Trihydrophobin 1相互作用蛋白以及Trihydrophobin 1与乳腺癌细胞化疗药物敏感性之间关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人类乳头瘤病毒E6相关蛋白(E6-AP)介导Trihydrophobin 1的泛素-蛋白酶体降解
     人类乳头瘤病毒E6相关蛋白E6-AP是泛素连接酶的一种,它能够介导细胞内一系列蛋白质的泛素化降解。我们的研究发现TH1,作为一个负性转录延长调节因子复合体(NELF complex)中必不可少的组分之一,能够与E6-AP相互作用,并且可以作为E6-AP调节的泛素化降解的新的底物。研究发现,细胞内过表达E6-AP可以产生表达剂量依赖的TH1蛋白水平的降低,同时采用RNA干扰技术,降低细胞内源性E6-AP的表达能够增加细胞内TH1的蛋白水平。与对照组比较,过表达E6-AP的细胞株中TH1蛋白降解加快同时半衰期明显缩短。野生型的E6-AP可以明显的促进TH1蛋白的泛素化降解,而E6-AP蛋白HECT结构域点突变产生的泛素连接酶活性缺失的突变体却不能泛素化TH1蛋白。体外泛素化实验进一步说明了E6-AP在体外重组的泛素化系统中,同样可以促进TH1蛋白的泛素化,并且在此系统中加入蛋白酶体抑制剂MG132可以阻断E6-AP对TH1蛋白的这种泛素化降解。因此,我们的实验证实TH1蛋白的确是E6-AP这个经典的泛素连接酶的新的特异性底物。
     第二部分Trihydrophobin 1促进雄激素受体降解进而抑制雄激素信号传导的研究
     在前列腺癌细胞的生长和分化过程中,雄激素受体的转录调控起极其重要的作用。而对雄激素受体转录活性起到调控作用的目前研究较多的是众多的转录促进因子和抑制因子。在对雄激素受体转录活性的调控过程中,主要集中在对转录促进因子的研究,而对转录抑制因子的研究相对较少。我们的研究发现TH1蛋白能够抑制雄激素受体调控的转录,进而说明TH1蛋白是雄激素受体这个转录因子的抑制分子。TH1蛋白对雄激素受体转录活性的这种抑制作用的发挥,依赖于TH1蛋白与雄激素受体的相互作用。TH1 N末端第119到123位氨基酸的特异性的LXXLL结构域对于TH1蛋白与雄激素受体相互作用发挥了至关重要的作用。在运用RNA干扰技术,抑制细胞内源性TH1蛋白表达后,我们发现雄激素受体的转录活性有了明显的增高。这进一步说明TH1蛋白在体内的确能够抑制雄激素受体的转录活性。前列腺特异性抗原PSA是雄激素受体调控的最重要的基因,在前列腺癌LNCaP细胞中,过表达TH1蛋白能够抑制前列腺特异性抗原的表达。进一步的研究发现,TH1蛋白能够分别与激素受体N末端的转录激活结构域(TAD)和C末端的配体结合结构域(LBD)相互作用。我们知道雄激素受体在发挥转录活性的时候,会通过N末端和C末端的相互作用形成同源二聚体,TH1蛋白的这种相互作用特点抑制了雄激素受体同源二聚体的形成,进而抑制了雄激素受体的转录活性。同时,由于雄激素受体不能形成稳定的同源二聚体形式,稳定性下降,更易于通过泛素-蛋白酶体系统降解。进一步通过染色质免疫共沉淀的方法我们证实,在雄激素活化雄激素受体转录活性的同时,TH1蛋白会伴随着雄激素受体一起结合到LNCaP细胞中PSA基因的启动子和增强子上,伴随雄激素受体一起调控下游基因的表达。以上的实验结果提示我们,在雄激素受体转录活性发挥重要作用的组织的发育过程、生理以及病理状态下,TH1蛋白很可能作为一个新的不为人知的调控分子。
     第三部分干扰TH1基IN表达促进乳腺癌细胞化疗药物敏感性的研究
     当细胞增殖和细胞死亡之间的平衡被打破,细胞出现无控制的过度增殖就会形成肿瘤。为了研究TH1基因与细胞凋亡的关系,我们采用RNA干扰技术降低乳腺癌细胞内TH1蛋白水平后,用化疗药物诱导细胞株凋亡时,我们发现,由于RNA干扰而低表达TH1蛋白的细胞株与对照组细胞相比表现出更强的凋亡敏感性。乳腺癌细胞株T47D(雌激素敏感,雌激素受体表达)和MDA-MB 231(雌激素受体不敏感,雌激素受体不表达)稳定转染TH1 RNA干扰质粒后,发生细胞周期G2/M期阻滞,同时细胞生长收到抑制,增殖减缓,说明TH1的这种作用并不依赖雌激素受体的作用。将TH1 RNA干扰质粒稳定表达的MDA-MB 231细胞株接种裸鼠皮下,观察肿瘤生长情况发现,稳定表达TH1 RNA干扰质粒的细胞株接种后形成的肿瘤体积和重量明显小于对照细胞形成的肿瘤。为进一步研究上述现象发生的机制,我们检测了细胞周期和凋亡相关分子在两组细胞株之间的表达差异,发现T47D细胞和MDA-MB-231细胞中,降低内源性TH1蛋白的表达后,p21的蛋白水平明显增高。荧光素酶报告基因活性检测结果显示,过表达TH1蛋白后,p21启动子的活性明显受到抑制。综上所述,我们的结果说明TH1能够通过调节乳腺癌细胞中p21的表达进而影响细胞周期和细胞凋亡。
Human Papilloma virus E6-associated protein (E6-AP), which is known as an E3ubiquitin ligase, mediates ubiquitination and subsequent degradation of a series of cellularproteins. In this paper, we identify here tfihydrophobin 1 (TH1), an integral subunit of thehuman negative transcription elongation factor (NELF) complex, as a novel E6-APinteraction protein and a target of E6-APmediated degradation. Overexpression of E6-APresults in degradation of TH1 in a dose-dependent manner, whereas knock-down ofendogenous E6-AP elevates the TH1 protein level. TH1 protein turnover is substantiallyfaster, compared to controls, in cells that overexpressed E6-AP. Wild-type E6-APpromotes the ubiquitination of TH1, while a catalytically inactive point mutant of E6-APabolishes its ubiquitination. Furthermore, in vitro ubiquitination assay also demonstratesthat TH1 can be ubiquitinated by E6-AP. The degradation is blocked by treatment withproteasome inhibitor MG132. Herein, we provide strong evidence that TH1 is a specificsubstrate that is targeted for degradation through E6-AP-catalyzed polyubiquitination.
     The transcriptional activity of the androgen receptor (AR) modulated by positive ornegative regulators plays critical roles in controlling the growth and survival of prostatecancer cells. In this study, we report that TH1 is a potent transcriptional repressor tosuppress AR activity. Knock-down of TH1 expression augment AR transcriptionalactivation. The attenuation of AR activity by TH1 is in a physical interaction dependentmanner, and TH1 N-terminal LXXLL motif is indispensable. TH1 can interact with bothtransactivation domain and Ligand binding domain of AR, and interferes withintramolecular interaction, hence decreases the stability of AR. Using chromatinimmunoprecipitation (ChIP) analyses, we show that TH1 dynamically associates with ARat the active androgen-responsive prostate-specific antigen (PSA) promoter in LNCaPcells. In agreement with these findings, TH1 overexpression blocks the PSA geneexpression in LNCaP cells. Taken together, these results indicate that TH1 is a novelregulator to control the duration and magnitude of AR transcriptional activation, and maybe directly involved in AR-related developmental, physiological, and pathologicalprocesses.
     Cancer develops when the balance between cell proliferation and cell death isdisrupted, and the ensuing aberrant proliferation leads to tumor growth. We report in thispaper that depletion of TH1 by small hairpin RNA sensitizes the breast cancer cell lines tochemotherapy drugs induced apoptosis. Furthermore, knock-down of TH1 expression cancause cell cycle G2/M phase arrest, inhibit the proliferation of two human breast cancercell lines: estrogen-dependent, ER-positive T47D and estrogen-independent, ER-negativeMDA-MB-231. We also determined the phenotypic effects of TH1 knock-downT47D-derived tumors and control T47D-derived tumors in nude mice. TH1 knock-downT47D-derived tumors showed 60% and 70% reduction in tumor volume and weightrespectively. As a proliferation inhibitor, p21 expression is elevated in TH1 knock-downversus parental control cells. Further study indicates that over-expression of TH1 proteininhibits the promoter activity of p21, hence reduce both mRNA and protein level of p21.Knock-down of p21 expression using siRNA in TH1 knock-down cells counteracts cellcycle G2/M phase arrest and the chemotherapy drugs induced apoptosis. These resultssuggest that TH1 may functions as a novel regulator in chemotherapy drugs inducedapoptosis by regulating the expression of p21 in breast cancer cell lines.
引文
[1] Hershko A, Ciechanover A. The ubiquitin system [J]. Annu Rev Biochem, 1998, 67(425-479.
    
