中温固体氧化物燃料电池的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种高效、清洁的能源转换装置。该领域的研究趋向是追求操作温度中温化,以克服传统高温SOFC(操作温度约1000℃左右)的种种技术和材料困难,并进一步提高性能和降低制造成本。近十几年来,从电池构型到关键材料和核心制备技术都取得了快速进展,但在其实现实用化、商品化的道路上,尚有大量工作要做。迄今,大量研制工作集中在氧离子传导型的SOFCs方面,对质子传导型SOFC的研究工作则相当薄弱和忽视。把新材料探索与薄膜化制备技术方面的已有积累,同时应用于这两类不同离子传导电解质SOFCs,对它们进行性能优化和比较,显然具有重要的研究价值,也有可能揭示二者的不同特点和某些尚未为人所知的信息,从而也具有一定的学术意义。
     论文立足于这两种类型的固体氧化物燃料电池的发展现状,对两种类型的电池从关键粉体制备及电池制作等方面进行优化和探索,侧重于降低电解质欧姆阻抗为主要出发点,发展不同有机物辅助的燃烧合成工艺,利用本实验室发展的干压-共烧的便捷工艺技术制备阳极支撑的薄膜电解质构型,通过电极与电解质材料的优化组合以及电极结构改善,来提高电池性能,达到固体氧化物燃料电池的实用化要求。
     本论文第一章通过对国内外固体氧化物燃料电池研究、发展现状的调查和分析,总结了固体氧化物燃料电池关键材料及构型的研究进展。围绕固体氧化物燃料电池中温化这一发展趋势,提出了以降低材料制备和操作费用为目的,进行新工艺、新材料的探索和合成的研究路线。确立了粉体合成和电池制备工艺的优化,及电池性能研究作为论文的主要研究内容。论文的第二章、第四章分别对氧离子传导的Ce~(0.8)Sm~(0.2)O~(1.9)(SDC)和质子传导的BaCe~(0.5)Zr~(0.3)Y~(0.16)Zn~(0.04)O~(3-δ)(BCZYZ)电解质粉体的制备进行了详细研究。利用所合成的电解质粉体,通过实验室发展的干压共烧工艺,成功的制备了阳极支撑的薄膜化(约10微米左右)电解质电池,分别对氧离子传导型和质子传导型的单电池进行了性能研究和表征(第二章、第五章)。主要工作成果归纳如下:
     1.电解质粉体的合成
     粉体的制备技术不仅影响后期的电池制备工艺,同时也影响电池的性能,因此本论文将电解质粉体的制备与合成列为论文的一个重点。本实验室一直致力与软化学合成法制备固体氧化物燃料电池用粉体,已经发展了多种合成工艺,制备了许多不同种类的粉体,不同工艺合成的粉体各具优点。利用聚合物分子链的官能团及凝胶化特性,本论文使用聚合物——甲基纤维素(MC)、聚乙烯醇(PVA)辅助法燃烧合成Sm掺杂的CeO_2—Ce~(0.8)Sm~(0.2)O~(1.9)(SDC)固体氧化物粉体。与传统的sol-gel工艺对比,本方法简单,不需要严格的控制溶液的酸、碱度及金属离子的水解性,在较低的温度下得到了SDC纯相粉体。探讨了粉体的形成机理,通过XRD及FTIR等测试手段,详细研究了有机物用量对晶胞参数、晶粒尺寸的影响。研究发现,符合化学计量比的有机物的使用量是最佳的。MC聚合物燃料辅助的燃烧合成制备掺杂氧化铈粉体,在1400℃烧结5h的样品,相对密度达到96%。该烧结体具有良好的电学性能,在800℃时电导率为0.0898S/cm,其电导活化能为1.17eV。PVA聚合物燃烧法制备SDC时,在350℃的低温下就可以得到纯相。该粉体具有高的烧结活性,在1300℃烧结其致密度达98%,800℃的电导率为0.0861S/cm。同时发现,更高温度烧结(如1400℃)对烧结致密化程度提高不大,电导率则会比1300℃烧结的还低,只有0.0619S/cm。
     与氧离子导体电解质材料相比,质子导体电解质材料在燃料电池方面的应用报道较少,这方面的研究工作最近才活跃起来。在高温质子导体材料中,BaCeO_3基材料的质子导电率最高,但致密化烧结温度较高,最近本实验室的国外合作者(英国St Andrew大学,陶善文博士)的研究表明,BaCe~(0.5)Zr~(0.3)Y~(0.16)Zn~(0.04)O~(3-δ)(BCZYZ)体系中,掺入的Zn元素能有效降低烧结温度,并改善了其对CO_2的稳定性,固相反应法制备的粉体在1325℃下烧结即可获得致密的烧结体。粉体的制备方法对材料的性能及烧结起至关重要的作用。很显然,对于BCZYZ这种多元复合氧化物粉体,固相反应法难以均匀混合,制备过程繁琐。本论文工作利用柠檬酸的有效络合作用,以柠檬酸燃烧合成方法制备了BCZYZ粉体,为质子导体的烧结温度的进一步降低提供了可行途径,而且燃烧法合成得到的蓬松粉体对后续的干压-共烧工艺极为有利。XRD测试表明在1000℃获得了纯钙钛矿相的BCZYZ粉体,100%纯CO_2气氛中,从室温升温到1200℃,并返回到室温的过程中,BCZYZ显示了优良的抗CO_2性能。1000℃合成的粉体在1150℃下烧结即可致密化,比上述固相反应法的烧结温度降低约200-250℃。烧结体表面的元素分析表明,掺杂元素均匀分布在烧结体内。这为获得高性能电池提供了可能。
     2.氧离子传导型SOFC电池性能研究
     利用干压工艺,以PVA聚合物辅助法制备的SDC粉体为电解质材料,制备了阳极支撑型燃料电池。选择了常用于SDC电解质电池的阴极材料Sm_(0.5)Sr_(0.5)CoO_(3-δ)(SSC)和具有很高催化活性的Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF)作为电池的阴极,分别检测了两种材料做为阴极时电池的性能。以SSC为阴极,在650℃,600℃,550℃时电池的最大输出功率分别为719mW/cm~2、370mW/cm~2、178mW/cm~2,而以BSCF为阴极,电池的性能大幅度提高,相应各温度的最大功率密度达1018mW/cm~2、646mW/cm~2、288mW/cm~2。阻抗谱测试表明,使用BSCF阴极具有更低的界面极化电阻,这是电池性能比SSC阴极电池性能优越的原因。
     YSZ电解质材料的中低温的电导率性能欠佳,本论文以PVA燃烧合成法获得的SDC粉体在YSZ电解质上制备了阴极功能过渡层,实现了BSCF阴极在YSZ电解质基燃料电池中的使用,SDC功能层有效阻挡了YSZ与BSCF之间的反应,并优化了电极与电解质的界面,750℃,700℃,650℃时,界面极化电阻分别从La_(0.8)Sr_(0.2)MnO_(3-δ)YSZ复合阴极电池的1.73,1.95和3.72Ωcm~2降低到以BSCF为阴极的电池的0.60,1.06和1.64Ωcm~2。电池的最大功率也相应地从595,444,215mW cm~(-2)增加到1049mW/cm~2、669mW/cm~2,304mW/cm~2,这充分体现了BSCF阴极在燃料电池使用中具有低的界面极化阻抗和高的催化性能的特点。
