中枢CRF受体对可卡因戒断及外周CRF受体对前列腺癌细胞凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
促肾上腺皮质激素释放激素(corticotropin-releasingfactor,CRF)相关肽及其受体广泛分布于中枢和外周,并具有多种生物学效应。然而,其在中枢神经系统和外周的作用截然不同,甚至有时起到相反的作用。因此,研究CRF相关肽分别在中枢和外周的作用及其机制有着重要的意义。CRF相关肽具有调节应激行为、情绪活动、食物摄取及药物成瘾等作用,并且通过HPA轴发挥抑制炎症的作用。而在外周,CRF相关肽可保护心血管系统、促进炎症反应,并对代谢以及肿瘤生长有明显的影响。
     在中枢的皮质纹状体及外周的前列腺癌组织中均有大量的CRF相关肽及其受体的表达,但其对可卡因戒断情况下皮质纹状体通路突触可塑性和前列腺癌细胞凋亡的作用尚未完全明了。本文研究发现:在中枢系统中,CRF能增强可卡因戒断情况下大鼠皮质纹状体神经通路LTP,且不同亚型受体具有不同作用:CRF激活CRFR1均能增强生理和可卡因戒断病理情况下大鼠皮质纹状体神经通路LTP,而激活CRFR2只增强可卡因戒断大鼠的皮质纹状体神经通路LTP。在外周,CRF通过CRFR1,调节Bax/Bcl-2比例从而促进小鼠RM-1前列癌细胞凋亡。同时,UCN2却通过CRFR2磷酸化Akt和CREB,上调Bcl-2,下调Bax表达,最终抑制RM-1细胞凋亡。
     综上所述,本实验首次研究CRF相关肽及其受体对可卡因戒断大鼠的皮质纹状体神经通路LTP及对小鼠RM-1前列腺癌细胞凋亡的作用及机制,从一个侧面初步阐述了CRF受体在中枢和外周的不同作用。
     第一部分CRF相关肽及其受体对可卡因戒断大鼠的皮质纹状体神经通路LTP的影响
     同其它成瘾药物类似,可卡因滥用主要表现为长期滥用和高复吸率。在最近15年中,许多的研究证实下丘脑及下丘脑外CRF系统能影响可卡因滥用。可卡因成瘾过程中可能涉及类似于学习和记忆的机制,而这种机制需要皮质纹状体通路的参与。同时,皮质纹状体通路已经被广泛认为是习惯形成和存储的大脑中心。LTP是研究突触可塑性的重要实验模型。本文工作初步探讨了在可卡因戒断情况下,CRF受体的两种亚型对大鼠皮质纹状体突触可塑性的影响。实验结显示无论在可卡因戒断组还是在生理盐水组,CRF均呈剂量依赖性地增强大鼠皮质纹状体神经通路LTP。这一结果表明CRF相关肽可能会通过增强皮质纹状体神经通路LTP来导致复吸。在可卡因戒断组中,预先给予CRFR1选择性拮抗剂(NBI27914)或者CRFR2选择性拮抗剂(astression2B),CRF诱导增强的LTP均能被逆转;然而在生理盐水组中,CRF诱导增强的LTP只能被astression2B减弱。值得注意的是,外源性给予UCN2(CRFR2选择性激动剂)可以显著性增强可卡因戒断大鼠的皮质纹状体神经通路LTP,而对生理盐水组脑片的LTP没有影响;UCN2的LTP增强作用被astression2B完全阻断。综合本研究的实验结果,CRFR1在生理条件和可卡因戒断情况下均表达并发挥了增强大鼠皮质纹状体神经通路LTP,然而CRFR2只有在可卡因戒断情况下才发挥此作用。
     综上所述,在可卡因戒断情况下,CRF相关肽能增加皮质纹状体神经通路LTP,而这一改变能促进应激导致的可卡因复吸。更重要的是,不同的CRF受体介导了不同的功能,其中CRFR1在生理和可卡因戒断病理情况下都能增强皮质纹状体神经通路LTP,而CRFR2只在可卡因戒断情况下参与调节神经适应性变化。这些研究结果提示CRFR2的功能在可卡因戒断后发生了明显改变,这种特异性变化可能是可卡因复吸的一个重要机制,有可能成为新的药物作用靶点来影响可卡因戒断后的复吸。
     第二部分不同CRF受体对小鼠RM-1前列癌细胞凋亡的影响
     CRF相关肽及其受体在外周的作用特别是对肿瘤的影响成为当前的研究热点。2002年,几位美国学者在人类前列腺癌标本中首次发现了UCN,然而有关CRFR的表达及其在前列腺癌细胞中的具体生理病理作用尚未报导。本文第二部分主要探讨了CRFRs在小鼠RM-1前列癌细胞中的表达及对凋亡的影响:通过半定量RT-PCR、细胞免疫荧光以及Westernblotting,在mRNA和蛋白水平检测到CRFR1和CRFR2均表达于RM-1细胞中;在CRF介导的促凋亡作用中,它能通过下调Bcl-2(抗凋亡基因)及上调Bax(促凋亡基因)的蛋白表达从而增强线粒体膜电位超级化,最终激活caspases-9。与之相反,UCN2能上调Bcl-2,下调Bax的蛋白表达,最终抑制凋亡。以上两种受体对于凋亡发挥的相反的作用均可被相应的拮抗剂所阻断。同时,在UCN2对CRFR2的作用中,Akt和CREB在短时间内先后被激活且呈时间依赖性,且预先给予LY29004(PI3K抑制剂)处理后,CREB磷酸化被显著抑制,Bcl-2蛋白表达降低,此结果表明Akt和CREB可能参与了CRFR2介导的小鼠RM-1前列癌细胞抗凋亡作用。
     综上所述,本文工作首次发现CRF两种亚型的受体表达于小鼠RM-1前列癌细胞中,且对凋亡具有相反的作用。这些CRF相关肽对前列腺癌细胞凋亡的影响能够帮助我们了解更多关于CRF系统在前列腺癌的作用,以及提供了一个潜在的治疗前列腺癌的靶点。
Corticotropin-releasing factor (CRF) related peptides and their receptors aredistributed in central nervous system (CNS) and periphery, which display quitedifferent pharmacological profiles. In CNS, CRF related peptides and their receptorsare critical in regulating behavioral response, mood activity, food intake, drugaddiction and so on. In periphery, CRF related peptides and their receptors playimportant roles in cardiovascular system, inflammatory response, metabolism,cancer and so on.