    [2] Finley D, Chau V. Ubiquitination [J]. Annu Rev Cell Biol, 1991, 7(25-69.
    
    [3] Finley D. Ubiquitin chained and crosslinked [J]. Nat Cell Biol, 2002, 4(5): E121-E123.
    [4] Laney JD, Hochstrasser M. Substrate targeting in the ubiquitin system [J]. Cell, 1999, 97(4): 427-430.
    [5] Huang L, Kinnucan E, Wang G, et al. Structure of an E6AP-UbcH7 Complex: Insights into Ubiquitination by the E2-E3 Enzyme Cascade [J]. Science, 1999, 286(5443): 1321-1326.
    [6] Cui B, Shen MY, Freed KF. Folding and misfolding of the papillomavirus E6 interacting peptide E6ap [J]. Proceedings of the National Academy of Sciences USA, 2003,100(12): 7087-7092.
    [7] Huibregtse JM, Scheffner M, Beaudenon S, et al. A Family of Proteins Structurally and Functionally Related to the E6-AP Ubiquitin-Protein Ligase [J]. Proceedings of the National Academy of Sciences USA, 1995, 92(7): 2563-2567.
    [8] Zheng N. A closer look of the HECTic ubiquitin ligases [J]. Structure (Camb), 2003,11(1): 5-6.
    [9] Scheffner M, Huibregtse JM, Vierstra RD, et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 [J]. Cell, 1993, 75(3): 495-505.
    [10] Harris KF, Shoji I, Cooper EM, et al. Ubiquitin-mediated degradation of active Src tyrosine kinase [J]. Proceedings of the National Academy of Sciences USA, 1999, 96(24): 13738-13743.
    
