基于生物信息学方法分析基因家族及非编码序列的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是世界上最主要的粮食作物之一,为世界一半以上的人口提供主粮。水稻分为两个亚种,即籼稻和粳稻。现在水稻的两个亚种(93-11和日本睛)的基因组草图已公布。另外,日本晴的1号,4号和10号染色体的精细图也已完成。拟南芥的基因组相对较小,是植物遗传学研究的一个模式植物。2000年下半年,拟南芥成为第一个全基因组测序完成的植物。
     本论文的研究目的是从改良作物的抗病和抗旱两大重要的育种目标出发,对水稻抗病和抗旱两大基因家族的基因的分布,表达和调控进行了分析。我们根据抗病基因结构功能域的保守性,改进了抗病基因类似物(RGA)多态性标记。同时,根据内含子序列变异大,而外显子变异较小开发了内含子长度多性标记;且对长非编码序列、短非编码序列和特殊序列进行研究,从而了解植物基因的表达调控。本论文采用生物信息学的方法和结合水稻和拟南芥的基因序列,围绕上述提出的几大研究目的,对当前作物遗传育种中的几大研究问题进行深入的研究。主要研究结果有:
     (1)水分胁廹基因家族-LEA蛋白基因家族
     研究结果发现34个LEA蛋白的同源序列,其中本文发现25个新基因或有关的基因。通过与全长cDNA联配,发现4个OsLEA具有可变剪切。除了10号和12号染色体外,所有的LEA分布在水稻染色体。另外,我们发现具有两个独立的转换事件。利用RT-PCR的方法,对15个OsLEA的表达分析表明,OsLEA基因表达具有各式各样,一些是组成性表达,一些是受胁迫调控的。我们在受ABA诱导和干旱诱导的LEA的基因中,发现了CACAGTA和CACGCACG元件。
     (2)抗病基因(R)的基因家族
     本论文利用45个已知功能的植物抗病基因序列对粳稻全基因组序列进行搜索,共找出2,119个R基因同源序列或类似物(RGA),证明RGA在水稻基因组中成簇存在,呈非随机分布。采用隐马尔柯夫模型(HMM),将这些RGA按其功能域分成了21类。将粳稻的RGA与籼稻的基因组序列进行比较,共找到702个两亚种间等位的RGA,并发现其中有671个(占95.6%)RGA的基因组序列(包括编码区和非编码区)在两亚种间存在长度差异(InDel),表明水稻RGA在两亚种间存在很高的多态性。通过在InDel两侧设计引物并进行e-PCR验证,共开发出402个基于PCR的、表现为共显性的候选RGA标记。这些候选标记在两亚种间的长度差异在1—742 bp之间,平均为10.26 bp。进而,我们对所有的182个抗病基因簇进行了进化分析。
     (3)非编码序列-内含子长度多态性的分子标记(ILP)
     本研究利用水稻两个品种93-11(籼稻)和日本晴(粳稻)的基因组草图及日本晴的32,127条全长cDNA基因组序列,我们进行全基因组搜索ILPs,结果发现13,308个候选ILPs。基于这些候选的ILPs,我们利用电子PCR(e-PCR)在两侧外显子上设计引物,开发了5811个ILP候选标记。
     (4)长非编码序列-保守非编码序列(pCNE)
     我们在单子叶和双子叶植物中通过直系同源的方法,找到了436个pCNEs。通过搜索旁系同源CNEs,我们在拟南芥中找到了7,972个pCNE。我们假定功能特异的蛋白与所对应的旁系和直系同源的CNEs相关联,结果发现CNEs往往与转录因子一起起作用。富集的转录因子主要是myb转录因子和锌指蛋白。
     (5)短保守非编码序列-转录因子结合位点
     基因间序列中存在大量的调控序列,其中主要的是转录因子结合位点。我们能过Pearson相关在四个不同的组织中找到了787个共表达的组织特异性的基因。利用逐步回归的方法,对于每个基因,在其上游启动子序列中找到显著的转录因子结合位点。我们系统地分析了单个和组合的结合位点,这些结合位点控制着基因的转录和表达。控制不同组织的转录因子结合位点的类型不同,其中花粉具有62个,根部具有69个等。
     (6)特殊序列-甲基化位点预测
     对于基因的表达,不仅受到转录因子的调节,还受DNA甲基化等各种调节和修饰。DNA甲基化与许多生物学过程有关,包括组织特性基因的表达,基因组印记。我们描述了计算预测拟南芥基因组甲基化的情况。我们利用不同的判别方法来分析甲基化与非甲基化区域。结果表明,基于实验证实的甲基化数据,Logistic模型树(LMT)分类器方法具有71.03%的预测准确性。
Rice (Oryza sativa L.) is one of the most important cereal crops in the world and feeding more than half of the world population. It can be categorized into two main subspecies, japonica and indica. Rice is a model plant of cereal species because of its relatively small genome size. In rice, draft genome sequences of two cultivars, 93-11 and Nipponbare, representing indica and japonica subspecies, respectively, have been released. Complete sequences of chromosomes 1, 4 and 10 of Nipponbare have been published. Arabidopsis is of no major agronomic significance, but it offers important advantages for researches in genetics and molecular biology because of the small genome size, short generation time, production of plenty of seeds and the ease of transformation by simple techniques. Arabidopsis is the first plant of which the complete genome has been sequenced and published in late 2000. A gene family is a set of genes defined by presumed homology, i.e. evidence that the genes evolved from a common ancestral gene.