     The distinct roles of CRF related peptides depend on the quantity and types ofthe ligands, which are also related to diverse subtypes and distributions of receptors.Both CRF related peptides and their receptors have been detected in the striatum ofthe CNS and prostate cancer tissues, however, the detailed effects of CRF receptorson cocaine addiction in corticostriatal circuit and the apoptosis of prostate cancercells are far from clear. Based on the present observation in CNS, CRF familypeptides enhanced corticostriatal LTP under cocaine withdrawal condition, whichmay contribute to stress-induced relapse of cocaine abuse. Importantly, CRFreceptors mediated subtype-specific functional changes. CRFR1 appeared toenhance corticostriatal LTP under both physiological and cocaine withdrawalcondition, whereas CRFR2 was involved in modulating neuroadaptive changes onlyduring cocaine withdrawal. In periphery, CRF induced apoptosis via CRFR1 inRM-1 murine prostate cancer cells, which was associated with the upregulation of Bax and downregulation of Bcl-2. On the contrary, UCN2 repressed apoptosis viaCRFR2 in RM-1 cells, which was accompanied with phosphorylation of Akt andCREB, downregulation of Bax and upregulation of Bcl-2 .
     In summary, we investigated the roles and relevant mechanisms of CRF relatedpeptides and their receptors in rats corticostriatal synaptic plasticity under cocainewithdrawal condition and in apoptosis of RM-1 murine prostate cancer cells, aimedto elaborate the different roles of CRF receptors in CNS and periphery.
     Part 1 Roles of CRF receptors in long-term potentiation in ratcorticostriatal synapses under cocaine withdrawal
     Similar to other abused drugs, main characteristics of cocaine addiction arecompulsive drug use and high rates of relapse during periods of abstinence. In the last15 years, a large number of studies were conducted to study the effects ofhypothalamic and extrahypothalamic CRF systems on cocaine abuse. Cocaineaddiction mechanisms may be similar to those that underlie learning and memoryprocesses which require the participation of corticostriatal circuit. Corticostriatalcircuit has been widely accepted as a brain center to form habits and storage. Thus far,the underlying roles of CRF related peptides and receptors in corticostriatal synapticplasticity during cocaine withdrawal are not well illustrated, yet. Long termpotentiation (LTP) has been regarded as an important cellular model of synapticplasticity. In the first part, the roles of two subtypes of CRFRs in rat corticostriatalsynaptic plasticity during cocaine withdrawal were investigated. Based on theobservations, cocaine withdrawal did not affect the basic electrophysiological properties of striatal neurons or the LTP in rats corticostriatal slices. Importantly, itwas found for the first time that CRF dose-dependently enhanced rats corticostriatalLTP in both the cocaine-withdrawal group and the saline group, which maycontribute to stress-induced relapse of cocaine abuse. In addition, the enhanced LTPwas reduced by pretreatment with either the CRFR1 selective antagonist (NBI 27914)or the CRFR2 selective antagonist (astression2B) in the cocaine withdrawal group.However, in the saline group, enhanced LTP was significantly attenuated only by theCRFR1 selective antagonist (NBI 27914). Futhermore, UCN2, the CRFR2 selectiveagonist, only potentiated corticostriatal LTP in the cocaine withdrawal group,meanwhile, that effect of UCN2 could be completely blocked by pretreatment withastression2B. Taken together, CRFR1 enhanced rats corticostriatal LTP under bothphysiological and cocaine withdrawal condition, but CRFR2 mediated that fuctiononly under cocaine withdrawal condition.
     In conclusion, CRF family peptides enhanced rats corticostriatal LTP undercocaine withdrawal condition. Importantly, CRF receptors mediated subtype-specificfunction. CRFR1 appeared to enhance corticostriatal LTP under both physiologicaland cocaine withdrawal condition, whereas CRFR2 was involved in modulatingneuroadaptive changes only under cocaine withdrawal condition. Therefore, thestate-dependent changes of CRFR2 function might be an important mechanism thatcontributes to cocaine relapse, which might be an attractive novel target for thetreatment of relapse during cocaine withdrawal.
     Part 2 Different roles of CRF receptors in apoptosis of RM-1murine prostate cancer cells
     Roles of CRF related peptides and their receptors in periphery, especially incancer cells have become confusing recently. It is reported that UCN has beendetected in human prostate tumor specimens. But till now, there was no studyexploring CRFRs’expression in prostate tumor cells and the correspondingphysiological and pathological effects. In the second part, the expressions andpotential mechanisms of CRFRs’effects on apoptosis in RM-1 cells wereinvestigated for the first time. Here, the expressions of CRFR1 and CRFR2 at bothmRNA and protein levels in RM-1 were detected using semi-quantitative RT-PCR,immunofluorescence and Western blotting analysis. CRF treatment was accompaniedwith Bcl-2 (anti-apoptotic gene) downregulation, Bax (pro-apoptotic gene)upregulation, hyperpolarization of the mitochondrial membrane potential andactivation of caspase-9. On the contrary, the inhibited apoptosis by UCN2 wasassociated with upregulating Bcl-2 and downregulating Bax expressions. All effectsof CRF/UCN2 were abolished by antarlamin/antisauvagine-30, selective CRFR1 andCRFR2 antagonist, respectively. Meanwhile, UCN2 repressed apoptosis via CRFR2,which was accompanied with time-dependent phosphorylation of Akt andsubsequently phosphorylation of CREB in a short time. LY29004, a PI3K inhibitor,significantly inhibited both CREB phosphorylation and subsequent Bcl-2 expressiontriggered by UCN2, which suggested that Akt&CREB may be involved inanti-apoptosis in RM-1 murine prostate cancer cells mediated by CRFR2.
     In summary, the present study first demonstrated the expression of two subtypesof CRFRs, which had opposite apoptotic effects in RM-1 murine prostate cancer cells.These findings accumulated theoretical evidences for illuminating the roles of CRFsystem in prostate tumor cells, especially provided a potential target for the treatmentof prostate tumor.
引文
[1] Mendelson JH, Mello NK. Management of cocaine abuse and dependence. N EnglJ Med, 1996,334:965-972.
    [2] Lyness JR. Cocaine: recent trends in Northern Ireland. Ulster Med J, 2009,78(2):94-8.
    [3] Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction:from actions to habits to compulsion. Nat Neurosci, 2005; 8(11):1481-9.
    [4] Hyman MA. The real alternative medicine: reconsidering conventional medicine.Altern Ther Health Med, 2005,11(5):10-2.
    [5] Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM. It could be habitforming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci, 2003,26(4):184-92.
    [6] Kalivas PW. Addiction as a pathology in prefrontal cortical regulation ofcorticostriatal habit circuitry. Neurotox Res, 2008,14(2-3):185-9.