    [11] Oda H, Kumar S, Howley PM. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination [J]. Proceedings of the National Academy of Sciences USA, 1999, 96(17): 9557-9562.
    
    [12] Kumar S, Talis AL, Howley PM. Identification of HHR23A as a Substrate for E6-associated Protein-mediated Ubiquitination [J]. Journal of Biological Chemistry, 1999,274(26): 18785-18792.
    [13] Kuhne C, Banks L. E3-Ubiquitin Ligase/E6-AP Links Multicopy Maintenance Protein 7 to the Ubiquitination Pathway by a Novel Motif, the L2G Box [J]. Journal of Biological Chemistry, 1998, 273(51): 34302-34309.
    [14] Gao Q, Kumar A, Singh L, et al. Human Papillomavirus E6-induced Degradation of E6TP1 Is Mediated by E6AP Ubiquitin Ligase [J]. Cancer Research, 2002, 62(11): 3315-3321.
    [15] Gewin L, Myers H, Kiyono T, et al. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex [J]. Genes & Development, 2004,18(18): 2269-2282.
    [16] Bonthron DT, Hayward BE, Moran V, et al. Characterization of TH1 and CTSZ, two non-imprinted genes downstream of GNAS1 in chromosome 20q13 [J]. Hum Genet, 2000,107(2): 165-175.
    [17] Narita T, Yamaguchi Y, Yano K, et al. Human Transcription Elongation Factor NELF: Identification of Novel Subunits and Reconstitution of the Functionally Active Complex [J]. Molecular and Cellular Biology, 2003,23(6): 1863-1873.
     [18] Yamaguchi Y, Takagi T, Wada T, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation [J]. Cell, 1999, 97(1): 41-51.
    [19] Yamaguchi Y, Inukai N, Narita T, et al. Evidence that Negative Elongation Factor Represses Transcription Elongation through Binding to a DRB Sensitivity-Inducing Factor/RNA Polymerase II Complex and RNA [J]. Molecular and Cellular Biology, 2002, 22(9): 2918-2927.
    [20] Conaway RC, Brower CS, Conaway JW. Emerging Roles of Ubiquitin in Transcription Regulation [J]. Science, 2002,296(5571): 1254-1258.
    
    [21] Lin L, Ghosh S. A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit [J]. Molecular and Cellular Biology, 1996,16(5): 2248-2254.
    [22] Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome [J]. Cell, 1998,92(6): 819-828.
    [23] Orian A, Schwartz AL, Israel A, et al. Structural Motifs Involved in Ubiquitin-Mediated Processing of the NF-kappa B Precursor p105: Roles of the Glycine-Rich Region and a Downstream Ubiquitination Domain [J]. Molecular and Cellular Biology, 1999,19(5): 3664-3673.
    [24] Orian A, Gonen H, Bercovich B, et al. SCF{beta}-TrCP ubiquitin ligase-mediated processing of NF-{kappa}B p105 requires phosphorylation of its C-terminus by I{kappa}B kinase [J]. The EMBO Journal, 2000, 19(11): 2580-2591.
    [25] Hoppe T, Matuschewski K, Rape M, et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing [J]. Cell, 2000,102(5): 577-586.
    [26] Nawaz Z, Lonard DM, Smith CL, et al. The Angelman Syndrome-Associated Protein, E6-AP, Is a Coactivator for the Nuclear Hormone Receptor Superfamily [J]. Molecular and Cellular Biology, 1999,19(2): 1182-1189.
    [27] Smith CL, DeVera DG, Lamb DJ, et al. Genetic Ablation of the Steroid Receptor Coactivator-Ubiquitin Ligase, E6-AP, Results in Tissue-Selective Steroid Hormone Resistance and Defects in Reproduction [J]. Molecular and Cellular Biology, 2002, 22(2): 525-535.
    [28] Imhof MO, McDonnell DP. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors [J]. Molecular and Cellular Biology, 1996, 16(6): 2594-2605.
    [29] Beaudenon SL, Huacani MR, Wang G, et al. Rsp5 Ubiquitin-Protein Ligase Mediates DNA Damage-Induced Degradation of the Large Subunit of RNA Polymerase II in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 1999,19(10): 6972-6979.
    [30] Uptain SM, Kane CM, Chamberlin MJ. Basic mechanisms of transcript elongation and its regulation [J]. Annu Rev Biochem, 1997, 66(117-172.
    [31] Conaway JW, Shilatifard A, Dvir A, et al. Control of elongation by RNA polymerase II [J]. Trends Biochem Sci, 2000, 25(8): 375-380.
    [32] Peng J, Zhu Y, Milton JT, et al. Identification of multiple cyclin subunits of human P-TEFb [J]. Genes & Development, 1998, 12(5): 755-762.
    [33] Wada T, Takagi T, Yamaguchi Y, et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs [J]. Genes & Development, 1998, 12(3): 343-356.
    [34] Yamaguchi Y, Filipovska J, Yano K, et al. Stimulation of RNA Polymerase II Elongation by Hepatitis Delta Antigen [J]. Science, 2001, 293(5527): 124-127.
    [35] Yin XL, Chen S, Gu JX. Identification of TH1 as an interaction partner of A-Raf kinase [J]. Mol Cell Biochem, 2002,231(1-2): 69-74.
    [36] Pei Y, Schwer B, Shuman S. Interactions between Fission Yeast Cdk9, Its Cyclin Partner Pch1, and mRNA Capping Enzyme Pct1 Suggest an Elongation Checkpoint for mRNA Quality Control [J]. Journal of Biological Chemistry, 2003, 278(9): 7180-7188.
    [37] Mandal SS, Chu C, Wada T, et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II [J]. Proceedings of the National Academy of Sciences USA, 2004, 101(20): 7572-7577.
    [38] Wu CH, Lee C, Fan R, et al. Molecular characterization of Drosophila NELF [J]. Nucleic Acids Research, 2005, 33(4): 1269-1279.
    [39] Aiyar SE, Sun Jl, Blair AL, et al. Attenuation of estrogen receptor {alpha}-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor [J]. Genes & Development, 2004,18(17): 2134-2146.
    [40] Wada T, Orphanides G, Hasegawa J, et al. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH [J]. Mol Cell, 2000, 5(6): 1067-1072.
    [41] Ping YH, Rana TM. DSIF and NELF Interact with RNA Polymerase II Elongation Complex and HIV-1 Tat Stimulates P-TEFb-mediated Phosphorylation of RNA Polymerase II and DSIF during Transcription Elongation [J]. Journal of Biological Chemistry, 2001,276(16): 12951-12958.
    [42] Kim DK, Inukai N, Yamada T, et al. Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex [J]. Genes to Cells, 2003, 8(4): 371-378.
    [43] Wu CH, Yamaguchi Y, Benjamin LR, et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila [J]. Genes & Development, 2003,17(11): 1402-1414.
    [44] Nawaz Z, Lonard DM, Dennis AP, et al. Proteasome-dependent degradation of the human estrogen receptor [J]. Proceedings of the National Academy of Sciences USA, 1999, 96(5): 1858-1862.
    [45] Salvat C, Aquaviva C, Jariel-Encontre I, et al. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo? [J]. Mol Biol Rep, 1999, 26(1-2): 45-51.
    [1] Brinkmann AO, Trapman J. Genetic analysis of androgen receptors in development and disease [J]. Advances in pharmacology (San Diego, Calif, 2000,47(317-341.
    