     The purpose of this study is to improve crop breeding and genetics. Drought stress and disease-resistance are main reseach areas. We analyzed the drought stress (LEA) and R gene family in rice. We also improved resistance gene analogues (RGA) polymorphism markers and developed the intron length polymorphisms marker. In addition, the long - and short-noncoding sequence were studied. Therefore, using bioinformatics methods and the combination of rice and Arabidopsis gene sequences, we conducted the following studies:
     (1) LEA gene family
     A total of 34 rice LEA {OsLEA) genes were identified, of which 25 were new. We also identified four OsLEA genes with alternative splices by alignment of full-length cDNA. The OsLEA genes are distributed on the rice chromosomes except that chromosome 10 and 12. Two independent conversion events were observed. Microarray analysis indicated that most of OsLEAs are regulated by different stress treatments. Expression analysis of 15 OsLEA genes with the method of semiquantitative reverse transcription (sqRT)-PCR revealed that the expressions of OsLEA genes are very diverse, some are consititutive, some are regulated and some appear to be related to stress tolerance. Motifs CACGTA and Motifs CACGCACG showed a clear overrepresentation in the upstream region when we searched for conserved DNA elements in the 1,000 bp upstream regions of the ABA-induced and drought-induced LEA genes.
     (2) R gene family and RGA markers
     By scanning the whole genomic sequence of japonica rice using 45 known plant disease resistance (R) genes, we identified 2,119 resistance gene homologies or analogs (RGAs) and verified that RGAs are not randomly distributed but tend to cluster in the rice genome. The RGAs were classified into 21 families according to their functional domain based on Hidden Markov model (HMM). By comparing the RGAs of japonica rice with the whole genomic sequence of indica rice, we found 702 RGAs allelic between the two subspecies and revealed that 671 (95.6%) of them have length difference (InDels) in their genomic sequences (including coding and non-coding regions) between the two subspecies, suggesting that RGAs are highly polymorphic loci between the two subspecies in rice. We also exploited 402 PCR-based and co-dominant candidate RGA markers by designing primer pairs on the regions flanking the INDELs and validating them via e-PCR. The length differences of the candidate RGA markers between the two subspecies are from 1 to 742 bp, with an average of 10.26 bp.
    (3) Intron length polymorphisms marker
    In this study, we performed a genome-wide search of ILPs between two subspecies (indica and japonica) in rice using the draft genomic sequences of cultivars 93-11 (indica) and Nipponbare (japonica) and 32,127 full-length cDNA sequences of Nipponbare obtained from public databases. We identified 13,308 putative ILPs. Based on these putative ILPs, we developed 5811 candidate ILP markers via e-PCR with primers designed in flanking exons. We further conducted experiment to verify the candidate ILP markers.
    (4) Conserved Noncoding Elements (CNEs)
    We identify 436 in plants by alignments of three species (Arabidopsis, rice and Poplus). By searching all CNEs against each other to identify the paralogoues CNEs in Arabidopsis, we find 7,972 pCNEs. We assume that functional specificity of proteins associated with CNEs is assumed to be conserved among orthologs and paralogs. The results indicate that most enriched genes flanking in CNEs are associated with the transcription factors. The enriched transcription factors mainly comprise myb family transcription factor and zinc finger protein.
    (5) Transcription factor binding sites (TFBSs)
    Seven hundred and eighty seven co-expressed genes are identified by Pearson correlation approaches and calibrated against the GO database. For each target gene, we identified TFBSs in proximal promotes Based on step-wise regression method. We systematically identified the individual and combination of TFBSs that controls gene transcription and expression. Using Pearson correlation r > 0.95, we identified 279 genes in the root, 172 in flower, 129 in pollen and 207 in the seed. The number of TFBSs types is different among the different tissues, but we observe a large difference in total number of TFBSs among the tissues.