     3.质子传导型SOFC电池性能研究
     质子传导型燃料电池的研究目前还处于起步阶段,本论文率先以疏松BCZYZ电解质粉体,利用干压工艺制备了阳极支撑薄膜电解质型的质子传导燃料电池,在1250℃下共烧获得了致密的BCZYZ薄膜,控制薄膜厚度在10-15μm。则优选择了分别具有高催化活性和高的电子电导的材料BSCF和La_(0.6)Sr_(0.4)CoO_(3-δ)(LSC)为阴极,检测了电池性能。研究表明,两种材料为阴极,都获得了较好的电池性能输出:以BSCF为阴极,电池在700,650,600的最大功率密度分别为322mW/cm~2,280mW/cm~2,172mW/cm~2。以LSC为阴极,相应地电池的最大功率密度分别为544mW/cm~2,465mW/cm~2,345mW/cm~2,比BSCF为阴极时电池性能有所提高。通过阻抗分析表明,电池性能的提高是电池的欧姆阻抗和界面极化阻抗综合影响的结果。通过阻抗谱图估算了BCZYZ电解质薄膜的电导率,在700℃时,材料电导率为0.00584 S/cm,研究表明,在中、低温度下,使用质子燃料电池同样可以得到氧离子传输燃料电池的性能,这是迄今高温质子导电电解质SOFC文献报道的最好数据。
     综合上述,本论文通过对粉体合成、电池制备工艺以及材料选用的优化研究,有效地利用了有机物辅助的燃烧合成工艺在低温下获得了SDC氧离子传导和BCZYZ质子传导电解质粉体,使用干压-共烧工艺制备了薄膜电解质,通过对电极材料和微结构的优化,获得了理想的电池功率输出。
Solid oxide fuel cell (SOFC) is a high efficiency and clean energy conversion device. According to used electrolytes, SOFCs technologies were mainly based on oxygen-ion conductors and proton conductors. From the viewpoint of cost reduction and long-term stability, it is necessary to lower the operating temperature to intermediate temperature. So far, doped ceria oxides are being extensively studied as a promising candidate solid electrolyte for intermediate temperature SOFCs due to high oxide-ion conductivity. Compared with oxygen-ion conductors, proton conductors produce water vapor at the cathode side, which helps to increase the efficiency and improve the EMF. Both oxygen-ion conductors and proton conductor had their own specialty. In this research, this two types cell were studied by optimizing powder synthesis method and cell fabrication, to enhance the cell performance.
     Based on the development and status of these two types of SOFCs, powders synthesis methods and fuel fabrication technics were optimization. The research aims to lower electrolyte ohmic resistance, to develop polymer assistant combustion synthesis method. The cell performance was improved by thin electrolyte film obtained from dry-pressing method, the assembly of electrode and electrolyte, and the optimization of cell microstructure.
     Based on investigating and analyzing of SOFC's development and status, the key materials and structure types of SOFC were summarized. Reducing fabrication and operation costs while maintaining high performance is a major consideration for SOFC. This research aims to search for new materials, developing new fabrication approaches and optimizing technics. In chapter 2 and 4, Ce_(0.8)Sm_(0.2)O_(1.9) (SDC) and BaCe_(0.5)Zr_(0.3)Y_(0.16)Zn_(0.04)O_(3-δ) (BCZYZ) powders were prepared and characterized. In chapter 3 and 5, the cell prepared by dry-pressing method based oxide-ionics conducting electrolyte and proton-conducting electrolyte were tested.