    [2] MacLean HE, Warne GL, Zajac JD. Localization of functional domains in the androgen receptor [J]. The Journal of steroid biochemistry and molecular biology, 1997, 62(4): 233-242.
    [3] Christiaens V, Bevan CL, Callewaert L, et al. Characterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control [J]. J Biol Chem, 2002,277(51): 49230-49237.
    [4] Ikonen T, Palvimo JJ, Janne OA. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators [J]. J Biol Chem, 1997, 272(47): 29821-29828.
    [5] McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: cellular and molecular biology [J]. Endocrine reviews, 1999, 20(3): 321-344.
    [6] Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview [J]. Endocrine reviews, 2002, 23(2): 175-200.
    [7] Heinlein CA, Chang C. Androgen receptor in prostate cancer [J]. Endocrine reviews, 2004,25(2): 276-308.
    [8] Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control [J]. Genes Dev, 2000,14(20): 2551-2569.
    [9] Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells [J]. Proc Natl Acad Sci U S A, 1996, 93(11): 5517-5521.
     [10] Ozanne DM, Brady ME, Cook S, et al. Androgen receptor nuclear translocation is facilitated by the f-actin cross-linking protein filamin [J]. Mol Endocrinol, 2000, 14(10): 1618-1626.
    
    [11] Heery DM, Kalkhoven E, Hoare S, et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors [J]. Nature, 1997, 387(6634): 733-736.
    
    [12] McInerney EM, Rose DW, Flynn SE, et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation [J]. Genes Dev, 1998, 12(21): 3357-3368.
    
    [13] Torchia J, Rose DW, Inostroza J, et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function [J]. Nature, 1997, 387(6634): 677-684.
    [14] Voegel JJ, Heine MJ, Tini M, et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways [J]. The EMBO journal, 1998, 17(2): 507-519.
    [15] Zhu Y, Qi C, Jain S, et al. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor [J]. J Biol Chem, 1997, 272(41): 25500-25506.
    [16] Yuan CX, Ito M, Fondell JD, et al. The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion [J]. Proc Natl Acad Sci U S A, 1998, 95(14): 7939-7944.
    [17] Rachez C, Gamble M, Chang CP, et al. The DRIP complex and SRC-l/pl60 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes [J]. Mol Cell Biol, 2000,20(8): 2718-2726.
    [18] Gaughan L, Brady ME, Cook S, et al. Tip60 is a co-activator specific for class I nuclear hormone receptors [J]. J Biol Chem, 2001,276(50): 46841-46848.
    [19] Le Douarin B, Nielsen AL, Gamier JM, et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors [J]. The EMBO journal, 1996,15(23): 6701-6715.
    [20] Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis [J]. Cell, 1998, 92(6): 829-839.
    [21] Lee SK, Anzick SL, Choi JE, et al. A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo [J]. J Biol Chem, 1999, 274(48): 34283-34293.
    [22] Vadlamudi RK, Wang RA, Mazumdar A, et al. Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha [J]. J Biol Chem, 2001,276(41): 38272-38279.
    [23] Needham M, Raines S, McPheat J, et al. Differential interaction of steroid hormone receptors with LXXLL motifs in SRC-1a depends on residues flanking the motif [J]. The Journal of steroid biochemistry and molecular biology, 2000, 72(1-2): 35-46.
    [24] Heery DM, Hoare S, Hussain S, et al. Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors [J]. J Biol Chem, 2001,276(9): 6695-6702.
    [25] Liu B, Liao J, Rao X, et al. Inhibition of Stat1-mediated gene activation by PIAS1 [J]. Proc Natl Acad Sci U S A, 1998, 95(18): 10626-10631.
     [26] Hari KL, Santerre A, Sekelsky JJ, et al. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene [J]. Cell, 1995, 82(5): 815-821.
    [27] Bonthron DT, Hayward BE, Moran V, et al. Characterization of TH1 and CTSZ, two non-imprinted genes downstream of GNAS1 in chromosome 20q13 [J]. Human genetics, 2000,107(2): 165-175.
    [28] Liu W, Shen X, Yang Y, et al. Trihydrophobin 1 is a new negative regulator of A-Raf kinase [J]. J Biol Chem, 2004,279(11): 10167-10175.
    [29] Yang Y, Liu W, Zou W, et al. Ubiquitin-dependent proteolysis of trihydrophobin 1 (TH1) by the human papilloma virus E6-associated protein (E6-AP) [J]. J Cell Biochem, 2006,
    [30] Yamaguchi Y, Takagi T, Wada T, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation [J]. Cell, 1999, 97(1): 41-51.
    [31] Narita T, Yamaguchi Y, Yano K, et al. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex [J]. Mol Cell Biol, 2003, 23(6): 1863-1873.
    [32] Wu CH, Yamaguchi Y, Benjamin LR, et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila [J]. Genes Dev, 2003, 17(11): 1402-1414.
    [33] Aiyar SE, Sun JL, Blair AL, et al. Attenuation of estrogen receptor alpha-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor [J]. Genes Dev, 2004, 18(17): 2134-2146.
    [34] Kang Z, Pirskanen A, Janne OA, et al. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex [J]. J Biol Chem, 2002, 277(50): 48366-48371.
    [35] Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex [J]. Mol Cell, 2002, 9(3): 601-610.
    
