浅埋煤层大采高综采面矿压规律与支护阻力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神东矿区是我国最大的现代化能源基地,根据煤层赋存特点,一般采用一次采全高综合机械化方式开采,采高一般为5.0m,随着机械化程度的不断提高,部分工作面采高已达6.0m,补连塔煤矿22303工作面采高达7.0m。随之支架额定工作阻力不断增加,由3500kN、7592kN、10800kN、12000kN,到目前最大达16800kN,使大采高综采面成套设备费用不断增加,为了掌握其规律,论文综合运用现场实测、理论分析与计算及数值模拟等研究方法,以“张家峁煤矿试采工作面矿压规律及地表移动观测技术研究”等课题为依托,对神东矿区浅埋煤层大采高综采面由于采动影响上覆岩层垮落后形成的结构、矿压显现规律及合理的支护阻力进行了分析研究。
     研究认为:浅埋煤层大采高综采面矿压显现的突出特点是基岩沿架后全厚切落,直接波及至地表,上覆岩层为冒落带和裂隙带“两带”,来压期间顶板动载明显,老顶初次来压步距约54m,周期来压步距平均约15m,支架运转特性主要为一次增阻型,周期来压期间平均工作阻力达10799kN,来压强烈,持续时间短,中部测区有60%支架安全阀开启,来压期间中部测区支架工作阻力和动载系数大于两侧测区,说明工作面中部来压强烈。
     数值模拟与理论分析验证了,浅埋煤层大采高综采面顶板为单一关键层结构,顶板破断后不能形成稳定的“砌体梁”结构,关键块易出现架后滑落失稳,对“台阶岩梁”模型从另一种角度对关键块稳定性进行了分析,提出台阶下沉角,得出台阶下沉角与回转角之间的关系,并将其引入“台阶岩梁”阻力计算公式中。对关键块分析发现采高、直接顶厚度及关键块厚度及垮落长度是关键块台阶下沉角与台阶下沉量的影响因素,同时发现在相同赋存条件下,随着采高的增加,台阶下沉角也在增加。并用建立的台阶下沉角阻力计算公式计算相应大采高支护阻力与实测结果比较符合,同时发现,支架所承担的重量远小于上覆岩层全部重量,仍然存在明显的载荷传递效应,最后确定额定工作阻力为12000kN液压支架基本满足浅埋煤层大采高综采面控制顶板的要求,并且得到了现场实践的验证。
     通过研究,基本掌握了神东矿区浅埋煤层大采高综采面矿压显现规律,确定了合理的支护阻力,并对前人所提出的浅埋煤层定义进行了补充,为其他类似大采高综采工作面回采提供了科学的依据。
Shendong Mining Area is the largest modern energy base in China. According to the coalseam characteristics the general mining method is fully-mechanized once mining all heightwithout local small coalpits, and the mining height is 5.0m. With the continuous improvementof mechanization part of the mining face height reaches 6.0m, which has reached 7.0m in22303 work face of Bu lian-ta coal. The support rated resistance increases continuously, from3500kN, 7592kN, 10800kN, 12000kN to the present largest 16800kN, which makes the costof complete fully-mechanized large mining height equipments increase. In order to master theregularity, the dissertation integrates the methods of field measurement, theoretical analysiscalculation and numerical simulation, and relying on some projects, such as "Technologyresearch on the pressure behavior principle and surface movement observation inexperimental mining face of Zhang Jia-mao coal.", it researches the structure formed byoverlying rock collapsing because of mining influence, the pressure behavior and reasonablesupport resistance.
     The results show that the prominent features of pressure behavior in fully-mechanizedlarge mining height work face of shallow seam are the bedrock cutting off along the shelf fullthickness, which directly affects to the surface, and the overlying should be divided "twozones": caving zone and fracture zone. During the roof weighting time the dynamic loadperforms significantly, whose first weighting interval is about 54m, and the average periodicweighting interval is about 15m. The operation character of shield hydraulic support is anincreased resistance. During the periodic weighting the average resistance reaches43MPa(10799kN), and the pressure performs strongly with short time. 60% supports haveopened safety valves in the middle survey area. Both resistance and dynamic load coefficient of support in middle are bigger than ones in two sides, which shows that the pressure performsintensively in middle of work face.