     1. Powder synthesis
     The powder properties affect the cell preparation techinics and the cell performance. Therefore, one of the emphases of this research was to prepare the powder required in the experiments. Our lab had developed many methods to prepare the powders with excellent properties. For the first time, Ce_(0.8)Sm_(0.2)O_(1.9) ( SDC ) powders were synthesized by polymer assistant combustion method using methylcellulose (MC) and PVA as the fuel. SDC powders were formed due to polymer chelation and gel properties. Compared with conventional sol-gel, this method is simple, does not need to control the solution pH. The formation mechanism is discussed. The cell parameters and crystal sizes were calculated using the peak positions determined from the XRD patterns, and it was found that stoichiometric SDC powder could be obtained only when stoichiometric fuel contents were used. The relative density is 96% when the SDC pellet was sintered at 1400℃for 5h. The results showed that the conductivity activity energy is 1.17 eV and the conductivity at 800℃is 0.0898 S·cm~(-1) with MC as fuel. While, with PVA fuel, a lower synthesis temperature of 350℃is demonstrated and a dense sintering body is obtained at 1300℃and the conductivity at 800℃is 0.0861 S·cm~(-1). Higher sintering temperature is not favorable to increasing the sintering density, and the conductivity at 800℃is lowered to 0.0619 S·cm~(-1), which present the properties of the powder with high sintering activity.
     The application and development of proton conducting electrolyte is later than that of oxide-ionics conducting electrolyte. Among the proton conducting electrolyte, BaCeO_3-based material have the highest conductivity, unfortunately, high sintering temperature. The recent research Zn element can assist lowering the sintering temperature to 1325℃by solid-state reaction. Obviously, solid-state reaction is not fit for lowering sintering temperature with combustion synthesis method. Based on the development of soft chemical synthesis method, in this thesis, BaCe_(0.5)Zr_(0.3)Y_(0.16)Zn_(0.04)O_(3-δ) (BCZYZ) was prepared by citrate combustion synthesis method. The XRD results showed that 1000℃was sufficient for the formation of pure BCZYZ powders. It was found that BCZYZ powders exhibited high stability under 100%CO_2 atmosphere and high sintering activity and could be dense at 1150℃, which was lower than conventional solid-state reaction. The EDX results showed that there is a uniform distribution of all the elements.
     2. Performance of the cell with oxide-ionic conducing electrolyte
     Using SDC powders prepared by PVA combustion synthesis method, anode-supported cells were assembled with general Sm_(0.5)Sr_(0.5)CoO_(3-δ) (SSC)-SDC and Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) (BSCF) -SDC with high catalytic activity as the composite cathodes, and were tested 550℃to 650℃. The maximum power densities were 719 mW/cm~2、370 mW/cm~2、178mW/cm~2 at 650℃, 600℃, 550℃with SSC-SDC cathode, while with BSCF-SDC the values were 1018 mW/cm~2、646 mW/cm~2、288mW/cm~2, correspondingly. AC impedance spectra results showed that the interfacial polarization resistance with BSCF cathode was lower than that using SSC cathode, which might be the main reason that this cell performance was higher than that of SSC cathode.
     Using SDC powders obtained from PVA combustion synthesis method as the cathode interlayer of YSZ electrolyte, BSCF cathode is successfully applied to YSZ electrolyte-based SOFCs. SDC interlayer prevents the reaction between YSZ and BSCF. The interfacial polarization of the cell with BSCF cathode is 0.60, 1.06 and 1.64Ωcm~2, which is lower than the values of 1.73, 1.95 and 3.72Ωcm~2 with LSM cathode. The maximum power densities of 1049 m W cm~(-2)、669 m W cm~(-2), 304 m W cm~(-2) were higher than the that of 595, 444, 215 mW cm~(-2), correspondingly, which exhibited the characterization of BSCF cathode is of high catalytic activity.
     3. Performance of the cell with proton conducing electrolyte
     For the first time, the cell was assembled with BCZYZ thin electrolyte prepared by dry-pressing method and sintered at 1250℃, and the electrolyte was controlled at 10-15μm. The studies of the cell performance with BSCF cathode and La_(0.6)Sr_(0.4)CoO_(3-δ) (LSC) cathode due to their high catalytic activity and high electron conduction, the results showed that the maximum power densities were 322 mW/cm~2, 280 mW/cm~2,172 mW/cm~2 at 650℃, 600℃, 550℃with BSCF cathode, while with LSC cathode the values were 544 mW/cm~2 , 465 mW/cm~2 , 345mW/cm~2, correspondingly, higher than that of BSCF cathode. Using the values obtained from AC impedance spectra, the estimated conductivity were 0.00584 S/cm at700℃. These researches provide the probability by using proton conducting material as the electrolyte at intermediate temperature.
    In this thesis, the main researches were focused on the powders synthesis and cell preparation technics. First, SDC powders with high oxide-ionics conduction and BCZYZ powders with high proton conduction were prepared by combustion synthesis method. And then the cells were assembled using optimized electrode material and microstructure. By all the optimization, theoretical cell performance was obtained.
引文
[1] 阿布里提.阿布都拉.,小宫山宏.新型高效率发电技术-燃料电池的发展线装和开发动向.电工电能新技术,2(2000)35-40.
    [2] N. Q. Ninh, J. Am. Ceram. Soc. 76(1993) 563.
    [3] 衣宝廉,电源技术,22(1998)216.
    [4] N. Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells, by Elsevier Science B. V. 1995.
    [5] Fuel Cell Handbook (Fifth Edition), by EG&G Services Parsons, Inc., Science Applications International Corporation, 2000.
    [6] 管从胜,杜爱玲,杨玉国.高能化学电源.化学工业出版社.2005
    [7] Isenberg A O. In: 1982 National Fuel Cell Seminar Abstracs, November 14-18, 1982, Newport Beach, CA, Courtesy, Washington, DC, 1982,154.