    [36] Yin XL, Chen S, Gu JX. Identification of TH1 as an interaction partner of A-Raf kinase [J]. Molecular and cellular biochemistry, 2002,231(1-2): 69-74.
    [37] Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors [J]. Nature, 1999,402(6757): 93-96.
    [38] Perissi V, Staszewski LM, McInerney EM, et al. Molecular determinants of nuclear receptor-corepressor interaction [J]. Genes Dev, 1999,13(24): 3198-3208.
    [39] Liao G, Chen LY, Zhang A, et al. Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT [J]. J Biol Chem, 2003,278(7): 5052-5061.
    [40] Hodgson MC, Astapova I, Cheng S, et al. The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists [J]. J Biol Chem, 2005, 280(8): 6511-6519.
    [41] Zhang Y, Yang Y, Yeh S, et al. ARA67/PAT1 functions as a repressor to suppress androgen receptor transactivation [J]. Mol Cell Biol, 2004,24(3): 1044-1057.
    [42] Zhang H, Thomsen JS, Johansson L, et al. DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors [J]. J Biol Chem, 2000,275(51): 39855-39859.
    [43] Liu Y, Kim BO, Kao C, et al. Tip110, the human immunodeficiency virus type 1 (HIV-1) Tat-interacting protein of 110 kDa as a negative regulator of androgen receptor (AR) transcriptional activation [J]. J Biol Chem, 2004, 279(21): 21766-21773.
    [44] Wong CI, Zhou ZX, Sar M, et al. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains [J]. J Biol Chem, 1993, 268(25): 19004-19012.
     [45] Zhou ZX, Lane MV, Kemppainen JA, et al. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability [J]. Mol Endocrinol, 1995, 9(2): 208-218.
    [46] Kang HY, Yeh S, Fujimoto N, et al. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor [JJ. J Biol Chem, 1999, 274(13): 8570-8576.
    [47] Onate SA, Tsai SY, Tsai MJ, et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily [J]. Science, 1995, 270(5240): 1354-1357.
    [48] Wang L, Hsu CL, Ni J, et al. Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells [J]. Mol Cell Biol, 2004,24(5): 2202-2213.
    [49] Wada T, Orphanides G, Hasegawa J, et al. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH [J]. Mol Cell, 2000, 5(6): 1067-1072.
    [50] Yamaguchi Y, Inukai N, Narita T, et al. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA [J]. Mol Cell Biol, 2002, 22(9): 2918-2927.
    [51] Kato S, Endoh H, Masuhiro Y, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase [J]. Science, 1995, 270(5241): 1491-1494.
    [52] Blok LJ, de Ruiter PE, Brinkmann AO. Androgen receptor phosphorylation [J]. Endocrine research, 1996,22(3): 197-219.
    [53] Taneja SS, Ha S, Swenson NK, et al. Cell-specific regulation of androgen receptor phosphorylation in vivo [J]. J Biol Chem, 2005,280(49): 40916-40924.
    [1] Sherr CJ. Mammalian G1 cyclins [J]. Cell, 1993, 73(6): 1059-1065.
    
    [2] Morgan DO. Principles of CDK regulation [J]. Nature, 1995, 374(6518): 131-134.
    [3] Ekholm SV, Reed SI. Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle [J]. Current opinion in cell biology, 2000,12(6): 676-684.
    [4] Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression [J]. Genes & development, 1999, 13(12): 1501-1512.
    [5] Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited [J]. Cancer research, 2000,60(14): 3689-3695.
    [6] el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression [J]. Cell, 1993, 75(4): 817-825.
    [7] Gu Y, Turck CW, Morgan DO. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit [J]. Nature, 1993, 366(6456): 707-710.
    [8] Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of Gl cyclin-dependent kinases [J]. Cell, 1993, 75(4): 805-816.
    [9] Lee MH, Reynisdottir I, Massague J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution [J]. Genes & development, 1995, 9(6): 639-649.
    [10] Polyak K, Kato JY, Solomon MJ, et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest [J]. Genes & development, 1994, 8(1): 9-22.
    