    [7] Lovinger DM, Partridge JG, Tang KC. Plastic control of striatal glutamatergictransmission by ensemble actions of several neurotransmitters and targets fordrugs of abuse. Ann N Y Acad Sci, 2003,1003:226-40.
    [8] Rueda-Orozco PE, Mendoza E, Hernandez R, Aceves JJ, Ibanez-Sandoval O,Galarraga E, Bargas J. Diversity in long-term synaptic plasticity at inhibitorysynapses of striatal spiny neurons. Learn Mem, 2009,16(8):474-8.
    [9] Thomas MJ, Kalivas PW, Shaham Y. Neuroplasticity in the mesolimbicdopamine system and cocaine addiction. Br J Pharmacol, 2008,154(2):327-42.
    [10] Goeders NE. Stress and cocaine addiction. J Pharmacol Exp Ther, 2002,301(3):785-9.
    [11] Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N YAcad Sci, 2008,1141:105-30.
    [12] Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovinehypothalamic peptide that stimulates secretion of corticotropin andbetaendorphin. Science, 1981,213:1394–1397.
    [13] Koob GF, Heinrichs SC. A role for corticotropin releasing factor andurocortin in behavioral responses to stressors. Brain Res, 1999,848(1-2):141-52.
    [14] Lovejoy DA, Balment RJ. Evolution and physiology of the corticotropinreleasingfactor (CRF) family of neuropeptides in vertebrates. Gen CompEndocrinol, 1999,115(1):1-22.
    [15] Perrin MH, Vale WW. Corticotropin releasing factor receptors and theirligand family. Ann N Y Acad Sci, 1999,885:312-28.
    [16] Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R,Turnbull AV, Lovejoy D, Rivier C, et al. Urocortin, a mammalian neuropeptiderelated to fish urotensin I and to corticotropin-releasing factor. Nature, 1995,378(6554):287-92.
    [17] Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA,Hogenesch JB, Gulyas J, Rivier J, Vale WW, Sawchenko PE. Urocortin II: Amember of the corticotropin-releasing factor (CRF) neuropeptide family that isselectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA, 2001,98(5):2843-8.
    [18] Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C, Vaughan J,Reyes TM, Gulyas J, Fischer W, Bilezikjian L, Rivier J, Sawchenko PE, ValeWW. Identification of urocortin III, an additional member of the corticotropinreleasingfactor (CRF) family with high affinity for the CRF2 receptor. ProcNatl Acad Sci U S A, 2001,98(13):7570-5.
    [19] Boorse GC, Denver RJ. Widespread tissue distribution and diverse functions ofcorticotropin-releasing factor and related peptides. Gen Comp Endocrinol, 2006,146(1):9-18.
    [20] Perrin MH, Donaldson CJ, Chen R, Lewis KA, Vale WW. Cloning andfunctional expression of a rat brain corticotropin releasing factor (CRF)receptor. Endocrinology, 1993,133(6):3058-61.
    [21] Korosi A, Veening JG, Kozicz T, Henckens M, Dederen J, Groenink L, Van derGugten J, Olivier B, Roubos EW. Distribution and expression of CRF receptor1 and 2 mRNAs in the CRF over-expressing mouse brain. Brain Res, 2006,1072(1):46-54.
    [22] Koob GF, Zorrilla EP. Neurobiological mechanisms of addiction: focus oncorticotropin-releasing factor. Curr Opin Investig Drugs, 2010,11(1):63-71.
    [23] Sarnyai Z, Shaham Y, Heinrichs SC. The role of corticotropin-releasing factorin drug addiction. Pharmacol Rev, 2001,53(2):209-43.
    [24] Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides instress-induced reinstatement of drug seeking. Brain Res, 2010,1314:15-28.
    [25] Bonci A, Borgland S. Role of orexin/hypocretin and CRF in the formation ofdrug-dependent synaptic plasticity in the mesolimbic system.Neuropharmacology, 2009,56 Suppl 1:107-11.
    [26] Pollandt S, Liu J, Orozco-Cabal L, Grigoriadis DE, Vale WW, Gallagher JP,Shinnick-Gallagher P. Cocaine withdrawal enhances long-term potentiationinduced by corticotropin-releasing factor at central amygdala glutamatergicsynapses via CRF, NMDA receptors and PKA. Eur J Neurosci, 2006,24(6):1733-43.
    [27] Fu Y, Pollandt S, Liu J, Krishnan B, Genzer K, Orozco-Cabal L, Gallagher JP,Shinnick-Gallagher P. Long-term potentiation (LTP) in the central amygdala(CeA) is enhanced after prolonged withdrawal from chronic cocaine andrequires CRF1 receptors. J Neurophysiol, 2007,97(1):937-41.
    [28] Krishnan B, Centeno M, Pollandt S, Fu Y, Genzer K, Liu J, Gallagher JP,Shinnick-Gallagher P. Dopamine receptor mechanisms mediate corticotropinreleasingfactor-induced long-term potentiation in the rat amygdala followingcocaine withdrawal. Eur J Neurosci, 2010,31(6):1027-42.
    [29] Wang HL, Tsai LY, Lee EH. Corticotropin-releasing factor produces a proteinsynthesis-dependent long-lasting potentiation in dentate gyrus neurons. JNeurophysiol, 2000,83(1):343-9.
    [30] Guan X, Zhang R, Xu Y, Li S. Cocaine withdrawal enhances long-termpotentiation in rat hippocampus via changing the activity of corticotropinreleasingfactor receptor subtype 2. Neuroscience, 2009,161(3): 665-70.
    [31] Liu J, Yu B, Orozco-Cabal L, Grigoriadis DE, Rivier J, Vale WW,Shinnick-Gallagher P, Gallagher JP. Chronic cocaine administration switchescorticotropin-releasing factor2 receptor-mediated depression to facilitation ofglutamatergic transmission in the lateral septum. J Neurosci, 2005,25(3):577-83.
    [32] Dinieri JA, Nemeth CL, Parsegian A, Carle T, Gurevich VV, Gurevich E,Neve RL, Nestler EJ, Carlezon WA Jr. Altered sensitivity to rewarding andaversive drugs in mice with inducible disruption of cAMP response elementbindingprotein function within the nucleus accumbens. J Neurosci, 2009,29(6):1855-9.
    [33] Beninger RJ, Gerdjikov T. The role of signaling molecules in reward-relatedincentive learning. Neurotox Res, 2004,6(1):91-104.
    [34] Centonze D, Costa C, Rossi S, Prosperetti C, Pisani A, Usiello A, Bernardi G,Mercuri NB, Calabresi P. Chronic cocaine prevents depotentiation atcorticostriatal synapses. Biol Psychiatry, 2006,60(5):436-43.