    (6) DNA methylation
    Except for TFBSs, a gene expression is also regulated by DNA methylation. DNA methylation is involved in various biological processes including tissue-specific gene expression, genomic imprinting. We presented a computational prediction the DNA methylation of Arabidopsis. We used several different discrimant methods to classify the methylation and non-methylation regions. The results showed that the classifier LMT method has a prediction accuracy of 71.03 % based on the experimental verified methylation data of Arabidopsis.
引文
[1] Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashbumer M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskem DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC. The genome sequence of Drosophila melanogaster[J]. Science, 2000, 287(5461): 2185-2195.
    [2] Aerts S, Thijs G, Coessens B, Staes M, Moreau Y, De Moor B. Toucan: deciphering the cis-regulatory logic of eoregulated genes[J]. Nucleic Acids Res, 2003, 31(6): 1753-1764.
    [3] AGI. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815.
    [4] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402.
    [5] Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG. Inactivation of the flax rest resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region[J]. Plant Cell, 1997, 9(4): 641-651.
    [6] Arumuganathan K, Earle E. Nuclear DNA Content of Some Important Plant Species[J]. Plant Mol. Biol. Rep., 1991, 9(3): 211-215.
    [7] Bagheri-Fam S, Ferraz C, Demaille J, Scherer G, Pfeifer D. Comparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions[J]. Genomics, 2001, 78(1-2): 73-82.
    [8] Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals[J]. Genome Res, 2002, 12(12): 1871-1884.
    [9] Baker J, Steele C, Dure L. Sequence and characterization of 6 lta proteins and their genes from cotton[J]. Plant Mol Biol, 1988, 11: 277-291.
    [10] Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview[J]. Bioinformatics, 2000, 16(5): 412-424.
    [11] Becker J, Heun M. Barley microsatellites: allele variation and mapping[J]. Plant Mol Biol, 1995, 27(4): 835-845.
    [12] Beissbarth T, Speed TP. GOstat: find statistically overrepresented Gene Ontologies within a group of genes[J]. Bioinformatics, 2004, 20(9): 1464-1465.
    [13] Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. Ultraconserved elements in the human genome[J]. Science, 2004, 304(5675): 1321-1325.
    [14] Bendahmane A, Kanyuka K, Baulcombe DC. The Rx gene from potato controls separate virus resistance and cell death responses[J]. Plant Cell, 1999, 11(5): 781-792.
    [15] Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes[J]. Science; 1994, 265(5180): 1856-1860.
    [16] Berget S, Moore C, Sharp P. Spliced segments at the 5' terminus of adenovirus 2 late mRNA[J]. Proc. Natl. Acad. Sci. USA, 1977, 74: 3171-3175.
    [17] Berman BP, Nibu Y, Pfeiffer BD, Tomancak P, Celniker SE, Levine M, Rubin GM, Eisen MB. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome[J]. Proc Natl Acad Sci USA, 2002, 99(2): 757-762.
    [18] Bhasin M, Zhang H, Reinherz EL, Reche PA. Prediction of methylated CpGs in DN-A sequences using a support vector machine[J]. FEBS Lett, 2005, 579(20): 4302-4308.
    [19] Bierne N, Lehnert SA, Bedier E, Bonhomme F, Moore SS. Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR[J]. Mol Ecol, 2000, 9(2): 233-235.
    [20] Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16(1): 6-21.
    [21] Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica[J]. Plant J, 2000, 21(2): 177-188.
    [22] Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, Walter J. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure[J]. PLoS Genet, 2006, 2(3): e26.
    [23] Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JD. Three genes of the Arabidopsis RPPI complex resistance locus recognize distinct Peronospora parasitica avirulence determinants[J]. Plant Cell, 1998, 10(11): 1847-1860.
    [24] Botstein D, White R, Skolnick M, Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32: 314-331.
    [25] Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature, 2003, 422(6930): 433-438.
    [26] Bray EA. Molecular Responses to Water Deficit[J]. Plant Physiol, 1993, 103(4): 1035-1040.
    [27] Brazma A, Jonassen I, Vilo J, Ukkonen E. Predicting gene regulatory elements in silico on a genomic scale[J]. Genome Res, 1998, 8(11): 1202-1215.
    [28] Brommonschenkel SH, Frary A, Frary A, Tanksley SD. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi[J]. Mol Plant Microbe Interact, 2000, 13(10): 1130-1138.