    [11] Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21 [J]. Cell, 1994, 78(1): 67-74.
    
    [12] Espinosa JM, Verdun RE, Emerson BM. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage [J]. Molecular cell, 2003,12(4): 1015-1027.
    
    [13] Vogelstein B, Kinzler KW. Achilles' heel of cancer? [J]. Nature, 2001, 412(6850): 865-866.
    
    [14] Schmidt M, Fan Z. Protection against chemotherapy-induced cytotoxicity by cyclin-dependent kinase inhibitors (CKI) in CKI-responsive cells compared with CKI-unresponsive cells [J]. Oncogene, 2001, 20(43): 6164-6171.
    
    [15] Poluha W, Poluha DK, Chang B, et al. The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells [J]. Molecular and cellular biology, 1996,16(4): 1335-1341.
    [16] Shibata MA, Yoshidome K, Shibata E, et al. Suppression of mammary carcinoma growth in vitro and in vivo by inducible expression of the Cdk inhibitor p21 [J], Cancer gene therapy, 2001, 8(1): 23-35.
    [17] Lincet H, Poulain L, Remy JS, et al. The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells [J]. Cancer letters, 2000,161(1): 17-26.
    [18] Kondo S, Barna BP, Kondo Y, et al. WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis [J]. Oncogene, 1996,13(6): 1279-1285.
    [19] Fotedar R, Brickner H, Saadatmandi N, et al. Effect of p21waf1/cip1 transgene on radiation induced apoptosis in T cells [J]. Oncogene, 1999,18(24): 3652-3658.
    [20] Hari KL, Santerre A, Sekelsky JJ, et al. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene [J]. Cell, 1995, 82(5): 815-821.
    [21] Bonthron DT, Hayward BE, Moran V, et al. Characterization of TH1 and CTSZ, two non-imprinted genes downstream of GNAS1 in chromosome 20q13 [J]. Human genetics, 2000,107(2): 165-175.
    [22J Liu W, Shen X, Yang Y, et al. Trihydrophobin 1 is a new negative regulator of A-Raf kinase [JJ. J Biol Chem, 2004, 279(11): 10167-10175.
    [23] Yang Y, Liu W, Zou W, et al. Ubiquitin-dependent proteolysis of trihydrophobin 1 (TH1) by the human papilloma virus E6-associated protein (E6-AP) [J]. J Cell Biochem, 2006,
    [24] Narita T, Yamaguchi Y, Yano K, et al. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex [JJ. Mol Cell Biol, 2003,23(6): 1863-1873.
    [25] Yamaguchi Y, Takagi T, Wada T, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation [J]. Cell, 1999, 97(1): 41-51.
    [26] Wu CH, Yamaguchi Y, Benjamin LR, et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila [JJ. Genes Dev, 2003, 17(11): 1402-1414.
    [27] Aiyar SE, Sun JL, Blair AL, et al. Attenuation of estrogen receptor alpha-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor [JJ. Genes Dev, 2004,18(17): 2134-2146.
    [28] Edwards BK, Brown ML, Wingo PA, et al. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment [J]. Journal of the National Cancer Institute, 2005, 97(19): 1407-1427.
    [29] Cristofanilli M, Hortobagyi GN. Breast cancer highlights: key findings from the San Antonio Breast Cancer Symposium: a U.S. perspective [J]. The oncologist, 2004, 9(4): 471-478.
    [30] Mariani G. New developments in the treatment of metastatic breast cancer: from chemotherapy to biological therapy [J]. Ann Oncol, 2005,16 Suppl 2(ii191-194.
    [31] Pommier Y, Sordet O, Antony S, et al. Apoptosis defects and chemotherapyresistance: molecular interaction maps and networks [J]. Oncogene, 2004, 23(16): 2934-2949.
    [32] Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy [J]. Blood, 2001, 98(9): 2603-2614.
    [33] LaBaer J, Garrett MD, Stevenson LF, et al. New functional activities for the p21 family of CDK inhibitors [J]. Genes & development, 1997,11(7): 847-862.
    [34] Xiong Y, Harmon GJ, Zhang H, et al. p21 is a universal inhibitor of cyclin kinases [J]. Nature, 1993, 366(6456): 701-704.
    [35] Chen J, Jackson PK, Kirschner MW, et al. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA [J]. Nature, 1995, 374(6520): 386-388.
    [36] Dyson N. The regulation of E2F by pRB-family proteins [J]. Genes & development, 1998,12(15): 2245-2262.
    [37] Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors [J]. Journal of molecular biology, 1999, 287(5): 821-828.
    [38] Roussel MR The INK4 family of cell cycle inhibitors in cancer [J]. Oncogene, 1999,18(38): 5311-5317.
    [39] Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems [J]. Molecular biology of the cell, 1999, 10(8): 2703-2734.
    [40] Ohi R, Gould KL. Regulating the onset of mitosis [J]. Current opinion in cell biology, 1999,11(2): 267-273.
    [41] Peng CY, Graves PR, Thoma RS, et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216 [J]. Science (New York, NY, 1997,277(5331): 1501-1505.
    