    [8] Berry D A, Mayfield M J. Fuel Cells-Technology Status Rport. Repor No. DOE/METC-89/0266, U. S. Department of Energy, Washington, DC, 1998.
    [9] Westinghouse Electric Corporation. Solid Oxide Fuel Cell Power Generation System. The Statusof theCell Technology-A Topical Report. Report No. DOE/ET/17089-15, U. S. Department of Energy, Washington, DC, 1998.
    [10] R. A. Gorge, J. Power Sources 86 (2000) 134.
    [11] Veyo S e. In: 1988 Fuel Cell Seminar Abstracts, October 23-26, 1988, Long Beach, CA, Courtesy Associates, Washington, DC, 1998, 13.
    [12] Lundberg W L. Solid Oxide Fuel Cell Cogeneration System Conceptual Design. Report No. GRI-89/0162,Gas Research Institute, Chicago, 1989.
    [13] A. O. Isenberg, Solid State Ionics 3-4(1981) 431.
    [14] W. Feduska, A. O.Isenberg, J. Power Sources, 10(1983) 89.
    [15] Ohno Y, Nagata S, Sato H. In: Proceeding of the 15th IECEC, August 18-22, 1980, Seattle, WA, American Institute of Aeronautics and Astronautics, New Tork, 1980, 881.
    [16] Erddle E, Koch A, Schaefer W, Esper F J, Frise K H. In: Science and Technology of Zirconia Ⅱ, N. Claussen, Ruhle M, and Heuter A eds. American Ceramic Society, Columbus, OH, 1984, 685.
    [17] Kotchick D M. U. S. Patent No. 4816036, March 28, 1989
    [18] Mirth N Q. J Am Ceram Soc, 76 (1993) 563.
    [19] Akiyama Y, Yasuo T, Ishida N, Taniguchi S, Saito T. In: Proceeding of the Third International Symposium on Solid Oxide Fuel Cells, May 16-21, 1993, Honolulu, HI, Singhal S C, Iwahara H eds. Electrochemical Society, Pennington, NJ, 1993,724
    [20] M.V.斯温.陶瓷的结构与性能.郭景坤等译.北京:科学出版社,1998,6:94
    [21] Baumard J F and Abelard P. In Science and Technology of Zirconia Ⅱ. Clausen Ruble M, Heuer A Heds. American Ceramic Society, Columbus, OH, 1984:555
    [22] W Weppner, Schuber H. Science and Technology of Zirconia Ⅲ. Somiya S, Yamamoto N, Yanagda H(eds). American Ceramic Society, Westerville, OH, 1998: 837
    [23] P. Mondal, A. Klein, W. Jaegermann, H. Hahn. Solid State Ionics, 123 (1999): 271.
    [24] N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier Science B. V., ISBN: 0-444-895668-X, U.S.A. 11 (1995) 75.
    [25] H. Inaba, H. Tagawa, Solid State Ionics, 83 (1996)1.
    [26] G. A. Tompsett and N. M. Sammes, J. Am. Ceram. Soc., 80(12) (1997) 3181.
    [27] B. C. H. Steele, Solid State Ionics, 129 (2000) 95.
    [28] S. Sameshima, Y. Ichikawa, M. Kawaminami, Y. Hirata. Mater. Chem. Phy. 61 (1999) 31.
    [29] N. M. Sammes, Zhihong Cai, Solid State Ionics100 (1997) 39.
    [30] N. Q. Minh, T. Takahashi, Elsevier Science B. V., ISBN: 0-444-895668-X, U. S. A. 11 (1995) 92.
    [31] G. Ma, F. Zhang, J. Zhu, G. Meng. Chem. Mater. 18 (2006) 6006.
    [32] T. Ishihara, H. Matsuda, T. Takita. J Am Chem Soc, 116 (1994) 3801.
    [33] K. Huang, J. B. Goodenough, J. Alloys and Compounds, 303-304 (2000)454.
    [34] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, J. Electrochem. Soc. 147 (2000) 1332.
    [35] Z. Bi, M. Cheng, Y. Dong, H. Wu, Y. She and B. Yi. Solid State Ionics 176 (2005) 655.
    [36] K. R. Kendall, C. Navas, J. K. Thomas, H. C. Z. Loye. Solid State Ionics 82 (1995) 215.
    [37] N. Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.
    [38] F. Goutenolre, O. Isnard, R. Retoux, et al. Chem. Mater. 12 (2000) 2575.
    [39] F, Goutenolre, O. Isnard, E. Suard, et al. J. Mater. Chem. 11 (2001) 119.
    [40] Z. G. Yi, Q. F. Fang, X. P. Wang. Solid State Ionics 160 (2003) 117.
    [41] P. Lacorre, F. Gputenoire, O. Bohnke. Nature 404 (2000) 856.
    [42] F. Goutenoire, O. Isnard, P. Lacorre. Chem. Matter. 12 (2000)2575.
    [43] H. Naruke, T. Yamase. Journal of Solid State Chemistry 173 (2003) 407.
    [44] T. He, Y. Huang, Q. He, Y. Ji, L. Pei, J. Liu, Z. Lu. Journal of Alloys and Compounds 388 (2005) 145.
    [45] H. Nishimine, M. Wakeshima, Y. Hinatsuv. Journal of Solid State Chemistry 178 (2005) 1221.
    [46] J. Yang., Z. Gu, Z. Wen, D. Yan Solid State Ionics 176 (2005) 523.
    [47] H. Iwahara, T. Esaka, H. Uchida and N. Maeda. Solid State Ioics. 3-4 (1981)359.
    [48] N. Taniguchi, K. Hatoh, J. Niikura, T. Gamo H. Iwahara. Solid State Ionics 53-56 (1992) 998.