    [29] Browne J, Tunnacliffe A, Burnell A. Anhydrobiosis: plant desiccation gene found in a nematode[J]. Nature, 2002, 416(6876): 38.
    [30] Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12(11): 2033-2046.
    [31] Bulyk ML. Computational prediction of transcription-factor binding site locations[J]. Genome Biol, 2003, 5(1): 201.
    [32] Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ. DNA methylation, vernalization, and the initiation of flowering[J]. Proc Natl Acad Sci USA, 1993, 90(1): 287-291.
    [33] Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance[J]. Cell, 1997, 88(5): 695-705.
    [34] Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with expression[J]. Nat Genet, 2001, 27(2): 167-171.
    [35] Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EM, Lange W, Stiekema WJ, Wyss U, Grundler FM, Jung C. Positional cloning of a gene for nematode resistance in sugar beet[J]. Science, 1997, 275(5301): 832-834.
    [36] Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, et al. Saturated molecular map of the rice genome based on an interspecific backcross population[J]. Genetics, 1994, 138(4): 1251-1274.
    [37] Chelkowski J, Koczyk G Resistance gene analogues of Arabidopsis thaliana: recognition by structure[J]. J Appl Genet, 2003, 44(3): 311-321.
    [38] Chow L, Gilinas R, Broker T, Roberts R. An amazing sequence arrangement at the 5'ends of adenovirus 2 messenger RNA[J]. Cell, 1977, 12: 1-8.
    [39] Colinas J, Birnbaum K, Benfey PN. Using caulifower to find conserved non-coding regions in Arabidopsis[J]. Plant Physiol, 2002, 129(2): 451-454.
    [40] Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T. Molecular characterization of the maize Rpl-D rust resistance haplotype and its mutants[J]. Plant Cell, 1999, 11(7): 1365-1376.
    [41] Corte-Real H, Dixon D, Holland P. Intron-targeted PCR: a new approach to survey neutral DNA polymorphism in bivalve populations[J]. Mar. Biol., 1994, 120: 407-413.
    [42] Daguin C, Borsa P. Genetic characterisation of Mytilus galloprovincialis Lmk. in North West Africa using nuclear DNA markers[J]. J Exp. Mar. Biol. Ecol., 1999, 235: 55-65.
    [43] Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839): 826-833.
    [44] Das R, Dimitrova N, Xuan Z, Rollins RA, Haghighi F, Edwards JR, Ju J, Bestor TH, Zhang MQ. Computational prediction of methylation status in human genomic sequences[J]. Proc Natl Acad Sci USA, 2006, 103(28): 10713-10716.
    [45] Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E. AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors[J]. BMC Bioinformatics, 2003, 4: 25.
    [46] Deutsch M, Long M. Intron-exon structures of eukaryotic model organisms[J]. Nucleic Acids Res, 1999, 27(15): 3219-3228.
    [47] Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number[J]. Plant Cell, 1998, 10(11): 1915-1925.
    [48] Dodds PN, Lawrence GJ, Ellis JG. Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax[J]. Plant Cell, 2001, 13(1): 163-178.
    [49] Dorsett D. Distant liaisons: long-range enhancer-promoter interactions in Drosophila[J]. Curr Opin Genet Dev, 1999, 9(5): 505-514.
    [50] Dure L. Structural motifs in LEA protein[C]. In: TJ. C, EA. B. Plant responses to cellular dehydration during environmental stress, Curr. Topics in Plant Physiol. Rockville MD: American Society of Plant Physiologists 10; 1993: 91-103.
    [51] Dure L, Crouch M, Harada J, Ho THD, Mundy J, Quatrano R, Thomas T, Sung Z. Common amino acid sequence demains among the LEA proteins of higher plants[J]. Plant Mol Biol, 1989(12): 475-486.
    [52] Eddy SR. Profile hidden Markov models[J]. Bioinformatics, 1998, 14(9): 755-763.
    [53] Fang F, Fan S, Zhang X, Zhang MQ. Predicting methylation status of CpG islands in the human brain[J]. Bioinformatics, 2006, 22(18): 2204-2209.
    [54] Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments[J]. Genome Res, 2004, 14(9): 1812-1819.
    [55] Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhang Y, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Lu Y, Zhang LS, Yu Z, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Zhang Y, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B. Sequence and analysis of rice chromosome 4[J]. Nature, 2002, 420(6913): 316-320.
    [56] Fickett JW. Coordinate positioning of MEF2 and myogenin binding sites[J]. Gene, 1996, 172(1): GC19-32.
    [57] Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES. DNA methylation and the promotion of flowering by vernalization[J]. Proc Natl Acad Sci USA, 1998, 95(10): 5824-5829.