    [35] O'Doherty F. Is drug use a response to stress? Drug Alcohol Depend, 1991,29(1):97-106.
    [36] Gawin FH. Cocaine addiction: psychology and neurophysiology. Science, 1991,251(5001):1580-6.
    [37] Sinha R, Fuse T, Aubin LR, O'Malley SS. Psychological stress, drug-relatedcues and cocaine craving. Psychopharmacology (Berl), 2000,152(2):140-8.
    [38] Takahashi LK. Role of CRF(1) and CRF(2) receptors in fear and anxiety.Neurosci Biobehav Rev, 2001,25(7-8):627-36.
    [49] Reul JM, Holsboer F. Corticotropin-releasing factor receptors 1 and 2 inanxiety and depression. Curr Opin Pharmacol, 2002,2(1):23-33.
    [40] Orozco-Cabal L, Pollandt S, Liu J, Shinnick-Gallagher P, Gallagher JP.Regulation of synaptic transmission by CRF receptors. Rev Neurosci, 2006,17(3):279-307.
    [41] Rebaudo R, Melani R, Balestrino M, Izvarina N. Electrophysiological effects ofsustained delivery of CRF and its receptor agonists in hippocampal slices.Brain Res, 2001,922(1):112-7.
    [42] Kalivas PW, McFarland K. Brain circuitry and the reinstatement of cocaineseeking behavior. Psychopharmacology (Berl), 2003,168(1-2):44-56.
    [43] Ji G, Neugebauer V. Differential effects of CRF1 and CRF2 receptorantagonists on pain-related sensitization of neurons in the central nucleus of theamygdala. J Neurophysiol, 2007,97(6):3893-904.
    [44] Wang B, You ZB, Rice KC, Wise RA. Stress-induced relapse to cocaineseeking: roles for the CRF(2) receptor and CRF-binding protein in the ventraltegmental area of the rat. Psychopharmacology (Berl), 2007,193(2):283-94.
    [45] Swanson LW, Sawchenko PE, Rivier J, Vale WW. Organization of ovinecorticotropin-releasing factor immunoreactive cells and fibers in the rat brain:an immunohistochemical study. Neuroendocrinology, 1983,36(3):165-86.
    [46] Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS,Perrin M, Vale W, Sawchenko PE. Distribution of mRNAs encoding CRFreceptors in brain and pituitary of rat and mouse. J Comp Neurol, 2000,428(2):191-212.
    [47] Radulovic J, Rühmann A, Liepold T, Spiess J. Modulation of learning andanxiety by corticotropin-releasing factor (CRF) and stress: differential roles ofCRF receptors 1 and 2. J Neurosci, 1999,19(12):5016-25.
    [48] Fu Y, Neugebauer V. Differential mechanisms of CRF1 and CRF2 receptorfunctions in the amygdala in pain-related synaptic facilitation and behavior. JNeurosci, 2008,28(15):3861-76.
    [49] Steckler T, Holsboer F. Corticotropin-releasing hormone receptor subtypes andemotion. Biol Psychiatry, 1999,46(11):1480-508.
    [50] Valdez GR, Sabino V, Koob GF. Increased anxiety-like behavior and ethanolself-administration in dependent rats: reversal via corticotropin-releasingfactor-2 receptor activation. Alcohol Clin Exp Res, 2004,28(6):865-72.
    [51] Erb S, Shaham Y, Stewart J. The role of corticotropin-releasing factor andcorticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats.J Neurosci, 1998,18(14):5529-36.
    [52] Pollandt S, Liu J, Orozco-Cabal L, Grigoriadis DE, Vale WW, Gallagher JP,Shinnick-Gallagher P. Cocaine withdrawal enhances long-term potentiationinduced by corticotropin-releasing factor at central amygdala glutamatergicsynapses via CRF, NMDA receptors and PKA. Eur J Neurosci, 2006,24(6):1733-43.
    [53] Orozco-Cabal L, Liu J, Pollandt S, Schmidt K, Shinnick-Gallagher P, GallagherJP. Dopamine and corticotropin-releasing factor synergistically alter basolateralamygdala-to-medial prefrontal cortex synaptic transmission: functional switchafter chronic cocaine administration. J Neurosci, 2008,28(2):529-42.
    [54] Fino E, Deniau JM, Venance L. Cell-specific spike-timing-dependent plasticityin GABA ergic and cholinergic interneurons in corticostriatal rat brain slices. JPhysiol, 2008,586(1):265-82.
    [55] Orozco-Cabal L, Liu J, Pollandt S, Schmidt K, Shinnick-Gallagher P, GallagherJP. Dopamine and corticotropin-releasing factor synergistically alter basolateralamygdala-to-medial prefrontal cortex synaptic transmission: functional switchafter chronic cocaine administration. J Neurosci, 2008,28(2):529-42.
    [56] Isogawa K, Akiyoshi J, Hikichi T, Yamamoto Y, Tsutsumi T, Nagayama H.Effect of corticotropin releasing factor receptor 1 antagonist on extracellularnorepinephrine, dopamine and serotonin in hippocampus and prefrontal cortex ofrats in vivo. Neuropeptides, 2000,34(3-4):234-9.
    [1] Fekete EM, Zorrilla EP. Physiology, Pharmacology, and therapeutic relevance ofurocortins in mammals: Ancient CRF paralogs. Front Neuroendocrinol, 2007,28:1-27.
    [2] Bale TL, Vale W. CRF and CRF receptors: role in stress responsivity and otherbehaviors. Annu Rev Pharmacol Toxicol, 2004,44:525-557.
    [3] Inada Y, Ikeda K, Tojo K, Sakamoto M, Takada Y, Tajima N. Possibleinvolvement of corticotropin-releasing factor receptor signaling on vascularinflammation. Peptides, 2009,30(2):365-372.
    [4] Wakabayashi I, Ihara T, Hattori M, Tonegawa Y, Shibasaki T, Hashimoto K.Presence of corticotropin-releasing factor-like immunoreactivity in humantumors. Cancer, 1985; 55(5):995-1000.
    [5] Slominski A, Zbytek B, Zmijewski M, Slominski RM, Kauser S, Wortsman J,Tobin DJ. Corticotropin releasing hormone and the skin. Front Biosci, 2006,11:2230–2248.
    [6] Ciocca DR, Puy LA, Fasoli LC, Tello O, Aznar JC, Gago FE, Papa SI, Sonego R.Corticotropin-releasing hormone, luteinizing hormone-releasing hormone, growthhormonereleasing hormone, and somatostatin-like immunoreactivities in biopsiesfrom breast cancer patients. Breast Cancer Res Treat, 1990,15:175–184.
