Baxter LL, Smith PJ. Energy and Fuels. 1993(7). 852
    [135] Hanson RK, Saliman S. In: Gardiner WC, editor. Combustion chemistry.1984. 361
    [136] Westenberg AA. Combust Sci Tech 1971(9). 59
    [137] M. Missaghi, M.Pourkashanian, A.Williams, and L. Yap. In Proceedings of American Flame Days Conference. USA. 1990
    [138] G.G.De Soete. Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen. In 15th Symp. (Int'l.) on Combustion, page 1093. The Combustion Institute. 1975
    [139] J.M. Levy, L.K. Chen, A.F. Sarofim, and J.M. Beer. NO/Char Reactions at Pulverized Coal Flame Conditions. In 18th Symp. (Int'l.) on Combustion. The Combustion Institute. 1981
    [140] C.T. Bowman. Chemistry of Gaseous Pollutant Formation and Destruction. In W. Bartok and A.F. Sarofim, editors, Fossil Fuel Combustion. J. Wiley and Sons, Canada. 1991
    [141] 钟北京, 傅维标. 再燃过程中 HCN 对 NOx 还原的重要性. 燃烧科学与技术. 2000. 6(1). 77~84
    [142] 李孝安,张晓缋. 神经网络计算机导论. 西安. 西北工业大学出版社.1994. 34~41
    [143] 杨小牛,楼才义,徐建良. 软件无线电原理及其应用. 北京. 电子工业出版社. 2001
    [144] 蒋宗礼.人工神经网络导论. 北京. 高等教育出版社. 2001
    [145] 姚一波,王纪亮. 提高 BP 网络训练速度的研究. 信息技术. 2002(1). 4~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700