    [58] Flor H. The complementary genic systems in flax and flax rust[J]. Adv Genet, 1956, 8: 29-54.
    [59] Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W. A computer program for aligning a cDNA sequence with a genomic DNA sequence[J]. Genome Res, 1998, 8(9): 967-974.
    [60] Gassmann W, Hinsch ME, Staskawicz BJ. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes[J]. Plant J, 1999, 20(3): 265-277.
    [61] Glazov EA, Pheasant M, McGraw EA, Bejerano G, Mattick JS. Ultraconserved elements in insect genomes: a highly conserved intronic sequence implicated in the control of homothorax mRNA splicing[J]. Genome Res, 2005, 15(6): 800-808.
    [62] Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)[J]. Science, 2002, 296(5565): 92-100.
    [63] Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases[J]. Annu Rev Biochem, 2005, 74: 481-514.
    [64] Goupil P, Hatzopoulos P, Franz G, Hempel FD, You R, Sung ZR. Transcriptional regulation of a seed-specific carrot gene, DC8[J]. Plant Mol Biol, 1992, 18(6): 1049-1063.
    [65] Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance[J]. Science, 1995, 269(5225): 843-846.
    [66] GuhaThakurta D, Stormo GD. Identifying target sites for cooperatively binding factors[J]. Bioinformatics, 2001, 17(7): 608-621.
    [67] Guiltinan M, Marcotte WJ, Quatrano R. A plant leucine zipper protein that recognizes an abscisic acid response element[J]. Science, 1990, 250: 267-271.
    [68] Guo H, Moose SP. Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution[J]. Plant Cell, 2003, 15(5): 1143-1158.
    [69] Gupta M, Liu JS. De novo cis-regulatory module elicitation for eukaryotic genomes[J]. Proc Natl Acad Sci USA, 2005, 102(20): 7079-7084.
    [70] Hammond-Kosack KE, Jones JD. Plant Disease Resistance Genes[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 575-607.
    [71] Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population[J]. Genetics, 1998, 148(1): 479-494.
    [72] Hawkins JD. A survey on intron and exon lengths[J]. Nucleic Acids Res, 1988, 16(21): 9893-9908.
    [73] He Y, Amasino RM. Role of chromatin modification in flowering-time control[J]. Trends Plant Sci, 2005, 10(1): 30-35.
    [74] Hertz GZ, Hartzell GW, 3rd, Stormo GD. Identification of consensus patterns in unaligned DNA sequences known to be functionally related[J]. Comput Appl Biosci, 1990, 6(2): 81-92.
    [75] Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J, 1994, 6(2): 271-282.
    [76] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements(PLACE) database: 1999[J]. Nucleic Acids Res, 1999, 27(1): 297-300.
    [77] Hughes DW, Galau GA. Temporally modular gene expression during cotyledon development[J]. Genes Dev, 1989, 3(3): 358-369.
    [78] Inada DC, Bashir A, Lee C, Thomas BC, Ko C, Goff SA, Freeling M. Conserved noncoding sequences in the grasses[J]. Genome Res, 2003, 13(9): 2030-2041.
    [79] International Rice Genome Sequence Project. The map-based sequerce of the rice genome[J]. Nature, 2005, 436(7052): 793-800.
    [80] Ishii T, Nakano T, Maeda H, Kamijima O. Phylogenetic relationships in A-genome species of rice as revealed by RAPD analysis[J]. Genes Genet Syst, 1996, 71(4): 195-201.
    [81] Johal GS, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize[J]. Science, 1992, 258(5084): 985-987.
    [82] Jones JD. Putting knowledge of plant disease resistance genes to work[J]. Curr Opin Plant Biol, 2001, 4(4): 281-287.
    [83] Kaplinsky NJ, Braun DM, Pentennan J, Goff SA, Freeling M. Utility and distribution of conserved noncoding sequences in the grasses[J]. Proc Natl Acad Sci USA, 2002, 99(9): 6147-6151.
    [84] Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, lshikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Caminci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice [J]. Science, 2003, 301(5631): 376-379.
    [85] Kim J, Kollhoff A, Bergmann A, Stubbs L. Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3[J]. Hum Mol Genet, 2003, 12(3): 233-245.
    [86] Kim SY, Kim Y. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data[J]. BMC Bioinformatics, 2006, 7(1): 330.
    [87] Koch MA, Weisshaar B, Kroymann J, Haubold B, Mitchell-Olds T. Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters[J]. Mol Biol Evol, 2001, 18(10): 1882-1891.