    [49] T. Scherban, W-K Lee, A.S. Nowick. Solid State Ionics 28-30 (1988) 585.
    [50] J. F. Liu, A. S. Nowick. Solid State Ionics 50 (1992) 131.
    [51] D. Hirabayashi, A.o Tomita, S. Teranishi, T. Hibino, M. Sano. Solid State Ionics 176 (2005) 881.
    [52] K. H. Ryu, S.a M. Haile. Solid State Ionics 125 (1999) 355.
    [53] Y. Du, A. S. Nowick. Solid State Ionics, 91 (1996) 85.
    [54] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara. Solid State Ionics 138 (2000) 91.
    [55] B. C. H. Steele, Solid State Ionics, 135 (2000) 445.
    [56] S. J. Jiang, Solid State Ionics, 132 (2000) 1.
    [57] Y. -H. Huang, R. I. Dass, Z.-L. Xing, J. B. Goodenough. Science 312 (2006)254.
    [58] S. M. Plint, P. A. Connor, S. Tao, J. T. S. Irvine. Solid State Ionics 177 (2006) 2005.
    [59] S. Tao, J. T. S. Irvine, J. Electrochem. Soc. 151 (2) (2004) A252.
    [60] K. Tezuka, Y. Hinatsu, A. Nakamura, T. Inami, Y. Shimojo, Y. Morrii, J. Solid State Chem. 141 (1998) 404.
    [61] N. Q. Minh, J. Am. Ceram. Soc. 76(1993)301.
    [62] T. Ishihara, T. Kudo, H. Matsuda, et al, J. Electrochem. Soc. 142 (1995) 1519.
    [63] Y. Takeda, R. Kanno, M. Noda, et al, J. Electrochem. Soc., 134 (1987) 2656.
    [64] L. W. Tai, M. M. Nasrallah, H. U. Anderson, in S. C. Singhal, H. Iwahara(Eds.), SOFC Ⅲ, Proceedings Volume, 93(4), Electrochemical Society, NJ, (1993)241.
    [65] I. Yasuda, T. Hikita, J. Electrochem. Soc., 140 (1993) 1699.
    [66] W. J. Weber, C. W. Griffin, J. L.Bates, J. Am. Ceram. Soc. 70 (1987) 265.
    [67] X. Zhou, J. Ma, F. Deng, G. Meng, X. Liu. J. Power Sources 162 (2006) 279.
    [68] X. Zhou, F. Deng, M. Zhu, G. Meng, Xingqin Liu. J. Power Sources 164 (2007) 293.
    [69] H. Konno, M. Tokita, R. Furuichi, J. Electrochem. Soc. 137 (1990) 361.
    [70] H. Konno, M. Tokita, R. Furuichi, Electrochim. Acta. 37 (1992) 2421.
    [71] Y. Akiyama, S. Taniguchi, T. Yasuo, M. Kadowaki, J. Power Sources. 50 (1994) 361.
    [72] Selmar de Souza, Steven J. Visco, Lutgard C. De Jonghe. Solid State Ionics 98 (1997) 57.
    [73] Y. Jiang, A. V. Virkar. J. Electrochem. Soc. 148 (2001) A706.
    [74] T. J. Armstrong, J. G. Rich. J. Electrochem. Soc. 153 (2006) A515-A520.
    [75] Selmar de Souza, Steven J. Visco, Lutgard C. De Jonghe. J. Electrochem. Soc. 144 (1997) 35.
    [76] Q. L. Liu, K. A. Khor, S. H. Chan. J. Power Sources 161 (2006) 123.
    [77] X. Zhang, M. Robertson, S. Yick. J. Power Sources 160 (2006) 1211.
    [78] N. Ai, Z. Lu, K. Chen, X. Huang, Y. Liu. J. Membr. Sci. 286 (2006) 255.
    [79] T. Misono, K. Murata, T. Fukui, Jintawat Chaichanawong. J. Power Sources 157 (2006) 754.
    [80] C. Jiang, J. Ma, X. Liu, G. Meng. J. Power Sources 165 (2007) 134.
    [81] Z. Bi, M. Cheng, Y. Dong, H. Wu, Y. She, B. Yi. Solid State Ionics 176 (2005) 655.
    [82] Z. Shao, S. M. Haile. Nature. 431 (2004) 170.
    [83] C. Xia, W. Rauch, F. Chen, M. Liu. Solid State Ionics 149 (2002) 11.
    [84] N. Ai, Z. Lu, K. Chen, X. Huang, B. Wei. J. Power Sources 159 (2006) 637.
    [85] H. Huang, M. Nakamura, P. Su, R. Fasching,Y. Saito, F. B. Prinz J. Electrochem. Soc. 154 (2007) B20.
    [86] K. Chen, Z. Lu, N. Ai, X. Huang, Y. Zhang , X. Xin, R. Zhu, W. Su. J. Power Sources 160 (2006) 436.
    [87] A. Ringuede, J. A. Labrincha, J. R. Frade Solid State Ionics 141-142 (2001) 549.
    [88] R. M. C. Clemmer, S. F. Corbin. Solid State Ionics 166 (2004)251.
    [89] H. Abe, K. Murata, T. Fukui, W. J. Moon, K. Kaneko, M. Naito. Thin Solid Films. 496 (2006) 49.
    [90] A. Ringuede, D. Bronine, J. R. Frade. Solid State Ionics 146 (2002) 219.
    [91] F. H. Wang, R. S. Guo, Q. T. Wei, Y. Zhou, H. L. Li, S.L. Li. Mater. Lett. 58 (2004) 3079.