    [7] Suda T, Tomori N, Yajima F, Odagiri E, Demura H, Shizume K.Characterization of immunoreactive corticotropin and corticotropin-releasingfactor in human adrenal and ovarian tumours. Acta Endocrinol (Copenh), 1986,111(4):546-52.
    [8] Makrigiannakis A, Zoumakis E, Margioris AN, Theodoropoulos P, Stournaras C,Gravanis A. The corticotropin-releasing hormone (CRH) in normal and tumoralepithelial cells of human endometrium. J Clin Endocrinol Metab, 1995,80:185–189.
    [9] Tezval H, Merseburger AS, Seidler M, Serth J, Kuczyk MA, Oelke M. Expressionof corticotropin releasing factor receptor 2 (CRFR2) in the human prostate. Anew potential target for medical therapy of benign prostatic hyperplasia. UrologeA, 2008,47(9):1079-80,1082-4.
    [10] Reubi JC, Waser B, Vale W, Rivier J. Expression of CRF1 and CRF2 receptorsin human cancers. J Clin Endocrinol Metab, 2003,88(7):3312-20.
    [11] Arcuri F, Cintorino M, Florio P, Floccari F, Pergola L, Romagnoli R, Petraglia F,Tosi P, Teresa Del Vecchio M. Expression of urocortin mRNA and peptide inthe human prostate and in prostatic adenocarcinoma. Prostate, 2002,52(3):167-72.
    [12] Tezval H, Jurk S, Atschekzei F, Serth J, Kuczyk MA, Merseburger AS. Theinvolvement of altered corticotropin releasing factor receptor 2 expression inprostate cancer due to alteration of anti-angiogenic signaling pathways. Prostate,2009,69(4):443-8.
    [13] Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CACancer J Clin, 2000,50(1):7-33.
    [14] Ma CG, Ye DW, Yao XD, Zhang SL, Dai B, Zhang HL, Zhu Y, Shen YJ, ZhuYP, Shi GH, Qin XJ, Lin GW, Xiao WJ, Yang LF, Yang BS, Cao DL. Thesurvival analysis of metastatic prostate cancer. Zhonghua Wai Ke Za Zhi, 2010,48(15):1166-9.
    [15] Rau KM, Kang HY, Cha TL, Miller SA, Hung MC. The mechanisms andmanagements of hormone-therapy resistance in breast and prostate cancers.Endocr Relat Cancer, 2005,12(3):511-32.
    [16] Culig Z, Steiner H, Bartsch G, Hobisch A. Mechanisms of endocrine therapyresponsiveand -unresponsive prostate tumours. Endocr Relat Cancer, 2005,12(2):229-44.
    [17] Chaudhary KS, Abel PD, Lalani EN. Role of the Bcl-2 gene family in prostatecancer progression and its implications for therapeutic intervention. EnvironHealth Perspect, 1999,107 Suppl 1:49-57.
    [18] Vaskivuo TE, Stenb?ck F, Tapanainen JS. Apoptosis and apoptosis-relatedfactors Bcl-2, Bax, tumor necrosis factor-alpha, and NF-kappaB in humanendometrial hyperplasia and carcinoma. Cancer, 2002,95(7):1463-71.
    [19] Pollack A, Cowen D, Troncoso P, Zagars GK, von Eschenbach AC, MeistrichML, McDonnell T. Molecular markers of outcome after radiotherapy inpatients with prostate carcinoma: Ki-67, bcl-2, bax, and bcl-x. Cancer, 2003,97(7):1630-8.
    [20] Rajendran RR, Kao GD. "No Turning Bax" in the combined battle againstprostate cancer. Clin Cancer Res, 2007,13(12):3435-8.
    [21] McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT,Tu SM, Campbell ML. Expression of the protooncogene bcl-2 in the prostateand its association with emergence of androgen-independent prostate cancer.Cancer Res, 1992,52(24):6940-4.
    [22] Colombel M, Symmans F, Gil S, O'Toole KM, Chopin D, Benson M, OlssonCA, Korsmeyer S, Buttyan R. Detection of the apoptosis-suppressingoncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol,1993,143(2): 390-400.
    [23] Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB,Korsmeyer SJ. Multiple Bcl-2 family members demonstrate selectivedimerizations with Bax. Proc Natl Acad Sci U S A, 1995,92(17):7834-8.
    [24] Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N. bcl-2/bax ratio asa predictive marker for therapeutic response to radiotherapy in patients withprostate cancer. Urology, 1998,52(6):1085-90.
    [25] Chanalaris A, Lawrence KM, Stephanou A, Knight RD, Hsu SY, Hsueh AJ,Latchman DS. Protective effects of the urocortin homologues stresscopin (SCP)and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury inrat neonatal cardiomyocytes. J Mol Cell Cardiol, 2003,35(10):1295-305.
    [26] Chanalaris A, Lawrence KM, Townsend PA, Davidson S, Jamshidi Y,Stephanou A, Knight RD, Hsu SY, Hsueh AJ, Latchman DS. Hypertrophiceffects of urocortin homologous peptides are mediated via activation of the Aktpathway. Biochem Biophys Res Commun, 2005,328(2):442-8.
    [27] Kumar AP, Bhaskaran S, Ganapathy M, Crosby K, Davis MD, Kochunov P,Schoolfield J, Yeh IT, Troyer DA, Ghosh R. Akt/cAMP-responsive elementbinding protein/cyclin D1 network: a novel target for prostate cancer inhibitionin transgenic adenocarcinoma of mouse prostate model mediated by Nexrutine,a Phellodendron amurense bark extract. Clin Cancer Res, 2007,13(9):2784-94.
    [28] Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W. t-Darpp promotes cancercell survival by up-regulation of Bcl2 through Akt-dependent mechanism.Cancer Res, 2008,68(2):395-403.
    [29] Perianayagam MC, Madias NE, Pereira BJ, Jaber BL. CREB transcriptionfactor modulates Bcl2 transcription in response to C5a in HL-60-derivedneutrophils. Eur J Clin Invest, 2006,36(5):353-61.
    [30] Tsatsanis C, Androulidaki A, Dermitzaki E, Charalampopoulos I, Spiess J,Gravanis A, Margioris AN. Urocortin 1 and Urocortin 2 induce macrophageapoptosis via CRFR2. FEBS Lett, 2005,579(20):4259-64.
    [31] Konstantinos A. Paschos, Chara Charsou, Theodoros C. Constantinidis, StavrosAnagnostoulis, Maria Lambropoulou, Fotini Papachristou, KonstantinosSimopoulos and Ekaterini Chatzaki. Corticotropin-Releasing HormoneReceptors Mediate Opposing Effects in Cholestasis-Induced Liver CellApoptosis. Endocrinology, 2010,151(4):1704-12.