    [88] Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. J Mol Biol, 2001, 305(3): 567-580.
    [89] Kruglyak L, Nickerson DA. Variation is the spice of life[J]. Nat Genet, 2001, 27(3): 234-236.
    [90] Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N[J]. Plant Cell, 1995, 7(8): 1195-1206.
    [91] Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne J-B, Volkert TL, Fraenkel E, Gifford DK, Young RA. Transcriptional regulatory networks in Saccharomyces cerevisiae [J]. Science, 2002, 298(5594): 799-804.
    [92] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1): 325-327.
    [93] Lessa EP. Rapid surveying of DNA sequence variation in natural populations[J]. Mol Biol Evol, 1992, 9(2): 323-330.
    [94] Li G, Quiros C. Sequence-related amplified polymorphism (SRAP) a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor. Appl. Genet., 2001, 103: 455-461.
    [95] Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences[J]. Science, 1991, 252(5010): 1162-1164.
    [96] Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics[J]. Microbiol Mol Biol Rev, 2001, 65(1): 44-79.
    [97] Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science, 1993, 262(5138): 1432-1436.
    [98] McCouch S. Toward a plant genomics initiative: thoughts on the value of cross-species and cross-genera comparisons in the grasses[J]. Proc Natl Acad Sci USA, 1998, 95(5): 1983-1985.
    [99] McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding[J]. Plant Mol Biol, 1997, 35(1-2): 89-99.
    [100] Meyerowitz EM. Plants compared to animals: the broadest comparative study of development[J]. Science, 2002, 295(5559): 1482-1485.
    [101] Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfarnily[J]. Plant J, 1999, 20(3): 317-332.
    [102] Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis[J]. Plant Cell, 2003, 15(4): 809-834.
    [103] Michel D, Furini A, Salamini F, Bartels D, Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum[J]. Plant Mol Biol, 1994, 24(4): 549-560.
    [104] Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes[J]. Plant Cell, 1998, 10(8): 1307-1319.
    [105] Monosi B, Wisser RJ, Pennill L, Hulbert SH. Full-genome analysis of resistance gene homologues in rice[J]. Theor Appl Genet, 2004, 109(7): 1434-1447.
    [106] Myakishev MV, Khripin Y, Hu S, Hamer DH. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers[J]. Genome Res, 2001, 11(1): 163-169.
    [107] Noto K, Craven M. Learning probabilistic models of cis-regulatory modules that represent logical and spatial aspects[J]. Bioinformatics, 2007, 23(2): e156-162.
    [108] Palumbi S. Nucleic Acids Ⅱ: The Polymerase Chain Reaction. In[C]. In: Moritz DHaC. Molecular Systematics. 2nd edn. Sunderland, MA.: Sinauer Associates Inc.; 1995: 205-247.
    [109] Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6[J]. Plant Cell, 1997, 9(6): 879-894.
    [110] Pilpel Y, Sudarsanam P, Church GM. Identifying regulatory networks by combinatorial analysis of promoter elements[J]. Nat Genet, 2001, 29(2): 153-159.
    [111] Poulin F, Nobrega MA, Plajzer-Frick 1, Holt A, Afzal V, Rubin EM, Pennacchio LA. In vivo characterization of a vertebrate ultraconserved enhancer[J]. Genomics, 2005, 85(6): 774-781.
    [112] Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular. Biology Open Software Suite[J]. Trends Genet, 2000, 16(6): 276-277.
    [113] Rombauts S, Dehais P, Van Montagu M, Rouze P. PlantCARE, a plant cis-acting regulatory element database[J]. Nucleic Acids Res, 1999, 27(1): 295-296.
    [114] Rouse DT, Marotta R, Parish RW. Promoter and expression studies on an Arabidopsis thaliana dehydrin gene[J]. FEBS Lett, 1996, 381(3): 252-256.
    [115] Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J]. Nature, 2001, 409(6822): 928-933.
    [116] Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster[J]. Cell, 1996, 86(1): 123-133.
    [117] Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles[J]. Nucleic Acids Res, 2004, 32(Database issue): D91-94.
    [118] Sasaki T. The rice genome project in japan[J]. Proc Natl Acad Sci U S A, 1998, 95(5): 2027-2028.
    [119] Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, lkeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T. The genome sequence and structure of rice chromosome 1[J]. Nature, 2002, 420(6913): 312-316.
    [120] Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development[J]. Nat Genet, 2005, 37(5): 501-506.
    [121] Schneider K, Beck CF. Promoter-probe vectors for the analysis of divergently arranged promoters[J]. Gene, 1986, 42(1): 37-48.