    [42] Prives C. Signaling to p53: breaking the MDM2-p53 circuit [J]. Cell, 1998, 95(1): 5-8.
    [43] Saramaki A, Banwell CM, Campbell MJ, et al. Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor [J]. Nucleic acids research, 2006, 34(2): 543-554.
    [44] Gartel AL, Ye X, Goufman E, et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Spl/Sp3 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4510-4515.
    [45] Lu S, Liu M, Epner DE, et al. Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter [J]. Molecular endocrinology (Baltimore, Md, 1999,13(3): 376-384.
    [46] Nawaz Z, Lonard DM, Smith CL, et al. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily [J]. Mol Cell Biol, 1999,19(2): 1182-1189.
    [1] Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction [J]. Physiological reviews, 2002, 82(2): 373-428.
    
    [2] Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction [J]. Bioessays, 2000,22(5): 442-451.
    [3] Goldberg AL, Elledge SJ, Harper JW. The cellular chamber of doom [J]. Scientific American, 2001,284(1): 68-73.
    [4] Nawaz Z, O'Malley BW. Urban renewal in the nucleus: is protein turnover byproteasomes absolutely required for nuclear receptor-regulated transcription? [J]. Molecular endocrinology (Baltimore, Md, 2004, 18(3): 493-499.
     [5] Schwartz AL, Ciechanover A. The ubiquitin-proteasome pathway and pathogenesis of human diseases [J]. Annual review of medicine, 1999, 50(57-74.
    [6] Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg [J]. Neuron, 2003,40(2): 427-446.
    [7] Ohta T, Fukuda M. Ubiquitin and breast cancer [J]. Oncogene, 2004, 23(11): 2079-2088.
    
    [8] Pickart CM. Back to the future with ubiquitin [J]. Cell, 2004,116(2): 181 -190.
    [9] Wong BR, Parlati F, Qu K, et al. Drug discovery in the ubiquitin regulatory pathway [J]. Drug discovery today, 2003, 8(16): 746-754.
    [10] Nawaz Z, Lonard DM, Dennis AP, et al. Proteasome-dependent degradation of the human estrogen receptor [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 1858-1862.
    
    [11] Smith CL, DeVera DG, Lamb DJ, et al. Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction [J]. Molecular and cellular biology, 2002, 22(2): 525-535.
    
    [12] Imhof MO, McDonnell DP. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors [J]. Molecular and cellular biology, 1996, 16(6): 2594-2605.
    
    [13] Aravind L, Koonin EV. The U box is a modified RING finger - a common domain in ubiquitination [J]. Curr Biol, 2000, 10(4): R132-134.
    [14] Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity [J]. Cell, 2000,102(5): 549-552.
    [15] Fang S, Jensen JP, Ludwig RL, et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53 [J]. The Journal of biological chemistry, 2000, 275(12): 8945-8951.
    [16] Peters JM. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis [J]. Current opinion in cell biology, 1998,10(6): 759-768.
    [17] Jackson PK, Eldridge AG, Freed E, et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases [J]. Trends in cell biology, 2000, 10(10): 429-439.
    [18] Tyers M, Jorgensen P. Proteolysis and the cell cycle: with this RING I do thee destroy [J]. Current opinion in genetics & development, 2000,10(1): 54-64.
    [19] Blagosklonny MV. Do VHL and HIF-1 mirror p53 and Mdm-2? Degradation-transactivation loops of oncoproteins and tumor suppressors [J]. Oncogene, 2001,20(3): 395-398.
    [20] Brzovic PS, Rajagopal P, Hoyt DW, et al. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex [J]. Nature structural biology, 2001, 8(10): 833-837.
    [21] Fan S, Wang J, Yuan R, et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells [J]. Science (New York, NY, 1999,284(5418): 1354-1356.
    [22] Park JJ, Irvine RA, Buchanan G, et al. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor [J]. Cancer research, 2000, 60(21): 5946-5949.
    [23] Patterson C. A new gun in town: the U box is a ubiquitin ligase domain [J]. Sci STKE, 2002,2002(116): PE4.
    [24] Bochtler M, Ditzel L, Groll M, et al. The proteasome [J]. Annual review of biophysics and biomolecular structure, 1999, 28(295-317.
    [25] Rechsteiner M, Realini C, Ustrell V. The proteasome activator 11 S REG (PA28) and class I antigen presentation [J]. The Biochemical journal, 2000, 345 Pt 1(1-15.
    [26] Dubiel W, Ferrell K, Dumdey R, et al. Molecular cloning and expression of subunit 12: a non-MCP and non-ATPase subunit of the 26 S protease [J]. FEBS letters, 1995, 363(1-2): 97-100.
    [27] Finley D, Tanaka K, Mann C, et al. Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle [J]. Trends in biochemical sciences, 1998,23(7): 244-245.
    [28] Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis [J]. Annual review of biochemistry, 1999, 68(1015-1068.
    [29] Nelbock P, Dillon PJ, Perkins A, et al. A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator [J]. Science (New York, NY, 1990,248(4963): 1650-1653.
    [30] Apcher GS, Heink S, Zantopf D, et al. Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal alpha and beta subunits [J]. FEBS letters, 2003, 553(1-2): 200-204.
    [31] Weeda G, Rossignol M, Fraser RA, et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor [J]. Nucleic acids research, 1997, 25(12): 2274-2283.
    [32] Aravind L, Ponting CP. Homologues of 26S proteasome subunits are regulators of transcription and translation [J]. Protein Sci, 1998, 7(5): 1250-1254.
    [33] Ferdous A, Gonzalez F, Sun L, et al. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II [J]. Molecular cell, 2001, 7(5): 981-991.
    [34] Ishizuka T, Satoh T, Monden T, et al. Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR [J]. Molecular endocrinology (Baltimore, Md, 2001,15(8): 1329-1343.
    [35] Gonzalez F, Delahodde A, Kodadek T, et al. Recruitment of a 19S proteasome subcomplex to an activated promoter [J]. Science (New York, NY, 2002, 296(5567): 548-550.
    [36] Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates [J]. Chemistry & biology, 2001, 8(8): 739-758.
    [37] Lonard DM, Nawaz Z, Smith CL, et al. The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation [J]. Molecular cell, 2000, 5(6): 939-948.
    [38] Wallace AD, Cidlowski JA. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids [J]. The Journal of biological chemistry, 2001, 276(46): 42714-42721.
    [39] Deroo BJ, Rentsch C, Sampath S, et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking [J]. Molecular and cellular biology, 2002,22(12): 4113-4123.
    [40] Deng XW, Dubiel W, Wei N, et al. Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development [J]. Trends Genet, 2000,16(5): 202-203.
    [41] Wei N, Chamovitz DA, Deng XW. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development [J]. Cell, 1994, 78(1): 117-124.
    [42] Glickman MH, Rubin DM, Coux O, et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3 [J]. Cell, 1998, 94(5): 615-623.
    [43] Schwechheimer C, Deng XW. COP9 signalosome revisited: a novel mediator of protein degradation [J]. Trends in cell biology, 2001,11(10): 420-426.
    