    [92] S. P. Jiang, Y. Y. Duan, J. G. Loveb. J. Electrochem. Soc. 149 (2002) A1175.
    [93] S. P. Jiang, S. Zhang, Y. D. Zhen, W. Wang. J. Am. Ceram. Soc., 88 (2005) 1779.
    [94] M. B. Joerger, L. M. Baeurle, L. J. Gauckler, In Proceedings of the 5th European Solid Oxide Fuel Cell Forum; Huijsmans, J. Ed.; The European Fuel Cell Forum: Oberrohrdorf, Switzerland,2002; p 475.
    [95] S. P. Yoona, J. Hana, S. W. Nama, T.-H. Lima, I.-H. Oha, S.-A. Honga, Y.-S. Yoob, H. C. Lim. J. Power Sources 106 (2002)160.
    [96] S. Zha, Y. Zhang, M. Liu. Solid State Ionics 176 (2005) 25.
    [97] E. P. Murray, M. J. Sever, S. A. Barnett. Solid State Ionics 148 (2002) 27.
    [98] S. P. Jiang, W. Wang. J. Electrochem. Soc. 152 (2005) A1398.
    [99] J. M. Ralph, C. Rossignol, R. Kumar. J. Electrochem. Soc. 150 (2003)A1518.
    [100] X. Y. Xu, C. R. Xia, G. L. Xiao, D. K. Peng. Solid State Ionics 176 (2005) 1513.
    [101] Y. Liu, W. Rauch, S. Zha, M. Liu. Solid State Ionics 166 (2004)261.
    [102] J. Wang, Z. Lu, X. Huang, K. Chen, N. Ai, J. Hua, W. Su, J. Power Sources 163 (2007) 957.
    [103] Z. Duan, M. Yang, A. Yan, Z. Hou,Y. Dong, Y. Chong, M. Cheng, W. Yang. J. Power Sources 160 (2006) 57.
    [104] Q. L. Liu, K. A. Khor, S. H. Chan, X. J. Chen. J. Power Sources 162 (2006) 1036.
    [105] Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong. J. Membr. Sci. 172 (2000) 177.
    [106] N. Ito, M. Iijima, K. Kimura, S. Iguchi. J. Power Sources 152 (2005) 200-203.
    [1] B. Dalslet, P. Blennow, P. V. Hendriksen, N. Bonanos, D. Lybye, M. Mogensen, J. Solid State Electrochem. 10 (2006) 547.
    [2] R. S. Gordon. Electrochemical Society Proceedings, 2003-07, SOFC Ⅶ, 2003, pp. 141.
    [3] D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, B. Johansson, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 3518.
    [4] H. Yahiro, K. Eguchi, H. Arai, Solid State Ionics 36 (1989) 71.
    [5] G. -B Jung, T. -J. Huang, J. Mater. Sci. 38 (2003) 2461.
    [6] C. Laberty-Robert, J. W. Long, E. M. Lucas, K. A. Pettigrew, R. M. Stroud, M. S. Doescher, D. R. Rolison, Chem. Mater. 18 (2006) 50.
    [7] W. Huang, P. Shuk, M. Greenblaft, Chem. Mater. 9 (1997) 2240.
    [8] T. S. Zhang, J Ma, Y. J. Leng, Z. M. He, J. Cryst. Growth 274 (2005) 603.
    [9] Y. Liu, W. Rauch, S. Zha, M. Liu. Solid State Ionics 166 (2004) 261.
    [10] Y. Ji, J. Liu, T. He,. L. Cong, J. Wang, W. Su. J. Alloys Compd. 353 (2003) 257.
    [11] R. Peng, C. Xia, Q. Fu, G. Meng, D. Peng. Mater. Lett. 56 (2002) 1043.
    [12] H. Li, C. Xia, M. Zhu, Z. Zhou, G. Meng. Acta Materialia 54 (2006) 721.
    [13] 张立德,牟季美.纳米材料学,辽宁科学技术出版社,1994.
    [14] R. D. Purohita, B. P. Sharmaa, K. T. Pillaib, A. K. Tyagic, Mater. Res. Bull. 36 (2001) 2711.
    [15] D. Y. Chung, E. H. Lee, J. Alloys Compd. 374 (2004) 69.
    [16] Y. P. Fu, C. H. Lin, C. S. Hsu. J. Alloys Compd. 391 (1-2) (2005) 11.
    [17] E. Heyman, Trans. Faraday Sci. 31 (1935) 846.
    [18] 严端瑄.水溶性高分子.化学工业出版社.1998.
    [19] Just. E. K. & Majewice, ed. E. Ott, H. M. Spurlin & M. W. Graffiin. N. Y : Interscience, 1954, 882.
    [20] 许荣复.纤维素醚工业.1987,2(4):36.
    [21] S. Herb, J. O. Stair, D. B. Ringelberg, D. C. White, H. -C. Hemming. Water Sci. Technol. 32 (1995) 141.
    [22] D. Klemm, H. Brigitte, H. -P. Fink, A. Bohn, Angew. Chem., Int. Ed. 44 (2005) 3358.
    [23] R. Donges. Brit. Polymer Journal 23 (1990) 315.
    [24] 杨之礼等编著.纤维素醚基础与应用.广州:华南理工大学出版社 1990.
    [25] H. M. Spurlin. J. polym. Sci. 3 (1948) 714.
    [26] D. Spelzini, R. Rigatusso, B. Farruggia, G. Pico. Cellulose 12 (2005) 293.
    [27] L. Weng, L. Zhang, D. Ruan, L. Shi, J. Xu, Langmuir 20 (2004) 2086.
    [28] Y. Xu, L. Li, Polymer 46 (2005) 7410.