    [32] Baley PA, Yoshida K, Qian W, Sehgal I, Thompson TC. Progression toandrogen insensitivity in a novel in vitro mouse model for prostate cancer. JSteroid Biochem Mol Biol, 1995,52(5):403-13.
    [33] Graziani G, Tentori L, Portarena I, Barbarino M, Tringali G, Pozzoli G, NavarraP. CRH inhibits cell growth of human endometrial adenocarcinoma cells viaCRH-receptor 1-mediated activation of cAMP-PKA pathway. Endocrinology,2002,143(3):807-13.
    [34] Graziani G, Tentori L, Muzi A, Vergati M, Tringali G, Pozzoli G, Navarra P.Evidence that corticotropin-releasing hormone inhibits cell growth of humanbreast cancer cells via the activation of CRH-R1 receptor subtype. Molecularand Cellular Endocrinology, 2007,264:44–49.
    [35] Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasinghormone induces Fas ligand production and apoptosis in PC12 cells viaactivation of p38 mitogen-activated protein kinase. J Biol Chem, 2002,277(14):12280-7.
    [36] Minas V, Rolaki A, Kalantaridou SN, Sidiropoulos J, Mitrou S, Petsas G,Jeschke U, Paraskevaidis EA, Fountzilas G, Chrousos GP, Pavlidis N,Makrigiannakis A. Intratumoral CRH modulates immuno-escape of ovariancancer cells through FasL regulation. Br J Cancer, 2007,97(5):637-45.
    [37] Radulovic M, Hippel C, Spiess J. Corticotropin-releasing factor (CRF) rapidlysuppresses apoptosis by acting upstream of the activation of caspases. JNeurochem, 2003,84(5):1074-85.
    [38] Wang J, Xu Y, Xu Y, Zhu H, Zhang R, Zhang G, Li S. Urocortin's inhibition oftumor growth and angiogenesis in hepatocellular carcinoma via corticotrophinreleasing factor receptor 2. Cancer Invest, 2008,26(4):359-68.
    [39] Chatzaki E, Lambropoulou M, Constantinidis TC, Papadopoulos N, TachéY,Minopoulos G, Grigoriadis DE. Corticotropin-releasing factor (CRF) receptortype 2 in the human stomach: protective biological role by inhibition ofapoptosis. J Cell Physiol, 2006,209(3):905-11.
    [40] Lawrence KM, Kabir AM, Bellahcene M, Davidson S, Cao XB, McCormick J,Mesquita RA, Carroll CJ, Chanalaris A, Townsend PA, Hubank M, StephanouA, Knight RA, Marber MS, Latchman DS. Cardioprotection mediated byurocortin is dependent on PKC epsilon activation. FASEB J, 2005,19(7):831-3.
    [41] Zagurovskaya M, Shareef MM, Das A, Reeves A, Gupta S, Sudol M, BedfordMT, Prichard J, Mohiuddin M, Ahmed MM. EGR-1 forms a complex withYAP-1 and upregulates Bax expression in irradiated prostate carcinoma cells.Oncogene, 2009,28(8):1121-31.
    [42] Lithgow T, van Driel R, Bertram JF, Strasser A. The protein product of theoncogene bcl-2 is a component of the nuclear envelope, the endoplasmicreticulum, and the outer mitochondrial membrane. Cell Growth Differ, 1994,5(4):411-7.
    [43] Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterationsin human cancer. Apoptosis, 2004,9(6):667-76.
    [44] Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Baxthrough phosphorylation. J Biol Chem, 2005,280(11):10781-9.
    [45] Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E,Frisch S, Reed JC. Regulation of cell death protease caspase-9 byphosphorylation. Science, 1998,282(5392):1318-21.
    [46] Walsh S, Gill C, O'Neill A, Fitzpatrick JM, Watson RW. Hypoxia increasesnormal prostate epithelial cell resistance to receptor-mediated apoptosis viaAKT activation. Int J Cancer, 2009,124(8):1871-8.
    [47] Chandras C, Koutmani Y, Kokkotou E, Pothoulakis C, Karalis KP. Activationof phosphatidylinositol 3-kinase/protein kinase B by corticotropin-releasingfactor in human monocytes. Endocrinology, 2009,150(10):4606-14.
    [48] Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM,Reusch JE. Insulin-like growth factor-I induces bcl-2 promoter through thetranscription factor cAMP-response element-binding protein. J Biol Chem,1999,274(39): 27529-35.
    [49] Wilson BE, Mochon E, Boxer LM. Induction of bcl-2 expression byphosphorylated CREB proteins during B-cell activation and rescue fromapoptosis. Mol Cell Biol, 1996,16(10):5546-56.
    [1] Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovinehypothalamic peptide that stimulates secretion of corticotropin and betaendorphin.Science, 1981,213:1394–1397.
    [2] Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R,Turnbull AV, Lovejoy D and Rivier C. Urocortin, a mammalian neuropeptiderelated to fish urotensin I and to corticotropin-releasing factor. Nature, 1995,378:287–292.
    [3] Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, HogeneschJB, Gulyas J, Rivier J and Vale WW et al. Urocortin II: a member of thecorticotropin-releasing factor (CRH) neuropeptide family that is selectively boundby type 2 CRH receptors. Proc. Natl Acad. Sci. USA, 2001,98:2843–2848.
    [4] Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C, Vaughan J,Reyes TM, Gulyas J, Fischer W et al. Identification of urocortin III, an additionalmember of the corticotropin-releasing factor (CRH) family with high affinity forthe CRH2 receptor. Proc. Natl Acad. Sci. USA, 2001,98:7570–7575.
    [5] D.E. Grigoriadis, T.W. Lovenberg, D.T. Chalmers, C. Liaw, E.B. De Souze,Characterization of corticotropin-releasing factor receptor subtypes, Ann. NYAcad. Sci, 1996,780:60–80.
    [6] Chen, R., Lewis, K.A., Perrin, M.H., Vale, W.W.. Expression cloning of ahuman corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A, 1993,90 (19): 8967-71.
    [7] Kostich, W.A., Chen, A., Sperle, K., Largent, B.L.. Molecular identification andanalysis of a novel human corticotropin-releasing factor (CRH) receptor: theCRH2gamma receptor. Mol. Endocrinol, 1998,12:1077–1085.
    [8] Lovenberg, T.W., Liaw, C.W., Grigoriadis, D.E., Clevenger, W., Chalmers, D.T.,De Souza, E.B., Oltersdorf, T.. Cloning and characterization of a functionallydistinct corticotropin-releasing factor receptor subtype from rat brain. Proc. Natl.Acad. Sci. USA, 1995,92:836–840.