    [122] Schuler GD. Sequence mapping by electronic PCR[J]. Genome Res, 1997, 7(5): 541-550.
    [123] Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes[J]. Plant Physiol, 2004, 135(3): 1198-1205.
    [124] Song L, James SR, Kazim L, Karpf AR. Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Anal Chem, 2005, 77(2): 504-510.
    [125] Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243): 1804-1806.
    [126] Spitz F, Gonzalez F, Peichel C, Vogt TF, Duboule D, Zakany J. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations[J]. Genes Dev, 2001, 15(17): 2209-2214.
    [127] Stacy RA, Aalen RB. Identification of sequence homology between the internal hydrophilic repeated motifs of group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis[J]. Planta, 1998, 206(3): 476-478.
    [128] Stormo GD. Consensus patterns in DNA[J]. Methods Enzymol, 1990, 183: 211-221.
    [129] Strunnikova M, Schagdarsurengin U, Kehlen A, Garbe JC, Stampfer MR, Dammann R. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter[J]. Mol Cell Biol, 2005, 25(10): 3923-3933.
    [130] Sudarsanam P, Pilpel Y, Church GM. Genome-wide co-occurrence of promoter elements reveals a cis-regulatory cassette of rRNA transcription motifs in Saccharomyces cerevisiae[J]. Genome Res, 2002, 12(11): 1723-1731.
    [131] Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model[J]. Proc Natl Acad Sci U S A, 1990, 87(12): 4692-4696.
    [132] Takken FL, Luderer R, Gabriels SH, Westerink N, Lu R, de Wit PJ, Joosten MH. A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens[J]. Plant J, 2000, 24(2): 275-283.
    [133] Tang W, Perry SE. Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study[J]. J Biol Chem, 2003, 278(30): 28154-28159.
    [134] Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture[J]. Nat Genet, 1999, 22(3): 281-285.
    [135] The Rice Chromosome 10 Sequencing Consortium. In-depth view of structure, activity, and evolution of rice chromosome 10[J], Science, 2003, 300(5625): 1566-1569.
    [136] Tian Y, Fan L, Thurau T, Jung C, Cai D. The absence of TIR-type resistance gene analogues in the sugar beet(Beta vulgaris L.) genome[J]. J Mol Evol, 2004, 58(1): 40-53.
    [137] Tilly JJ, Allen DW, Jack T. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects[J]. Development, 1998, 125(9): 1647-1657.
    [138] van Helden J, Rios AF, Collado-Vides J. Discovering regulatory elements in non-coding sequences by analysis of spaced dyads[J]. Nucleic Acids Res, 2000, 28(8): 1808-1818.
    [139] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpem A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gaa W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, LU F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Cames-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome[J]. Science, 2001, 291(5507): 1304-1351.
    [140] Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23(21): 4407-4414.
    [141] Wang DG, Fan JB, Siao CJ, Bemo A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mitunann M, Morris MS, Shen N, Kilbum D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998, 280(5366): 1077-1082.
    [142] Wang E, Adams S, Zhao Y, Panelli M, Simon R, Klein H, Marincola FM. A strategy for detection of known and unknown SNP using a minimum number of oligonucleotides applicable in the clinical settings[J]. J Transl Med, 2003, 1(1): 4.
    [143] Warren RF, Henk A, Mowery P, Holub E, Innes RW. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes[J]. Plant Cell, 1998, 10(9): 1439-1452.
    [144] Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE. Human-mouse genome comparisons to locate regulatory sites[J]. Nat Genet, 2000, 26(2): 225-228.
    [145] Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tornato[J]. Proc Natl Acad Sci USA, 1996, 93(16): 8776-8781.
    [146] Williams J, Kubelik A, Livak K, Rafalski J, Tingey S. DNA polymorphism amplified by arbitrary primers are useful as genetic markers[J]. Nucle. Acid Res., 1990, 18: 6531-6535.
    [147] Wingender E, Karas H, Knuppel R. TRANSFAC database as a bridge between sequence data libraries and biological function[J]. Pac Symp Biocomput, 1997: 477-485.
    [148] Wise MJ. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles[J]. BMC Bioinformatics, 2003, 4: 52.
    [149] Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Waiter K, Abnizova I, Gilks W, Edwards YJ, Cooke JE, Elgar G. Highly conserved non-coding sequences are associated with vertebrate development[J]. PLoS Biol, 2005, 3(1): e7.
    [150] Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8[J]. Science, 2001, 291(5501): 118-120.
    [151] Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana[J]. Mol Gen Genet, 1993, 238(1-2): 17-25.
    [152] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proc Natl Acad Sci USA, 1998, 95(4): 1663-1668.