    [29] H. Wang, B. A. Holmberg, Y. Yan, J. Am. Chem. Soc. 125 (2003) 9928.
    [30] 武汉大学化学系等著.稀有元素分析化学,科学出版社:北京,1981.
    [31] W. Chen, F. Li, J. Yu. Mater. Lett. 60 (2006) 57.
    [32] Z. Shao, G. Li, G. Xiong, W. Yang. Powder Technol. 122 (2002) 26.
    [33] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2nd edR, Wiley, New York, 1997.
    [34] V. Bolis, G. Magnacca, G. Cerrato, C. Morterra, Thermochim. Acta 379 (2001) 147.
    [35] Y. Zhai, C. Ye, F. Xia, J. Xiao, L. Dai, Y. Yang, Y. Wang. J. Power Sources. 162 (2006) 146.
    [36] R. A. Rocha, E. N. S. Muccillo. British Ceramic Transactions 102 (2003) 216.
    [37] B. C. H. Steele. Solid State Ionics 129 (2000) 95.
    [38] X. D Zhou., W. Huebner, I. Kosacki, H.U. Anderson. J. Am. Ceram. Soc. 85 (20O2) 1757.
    [39] K. Q. Huang, M. Feng, J. B. Goodenough. J. Am. Ceram. Soc. 81 (1998) 357.
    [40] R. -Q. Liu, Y. -H. Xie, J. -D. Wang, Z. -J. Li, B. -H. Wang. Solid State Ionics 177 (2006) 73.
    [1] N. Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.
    [2] S. C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier Advanced Technology,UK, 2003.
    [3] C. W. Tanner, K.-Z: Fung, A. V. Virkar, J. Electrochem. Soc. 144 (1997) 21.
    [4] C. R. Xia, M. L. Liu, J. Am. Ceram. Soc. 84 (2001) 1903.
    [5] Y. Yin, S. Li, C. Xia et al. Journal of Power Sources.167 (2007) 90.
    [6] C. R. Jiang, J. J. Ma, X. Q. Liu et al. Journal of Power Sources.165 (2007) 134.
    [7] Q Ma, R Peng. Y Lin, et al. Journal of Power Sources 161 (2006) 95.
    [8] X. Xin, X. Huang, X. Sha. Journal of Power Sources. 160 (2006) 121.
    [9] Z. Bi, M. Cheng, Y. Dong et al. Solid State Ionics, 176 (2005) 655.
    [10] W. Zhu, C. Xia, J. Fan et al. Journal of Power Sources.160 (2006) 897.
    [11] Z. Shao, S. M. Haile, Nature 431 (2004) 17.
    [12] X. Zhang, M. Robertson, S. Yick et al. Journal of Power Sources. 160 (2006) 1211.
    [13] J.-W. Kim, A. V. Virkar, K.-Z. Fung, K. Meht, S. h C. Singhal, J. Electrochem. Soc. 146 (1999) 69.
    [1] H. Matsumoto, T. Shimura, H. Iwahara, T. Higuchi, K. Yashiro, A. Kaimai, T. Kawada, J. Mizusaki. J. Alloys Compd 408-412 (2006) 456.
    [2] N. Ito, M. Iijima, K. Kimura, S. Iguchi. J. Power Sources 152 (2005) 200.
    [3] W. Wang, A. V. Virkar. Sensors and Actuators B 98 (2004) 282.
    [4] H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3-4 (1981) 359.
    [5] Iwahara H, Uchida H, et al. J. Electrochem. Soc 135 (1988) 529
    [6] N. Tanigushi, K. Hatoh, J. Niikura, T. Gamo, Solid State Ionics 53-56 (1992) 998.
    [7] K. C. Liang, A. S. Nowick, Solid State Ionics 61 (1993) 77.
    [8] K. C. Liang, Yang Du, A. S. Nowick, Solid State Ionics 69 (1994) 177.
    [9] Y. Du, A. S. Nowick. Solid State Ionics 91 (1996) 85.
    [10] J.-x. Wang, W.-h. Sub, D.-p. Xu, T.-m. He, J. Alloys Compd. 421 (2006) 45.
    [11] N. Maffei, L. Pelletier, A. McFarlan, J. Power Sources 136 (2004) 24.
    [12] J. Wu, S. M. Webb, S. Brennan, S. M. Haile. JOURNAL OF APPLIED PHYSICS 97 (2005) 054101.
    [13] K. D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, J. Marier, Solid State Ionics 145 (2001) 295.
    [14] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara. Solid State Ionics 138 (2000) 91.
    [15] A. S. Nowick, Yang Du and K. C. Liang, Solid State Ionics125 (1999) 303.
    [16] P. Murugaraj, K. D. Kreuer, T. He, T. Schober, J. Maier Solid State Ionics 98 (1997) 1.
    [17] K. D. Kreuer Solid State Ionics. 125 (1999) 285.
    [18] K. D. Kreuer, E. Schonherr and J. Maier, Solid State Ionics 70-71 (1994) 278.
    [19] N. Bonanos, Solid State Ionics 53-56 (1992) 967.
    [20] T. He, K. D. Kreuer, Yu. M. Baikov, J. Maier, Solid State Ionics 95 (1997) 301.
    [21] T. He, K. D. Kreuer, Y. M. Baikov, J. Maier, Proc. Electrochem. Soc. 97-18 (1997) 1057.
    [22] K. D. Kreuer, W. Munch, M. Ise, A. Fuchs, U. Traub, J. Maier, Ber. Bunsenges.Phys. Chem. 101 (1997) 1344.