    [9] E.P. Zorrilla, Y. Tache, G.F. Koob, Nibbling at CRH receptor control of feedingand gastrocolonic motility, Trends. Pharmacol. Sci, 2003,24:421–427.
    [10] Cunnah, D., Jessop, D.S., Besser, G.M., Rees, L.H.. Measurement of circulatingcorticotrophin-releasing factor in man. J. Endocrinol, 1987,113:123–131.
    [11] Linton, E.A., McLean, C., Nieuwenhuyzen Kruseman, A.C., Tilders, F.J.,Vander Veen, E.A., Lowry, P.J.,. Direct measurement of human plasmacorticotropin-releasing hormone by“two-site”immunoradiometric assay. J.Clin.Endocrinol. Metab, 1987,64:1047–1053.
    [12] Dieterich KD, Grigoriadis DE, De Souza EB. Corticotropin-releasing factorreceptors in human small cell lung carcinoma cells: radioligand binding, secondmessenger, and northern blot analysis data. Endocrinology, 1994,135:1551–1558.
    [13] Dieterich KD, DeSouza EB. Functional corticotropin-releasing factor receptorsin human neuroblastoma cells. Brain Res, 1996,733:113–118.
    [14] Graziani G, Tentori L, Portarena I, Barbarino M, Tringali G, Pozzoli G,Navarra P. CRH inhibits cell growth of human endometrial adenocarcinomacells via CRH-receptor 1-mediated activation of cAMP-PKA pathway.Endocrinology, 2002,143(3):807-13.
    [15] Funasaka Y, Sato H, Chakraborty AK, Ohashi A, Chrousos GP, IchihashiMExpression of proopiomelanocortin, corticotropin-releasing hormone (CRH),and CRH receptor in melanoma cells, nevus cells, and normal humanmelanocytes. J Investig Dermatol Symp Proc, 1999,4:105–109.
    [16] Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. andPeter, M. E..Apoptosis signaling by death receptors. Eur. J. Biochem, 1998,254:439±59.
    [17] Konstantinos A. Paschos, Chara Charsou, Theodoros C. Constantinidis, StavrosAnagnostoulis, Maria Lambropoulou, Fotini Papachristou, KonstantinosSimopoulos and Ekaterini Chatzaki. Corticotropin-Releasing HormoneReceptors Mediate Opposing Effects in Cholestasis-Induced Liver CellApoptosis. Endocrinology, 2010,151(4):1704-12.
    [18] Frank Lezoualc’h, Stefanie Engert, Barbara Berning and Christian Behl. {beta}Precursor Protein and with the Suppression of Nuclear Factor-{kappa}B StressIs Associated with the Increased Release of Non-amyloidogenic AmyloidCorticotropin-Releasing Hormone-Mediated Neuroprotection against Oxidative.Mol. Endocrinol, 2000,14: 147-159.
    [19] Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasinghormone induces Fas ligand production and apoptosis in PC12 cells viaactivation of p38 mitogen-activated protein kinase. J Biol Chem, 2002,277(14):12280-7.
    [20] Minas V, Jeschke U, Kalantaridou SN, Richter DU, Reimer T, Mylonas I,Friese K, Makrigiannakis A. Abortion is associated with increased expressionof FasL in decidual leukocytes and apoptosis of extravillous trophoblasts: a rolefor CRH and urocortin. Mol Hum Reprod, 2007,13(9):663-73.
    [21] Minas V, Rolaki A, Kalantaridou SN, Sidiropoulos J, Mitrou S, Petsas G,Jeschke U, Paraskevaidis EA, Fountzilas G, Chrousos GP, Pavlidis N,Makrigiannakis A. Intratumoral CRH modulates immuno-escape of ovariancancer cells through FasL regulation. Br J Cancer, 2007,97(5):637-45.
    [22] Makrigiannakis A, Zoumakis E, Kalantaridou S, Coutifaris C, Margioris AN,Coukos G, Rice KC, Gravanis A, Chrousos GP. Corticotropin-releasinghormone promotes blastocyst implantation and early maternal tolerance. NatImmunol, 2001,2(11):1018-24.
    [23] Strijbos P. J., Relton J. K. and Rothwell N. J. Corticotrophin releasing factorantagonist inhibits neuronal damage induced by focal cerebral ischaemia oractivation of NMDA receptors in the rat brain. Brain Res, 1994,656:405–408.
    [24] Ribak C. E. and Baram T. Z. Selective death of hippocampal CA3 pyramidalcells with mossy fiber afferents after CRH-induced status epilepticus in infantrats. Brain Res. Dev. Brain Res, 1996,91:245–251.
    [25] Maecker H., Desai A., Dash R., Rivier J., Vale W. and Sapolsky R. Astressin, anovel and potent CRF antagonist, is neuroprotective in the hippocampus whenadministered after a seizure. Brain Res, 1997,744:166–170.
    [26] Roe S. Y., McGowan E. M. and Rothwell N. J. Evidence for the involvement ofcorticotrophin-releasing hormone in the pathogenesis of traumatic brain injury.Eur. J. Neurosci, 1998,10:553–559.
    [27] Lezoualc’h F., Engert S., Berning B. and Behl C. Corticotropin releasinghormone-mediated neuroprotection against oxidative stress is associated with theincreased release of non-amyloidogenic amyloid beta precursor protein and withthe suppression of nuclear factor-kappaB. Mol. Endocrinol, 2000,14:147–159.
    [28] Brunson K. L., Eghbal-Ahmadi M., Bender R., Chen Y. and Baram T. Z.Long-term, progressive hippocampal cell loss and dysfunction induced byearly-life administration of corticotropinreleasing hormone reproduce the effectsof early- life stress. Proc. Natl Acad. Sci. USA, 2001,98:8856–8861.
    [29] Ock J, Lee H, Kim S, Lee WH, Choi DK, Park EJ, Kim SH, Kim IK, Suk K.Induction of microglial apoptosis by corticotropin-releasing hormone. JNeurochem, 2006,98(3):962-72.
    [30] Radulovic M, Hippel C, Spiess J. Corticotropin-releasing factor (CRF) rapidlysuppresses apoptosis by acting upstream of the activation of caspases. JNeurochem, 2003,84(5):1074-85.
    [31] Graziani G, Tentori L, Muzi A, Vergati M, Tringali G, Pozzoli G, Navarra P.Evidence that corticotropin-releasing hormone inhibits cell growth of humanbreast cancer cells via the activation of CRH-R1 receptor subtype. Molecularand Cellular Endocrinology, 2007,264:44–49.