     Numerical simulation and theoretical analysis verify that the roof structure of shallowseam has a single key layer which can not form a stable "masonry beam" structure after roofbreaking, and the key block is prone to slide instability behind support. The dissertationanalyzes the stability of the block in "step voussoir beam" model from anther point. Itestablishes the step subsidence angle, finds out its relationship to the rotation angle, andintroduces it into the "step voussoir beam" resistance calculation equation. The analysis of thekey block indicates that the mining height, the immediate roof thickness, and the thickness andfalling length of the key block are influence factors of step subsidence angle and convergence.Meanwhile the analysis shows that the step subsidence angle increases as the mining heightincreasing under the same occurrence conditions. This dissertation calculates the large miningheight support resistance by using the established resistance calculation equation with stepsubsidence angle, which is basically consentaneous with practical results. Meanwhile, itshows that the support bearing weight is far less than the all overburden weight, and the loadtransfer-effect exists. Finally it determines 12000kN rated resistance support basically meetsthe requires of roof control in fully-mechanized large mining height work face of shallowseam, which is verified by field practice.
     Through research the dissertation basically graspes the principle of pressure behavior infully-mechanized large mining height work face of shallow seam in Shendong Mining Area,and determines reasonable support resistance. Moreover, it complements the previousdefinition of shallow beam, and provides scientific evidence for mining in other similar fullymechanizedwork face.
引文
[1]牛文元.中国能源需求的基本预测.第14届世界生产力大会论文集,2006,10
    [2]高广阔,张能进.中国能源需求预测及供给对策.电力技术经济,2005,6
    [3]张静.我国能源分析预测.财经科学,1996
    [4]张麟.我国能源及煤炭工业发展战略新特点.焦作工学院学报社会科学版,2000,3
    [5]陈清泰.中国的能源战略和政策.国务院发展研究中心,能源战略,2003,11
    [6]张建明.煤炭工业仍将是21世纪我国能源工业的主力军.中国能源,2002
    [7]魏同.中国煤炭工业可持续发展的系统分析.中国煤炭经济学院学报,1996:3~10
    [8]魏秉亮.神府矿区突水溃沙地质灾害研究.中国煤田地质,1996,8:28~30
    [9]西安矿业学院矿压所.神木县大贬窑煤矿,大贬窑煤矿202刀柱式长壁工作面合理开采参数研究报告.西安矿业学院,1996
    [10]黄庆享,刘文岗,田银素.近浅埋煤层大采高矿压显现规律实测研究.矿山压力与顶板管理,2003,NO3:57~58
    [11]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义.岩石力学与工程学报,2002,8
    [12]李刚,梁冰,李风仪.大柳塔煤矿12305工作面覆岩活动规律的相似模拟.黑龙江科技学院学报,2005,15:295~298
    [13]黄庆享.浅埋煤层采动厚沙土层破坏规律模拟.长安大学学报(自然科学版),2003,23(4):25~27
    [14]张惠,田银素.薄基岩大采高综采面矿压显现规律.矿山压力与顶板管理,2004,69~71
    [15]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究:中国矿业大学出版社,2000
    [16]杨鹏,冯武林.神府东胜矿区浅埋煤层涌水溃沙灾害研究.煤炭科学技术,2002,30(增刊):55~69
    [17]叶贵钧,张莱,李文平等.陕北榆神府矿区煤炭资源开发主要水工环境及防治对策.工程地质学报,2000,8(4):447~455
    [18] [澳]B.霍勃尔依特等.浅部长壁法开采效果的地质技术评价.煤炭科研参考资料,1985
    [19]黄庆享,石平五.印度浅埋煤层支护论证报告.西安:西安矿业学院,1998
    [20] HollaL.Buizen M.Strata Movement due to Shallow Long wall Mining and the EffectionGround Permeability.Aus.Imm Bulletin and Proceedings,1990,295(1)
    [21] SmithGJ.Rosenbaum MS.Recent Under ground Investigation of AbandOned Chalk MineWorkings beneath Norwich City Norfolk.Engineering Geol-ogy,1993,36(1~2)