    [23] W. Munch, K. D. Kreuer, S. Adams, G. Seifert, J. Maier, Phase Transitions 68 (1999) 567.
    [24] W.-K. Lee, A. S. Nowick, L. A. Boatner, Solid State Ionics 18-19 (1986) 989.
    [25] S. Shin, H. H. Huang, M. Ishigame, H. Iwahara, Solid State Ionics 40-41 (1990) 910.
    [26] T. Scherban, A. S. Nowich. Solid State Ionics 35 (1989) 189.
    [27] A. S. Nowick, Y. Du. Solid State Ionics 77 (1995) 137.
    [28] W. Munch, G. Seifert, K. D. Kreuer, J. Maier, Solid State Ionics 97 (1997) 39.
    [29] K. D. Kreuer, W. Munch, U. Traub, J. Maier, Ber. Bunsenges. Phys. Chem. 102 (1998) 552.
    [30] W. Munch, G. Seifert, K. D. Kreuer, J. Maier, Solid State Ionics 86-88 (1996) 647.
    [31] T. Hibino, K. Mizutani, T. Yajima, H. Iwahara, Solid State Ionics 58 (1992) 85.
    [32] H. Yugami, Y. Shibayama, T. Hattori, M. Ishigame, Solid State Ionics 79 (1995) 171.
    [33] N. Sata, K. Hiramoto, M. Ishigame, et al. Phys. Rev. B, 54 (1996) 15795.
    [34] M. J. Scholten, J. Schoonman, J. C. Van Miltenburg, H. A. J. Oonk, Solid State Ionics 61 (1993) 83.
    [35] S. Gopalan, A. V. Virkar, J. Electrochem. Soc. 140 (1993) 1060.
    [36] H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Solid State. Ionics 52 (1992) 43.
    [37] N. Taniguchi, C. Nishimura, J. Kato. Solid State Ionics 145 (2001) 349.
    [38] Atsuko Tomita, Kiyoka Tsunekawa, Takashi Hibino, Shinya Teranishi, Yuki Tachi, Mitsuru Sano, Solid State Ionics 177 (2006) 2951.
    [39] Jin-xia Wang, Wen-hui Su, Da-peng Xu and Tian-min He, J. Alloys Compd. 421 (2006) 45.
    [40]] N. Maffei, L. Pelletier, A. McFarlan. J. Power Sources 136 (2004) 24.
    [41] A. Chakroborty, A. D. Sharma, B. Maiti, H. S. Maiti. Mater. Lett. 57 (2002) 862.
    [42] M. S. Islam, R. A. Davies, J. D. Gale, Chem. Mater. 13 (2001) 2049.
    [43] Ana Paula Almeida de Oliveira, Julien Hafsaoui, Jean-Franc,ois Hochepied. J. Eur. Ceram. Soc. (2007) in press.
    [44] Z. Zhong, Solid State Ionics 178 (2007) 213.
    [45] S, Tao, J. T. S. Irvine. Adv. Mater. 18 (2006) 1581.
    [46] C. Zuo, S. Zha, M. Liu, et al. Adv. Mater. 18 (2006) 3318.
    [47] R. Yan, F. Chu, Q. Ma, et al. Mater. Lett. 60 (2006) 3605.
    [1] H. Iwahara, Solid State Ionics 125 (1999) 271.
    [2] H. Iwahara, H. Uchida, S. Tanaka, Solid State Ionics 9-10 (1983) 1021.
    [3] H. Matumoto, Y. Iida, H. Iwahara, Solid State Ionics 127 (2000) 345.
    [4] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135 (1988) 529.
    [5] M. J. Scholten, J. Schoonman, J. C. van Miltenburg and H. A. J. Oonk. Solid State Ionics 61(1993) 89.
    [6] K. H. Ryu, S, M. Haile, Solid State Ionics 125 (1999) 355.
    [7] D. Lybye, F. W. Poulsen, M. Mogensen, Solid State Ionics 128 (2000) 91.
    [8] M. Laidouoim, O. Talibia, Journa of Physics D: Applied Physics 35 2002) 397.
    [9] A. Mineshige, S. Okada, K. Sakai, M. Kobune, S. Fujii, H. Matsumoto, T. Shimura, H. Iwahara, Z. Ogumi, Solid State Ionics 162-163 (2003) 41.
    [10] H. Iwahara, Solid State Ionics 77 (1995) 289.
    [11] K. D. Kreuer, Annu. Rev. Mater. Res. 33(2003) 333
    [12] H. Iwahara. Solid State Ionics 28-30 (1988) 573.
    [13] H. Iwahara, H. Uchida, K. Morimoto, J. Electrochem. Soc. 137 (1990) 462.
    [14] N. Bonanos, B. Ellis, N. Mahmood, Solid State Ionics 44(1991) 305.
    [15] N. Tanigushi, K. Hatoh, J. Niikura, T. Gamo. Solid State Ionics 53-56 (1992) 998.
    [16] H. Iwahara, T. Yashima, T. Hibino, H. Ushida. J. Electrochem. Soc. 140 (1993) 1687.
    [17] R. Peng, Y. Wu, L. Yang, et al. Solid State Ionics 177 (2006) 389.
    [18] Q. Ma, R. Peng, Y. Lin, et al. J. Power Sources 161 (2006) 95.
    [19] C. Zuo, S. Zha, M. Liu, H. Masaharu et al. Adv. Mater. 18(2006) 3318.
    [20] Z. Shao, S. Haile, Nature 431 (2004) 170.
    [21] Q. Liu, K. A. Khor, S. Chan. J. Power Sources 161 (2006) 123.
    [22] 仇立干,马桂林,陆新华.应用化学,20(2003)936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700