    [32] Androulidaki A, Dermitzaki E, Venihaki M, Karagianni E, Rassouli O,Andreakou E, Stournaras C, Margioris AN, Tsatsanis C. CorticotropinReleasing Factor promotes breast cancer cell motility and invasiveness. MolCancer, 2009,8:30.
    [33] Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, WortsmanJ. CRH functions as a growth factor/cytokine in the skin. J Cell Physiol, 2006,206(3):780-91.
    [34] Wang J, Xu Y, Xu Y, Zhu H, Zhang R, Zhang G, Li S. Urocortin's inhibition oftumor growth and angiogenesis in hepatocellular carcinoma via corticotrophinreleasingfactor receptor 2. Cancer Invest, 2008,26(4):359-68.
    [35] Tsatsanis C, Androulidaki A, Dermitzaki E, Charalampopoulos I, Spiess J,Gravanis A, Margioris AN. Urocortin 1 and Urocortin 2 induce macrophageapoptosis via CRFR2. FEBS Lett, 2005,579(20):4259-64.
    [36] Wang J, Jin L, Chen J, Li S. Activation of corticotropin-releasing factor receptor2 inhibits the growth of human small cell lung carcinoma cells. Cancer Invest,2010,28(2):146-55.
    [37] Chatzaki E, Lambropoulou M, Constantinidis TC, Papadopoulos N, TachéY,Minopoulos G, Grigoriadis DE. Corticotropin-releasing factor (CRF) receptortype 2 in the human stomach: protective biological role by inhibition ofapoptosis. J Cell Physiol, 2006,209(3):905-11.
    [38] Scarabelli TM, Pasini E, Ferrari G, Ferrari M, Stephanou A, Lawrence K,Townsend P, Chen-Scarabelli C, Gitti G, Saravolatz L, Latchman D, KnightRA, Gardin JM. Warm blood cardioplegic arrest induces mitochondrialmediated cardiomyocyte apoptosis associated with increased urocortinexpression in viable cells. J Thorac Cardiovasc Surg, 2004,128(3):364-71.
    [39] Nishikimi T, Miyata A, Horio T, Yoshihara F, Nagaya N, Takishita S, Yutani C,Matsuo H, Matsuoka H, Kangawa K. Urocortin, a member of the corticotropinreleasingfactor family, in normal and diseased heart. Am J Physiol Heart CircPhysiol, 2000,279(6):H3031-9.
    [40] Chanalaris A, Lawrence KM, Stephanou A, Knight RD, Hsu SY, Hsueh AJ,Latchman DS. Protective effects of the urocortin homologues stresscopin (SCP)and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury inrat neonatal cardiomyocytes. J Mol Cell Cardiol, 2003,35(10):1295-305.
    [41] Chandras C, Koutmani Y, Kokkotou E, Pothoulakis C, Karalis KP. Activationof phosphatidylinositol 3-kinase/protein kinase B by corticotropin-releasingfactor in human monocytes. Endocrinology, 2009,150(10):4606-14.
    [42] Maya-Nú?ez G, Castro-Fernández C, Méndez JP. CRH-stimulation of cyclicadenosine 5'-monophosphate pathway is partially inhibited by the coexpressionof CRH-R1 and CRH-R2alpha. Endocrine, 2005,27(1):67-73.
    [43] Punn A, Levine MA, Grammatopoulos DK. Identification of signalingmolecules mediating corticotropin-releasing hormone-R1alpha-mitogenactivatedprotein kinase (MAPK) interactions: the critical role ofphosphatidylinositol 3-kinase in regulating ERK1/2 but not p38 MAPKactivation. Mol Endocrinol, 2006,20(12):3179-95.
    [44] Smith EM, Gregg M, Hashemi F, Schott L, Hughes TK. CorticotropinReleasing Factor (CRF) activation of NF-kappaB-directed transcription inleukocytes. Cell Mol Neurobiol, 2006,26(4-6):1021-36.
    [45] Huang M, Kempuraj D, Papadopoulou N, Kourelis T, Donelan J, Manola A,Theoharides TC. Urocortin induces interleukin-6 release from ratcardiomyocytes through p38 MAP kinase, ERK and NF-kappaB activation. JMol Endocrinol, 2009,42(5):397-405.
    [46] Zhao J, Karalis KP. Regulation of nuclear factor-kappaB by corticotropinreleasinghormone in mouse thymocytes. Mol Endocrinol, 2002,16(11):2561-70.
    [47] Karalis KP, Venihaki M, Zhao J, van Vlerken LE, Chandras C. NF-kappaBparticipates in the corticotropin-releasing, hormone-induced regulation of thepituitary proopiomelanocortin gene. J Biol Chem, 2004,279(12):10837-40.
    [48] Brar BK, Railson J, Stephanou A, Knight RA, Latchman DS. Urocortinincreases the expression of heat shock protein 90 in rat cardiac myocytes in aMEK1/2-dependent manner. J Endocrinol, 2002,172(2):283-93.
    [49] Rossant CJ, Pinnock RD, Hughes J, Hall MD, McNulty S. Corticotropinreleasingfactor type 1 and type 2alpha receptors regulate phosphorylation ofcalcium/cyclic adenosine 3',5'-monophosphate response element-bindingprotein and activation of p42/p44 mitogen-activated protein kinase.Endocrinology, 1999,140(4):1525-36.
    [50] Papadopoulou N, Chen J, Randeva HS, Levine MA, Hillhouse EW,Grammatopoulos DK. Protein kinase A-induced negative regulation of thecorticotropin-releasing hormone R1alpha receptor-extracellularly regulatedkinase signal transduction pathway: the critical role of Ser301 for signalingswitch and selectivity. Mol Endocrinol, 2004,18(3):624-39.
    [51] Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight RA, YellonDM, Latchman DS. Urocortin protects against ischemic and reperfusion injuryvia a MAPK-dependent pathway. J Biol Chem, 2000,275(12):8508-14.
    [52] Grammatopoulos DK, Randeva HS, Levine MA, Katsanou ES, Hillhouse EW.Urocortin, but not corticotropin-releasing hormone (CRH), activates themitogen-activated protein kinase signal transduction pathway in humanpregnant myometrium: an effect mediated via R1alpha and R2beta CRHreceptor subtypes and stimulation of Gq-proteins. Mol Endocrinol, 2000, 14(12):2076-91.
    [53] Brar BK, Chen A, Perrin MH, Vale W. Specificity and regulation ofextracellularly regulated kinase1/2 phosphorylation through corticotropinreleasingfactor (CRF) receptors 1 and 2beta by the CRF/urocortin family ofpeptides. Endocrinology, 2004,145(4):1718-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700