    [22](澳)B.霍勃尔瓦依等.浅部长壁开采效果的地质技术评价.煤炭科研参考资料,1985
    [23] Holla L.Buizen M.Stata movement due to shallow longwall mining and the effect onground permeability.Aus IMM Bullefin and Proceedings,Vol.295 No.1 May 1990
    [24] Shith G J.Rosenbaum M S.Resent underground inbetigationg of abandoned chalk mineworkings beneath Norwich City Norfolk.Engineiring geology,Vol.36 No.1~2 Nov.1993
    [25] Miller R D.Steeples D W,Schulte L.Shallow seismic reflecting study of salt dissolutiongwell field mear Htchinson KS.Mining Engineering(Littletong Colorado),VOl.45 No.10Oct.1993
    [26] Bill Reid.Longwall Mining in SouthAfrica.Coal,Vol,Vol 99 No.10 Oct.1994
    [27] Singh R P.Yadav R N.Subsidence due to coal mining in India.in:Proceedings of the1995.5th Internationgal Symposium on land Subsidence.IAHS Publicaton.No.234,1995IAHS,Wallingford,Engl
    [28] Rajendra Singh,Singh T N,Bharaf B.Dhar.Coal pillar loading in shallowconditions.international Jounal of Rock Mechanics and Mining Scienes andGeomechanics Abatracs,1996,53(8)
    [29]赵宏珠.印度浅埋深难跨顶板煤层地面爆破综采研究.矿山压力与顶板管理,1999,(4)54~59
    [30]赵宏珠.印度综采长壁工作面浅部开采实践.中国煤炭,1998,(12)49~51
    [31]赵宏珠.浅埋采动煤层工作面矿压规律研究.矿山压力与顶板管理,1996,(2)27~32
    [32]赵宏珠.中国综放长壁技术和设备出口印度应用效果分析.煤炭开采,2000,(1)5~8
    [33]杨其震,赵宏珠.中国综采成套技术和设备在印应用的技术经济效果分析.煤矿开采,2003
    [34]张镇.薄基岩浅埋采场上覆岩层运动规律研究与应用.山东科技大学,2007,07
    [35]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析.岩石力学与工程学报,1995,6(14):97~106
    [36]侯忠杰,黄庆享.松散层下浅埋薄基岩煤层开采的模拟.陕西煤炭技术,1992
    [37]魏秉亮,范立民,杨宏科.浅埋近水平煤层采动地面变形规律研究.中国煤田地质,1999,9
    [38]侯忠杰,张杰.厚松散层浅埋煤层覆岩破断判据及跨距计算.辽宁工程技术大学学报,2004,10:577~580
    [39]张杰,侯忠杰.厚土层浅埋煤层覆岩运动破坏规律研究.采矿与安全工程学报,2007,3
    [40]侯忠杰,吴文湘,肖民.厚土层薄基岩浅埋煤层“支架一围岩”关系实验研究.湖南科技大学学报(自然科学版),2007,3
    [41]师本强,侯忠杰.土层覆盖下浅埋煤层工作面支架选型研究.采矿与安全工程学报,2007,9
    [42]朱庆华,王继承,马占国.浅埋煤层厚硬顶板破断与冒落数值模拟.矿山压力与顶板控制,2004,17~19
    [43]黄庆享.浅埋煤层长壁开采顶板结构及合理支护阻力研究.中国岩石力学与工程学会第七次学术大会论文集,2002,9
    [44]柴敬.浅埋煤层开采的大比例立体模拟研究.煤炭学报,1998,8:391~395
    [45]宋振骐,王崇革.浅埋煤层开采三维相似材料模拟实验研究.岩石力学与工程学报,2004,7:23(增2)4926~4929
    [46]肖江,蒋新军,陈建强.立体相似模拟实验判断老顶来压的新方法.矿山压力与顶板管理,2002,4
    [47]黄庆享等.浅埋煤层周期来压动载机理研究.延安大学学报(自然科学版),2006,6
    [48] Huang Qingxiang,Yang Zongmin.Research on repair support for floor heave in soft rockroadway.,Journal of coal science and engineering,1997
    [49]余学义,黄森林.浅埋煤层覆岩切落裂缝破坏及控制方法分析.煤田地质与勘探,2006,4:18~21
    [50]黄正全.浅埋煤层开采岩移特征与渗水机理分析.西部探矿工程,2006,4
    [51]黄庆享,张沛等.浅埋煤层厚沙土层采动卸荷破坏的“拱”状数学模型.河南师范大学学报,2007,35(1):183~185
    [52]黄森林.浅埋煤层覆岩结构稳定性数值模拟研究.煤田地质与勘探,2007,35(3):25~28
    [53]范钢伟,张东升等.浅埋煤层采动导水裂隙动态演化规律模拟分析.煤炭科学技术,2008,5
    [54]宣以琼.薄基岩浅埋煤层覆岩破坏移动演化规律研究.岩土力学,2008,2
    [55]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望.采矿与安全工程学报,2009
    [56]朱卫兵,许家林等.覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究.岩石力学与工程学报,2009,2
    [57]许家林等.浅埋煤层覆岩关键层结构分类.煤炭学报,2009,7
    [58]王双明,范立民,黄庆享等.生态脆弱地区的煤炭工业区域性规划.中国煤炭,2009,11
    [59]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究.煤炭学报,2004,2
    [60]徐涛,唐春安,杨天鸿等.采场覆岩关键层破断规律的数值模拟.岩石力学与工程学报,2002,21(增):2129~2133
    [61]赵德深等.采场覆岩离层的数值模拟研究.岩石力学与工程学报,2005,24(增):5164~516
    [62]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析.煤炭学报,1999,12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700