    [153] Yoshino M, Nagamatsu A, Tsutsumi K, Kanazawa A. The regulatory function of the upstream sequence of the beta-conglycinin alpha subunit gene in seed-specific transcription is associated with the presence of the RY sequence[J]. Genes Genet Syst, 2006, 81(2): 135-141.
    [154] Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science, 2002, 296(5565): 79-92.
    [155] Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis[J]. Cell, 2006, 126(6): 1189-1201.
    [156] Zhou F, Kurth J, Wei F, Elliott C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P. Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rarl-independent signaling pathway[J]. Plant Cell, 2001, 13(2):337-350.
    [157] 王忠华,贾育林,吴殿星,夏英武.水稻抗稻瘟病基因Pi-ta的分子标记辅助选择[J].作物学报,2004,30(12):1259-1265.
    [158] 王建波.ISSR分子标记及其在植物遗传学研究中的应用[J].遗传,2002,24(5):613-616.
    [159] 王海燕,杨文香,刘大群.小麦NBS-LRR类抗病基因同源序列的分离与鉴定[J].中国农业科学,2006,39(8):1558-1564.
    [160] 危文亮,赵应忠.分子标记在作物育种中的应用[J].生物技术通报,2000(2):12-16.
    [161] 李春来,张怀渝.植物抗病基因同源序列(RGA)研究进展[J].分子植物育种,2004,2(6):853-860.
    [162] 杜胜利,张桂华,李淑菊,王鸣.黄瓜抗白粉病基因AFLP标记的SCAR转换[J].园艺学报,2005,32(6):1095-1097.
    [163] 杜耀华,倪青山,王正志.利用序列保守模体和局部构象信息预测转录因子结合位点[J].生命科学研究,2006,10(3):215-223.
    [164] 汪旭升,吴为人,金谷雷,朱军.水稻全基因组R基因鉴定及候选RGA标记开发[J].科学通报,2005,50(11):1085-1089.
    [165] 肖天霞,赵向前,汪旭升,吴为人,朱军.基于PCR的水稻候选RGA标记检验和评估[J].浙江大学学报,2007,33(1):51-55.
    [166] 易成新,郭旺珍,朱协飞,闵留芳,张天真.陆地棉分子标记辅助轮回选择聚合育种Ⅰ.群体创建与基础群体的评价[J].中国农业科学,2004,37(5):634-641.
    [167] 侯雷平,李梅兰.DNA甲基化与植物的生长发育[J].植物生理学通讯,2001,37(6):584-588.
    [168] 梁慧珍,李卫东,王辉,卢为国,王树峰,王庭峰,张辉,李金英.SNPs在大豆等作物遗传及改良中的应用[J].中国农学通报,2004,20(5):23-27.
    [169] 曾祥艳,张增艳,杜丽璞,辛志勇,陈孝.分子标记辅助选育兼抗白粉病、条锈病、黄矮病小麦新种质[J].中国农业科学,2005,38(12):2380-2386.
    [170] 刘杰,刘丽君,吴俊江,陈伊里.植物抗病基因类似序列的研究进展及应用策略[J].东北农业大学学报,2004,35(4):500-504.
    [171] 刘春林,官春云.植物RAPD标记的可靠性研究[J].生物技术通报,1999,15(2):31-34.
    [172] 孙涛,卢美光,简桂良,林凤.棉花NBS类抗病基因类似物的生物信息学分析[J].棉花学报,2005,17(3):182-183.
    [173] 杨秀红,陈庆山,杨庆凯,李文滨.大豆NBS类抗病相关基因的克隆与序列分析[J].高技术通讯,2005,15(2):71-78.
    [174] 杨科利,李前忠,林昊.预测酵母(Yeast)基因转录因子结合位点[J].内蒙古大学学报:自然科学版,2006,37(5):524-530.
    [175] 贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [176] 赵勇,AkbarAliCheema.利用水稻功能基因SSR标记鉴定水稻种质资源[J].中国农业科学,2002,35(4):349-353.
    [177] 郑志红,孙开来.DNA甲基化与基因表达调控[J].国外医学:遗传学分册,2002,25(1):4-7.
    [178] 闫玉华,马鸿翔,雷家军,余桂红.红花草莓红花基因RAPD标记转化为SCAR标记[J].分子植物育种,2006,4(5):690-694.
    [179] 陈夕军,周益军,徐敬友,范永坚,童蕴慧.利用RGA—PCR方法进行水稻抗瘟基因分子标记[J].扬州大学学报:农业与生命科学版,2004,25(3):55-58,69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700