    [44] Bech-Otschir D, Seeger M, Dubiel W. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis [J]. Journal of cell science, 2002,115(Pt 3): 467-473.
    [45] Harari-Steinberg O, Chamovitz DA. The COP9 signalosome: mediating between kinase signaling and protein degradation [J]. Current protein & peptide science, 2004, 5(3): 185-189.
    [46] Wei N, Deng XW. The COP9 signalosome [J]. Annual review of cell and developmental biology, 2003,19(261-286.
    
    [47] von Arnim AG. On again-off again: COP9 signalosome turns the key on protein degradation [J]. Current opinion in plant biology, 2003,6(6): 520-529.
    
    [48] Chiba T, Tanaka K. Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system [J]. Current protein & peptide science, 2004, 5(3): 177-184.
    [49] Lee JW, Ryan F, Swaffield JC, et al. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator [J]. Nature, 1995, 374(6517): 91-94.
    [50] Dressel U, Thormeyer D, Altincicek B, et al. Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily [J]. Molecular and cellular biology, 1999, 19(5): 3383-3394.
    [51] Altincicek B, Tenbaum SP, Dressel U, et al. Interaction of the corepressor Alien with DAX-1 is abrogated by mutations of DAX-1 involved in adrenal hypoplasia congenita [J]. The Journal of biological chemistry, 2000, 275(11): 7662-7667.
    [52] Chamovitz DA, Segal D. JAB1/CSN5 and the COP9 signalosome. A complex situation [J]. EMBO reports, 2001,2(2): 96-101.
    [53] Chauchereau A, Georgiakaki M, Perrin-Wolff M, et al. JAB1 interacts with both the progesterone receptor and SRC-1 [J]. The Journal of biological chemistry, 2000,275(12): 8540-8548.
    [54] Carrabino S, Carminati E, Talarico D, et al. Expression pattern of the JAB1/CSN5 gene during murine embryogenesis: colocalization with NEDD8 [J]. Gene Expr Patterns, 2004,4(4): 423-431.
    [55] Conaway JW, Shilatifard A, Dvir A, et al. Control of elongation by RNA polymerase II [J]. Trends in biochemical sciences, 2000,25(8): 375-380.
    [56] Ulrich HD. Degradation or maintenance: actions of the ubiquitin system on eukaryotic chromatin [J]. Eukaryotic cell, 2002,1(1): 1-10.
    [57] Lipford JR, Deshaies RJ. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation [J]. Nature cell biology, 2003, 5(10): 845-850.
    [58] Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription [J]. Nature reviews, 2003,4(3): 192-201.
    [59] Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination [J]. Genes & development, 2003,17(22): 2733-2740.
    [60] Osley MA. H2B ubiquitylation: the end is in sight [J]. Biochimica et biophysica acta, 2004,1677(1-3): 74-78.
    [61] Luger K, Rechsteiner TJ, Flaus AJ, et al. Characterization of nucleosome core particles containing histone proteins made in bacteria [J]. Journal of molecular biology, 1997, 272(3): 301-311.
     [62] Wolffe AP, Hayes JJ. Chromatin disruption and modification [J]. Nucleic acids research, 1999, 27(3): 711-720.
    [63] Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk [J]. Current opinion in cell biology, 2003,15(2): 172-183.
    [64] Nathan D, Sterner DE, Berger SL. Histone modifications: Now summoning sumoylation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13118-13120.
    [65] Jason LJ, Moore SC, Lewis JD, et al. Histone ubiquitination: a tagging tail unfolds? [J]. Bioessays, 2002, 24(2): 166-174.
    [66] Goldknopf IL, Taylor CW, Baum RM, et al. Isolation and characterization of protein A24, a "histone-like" non-histone chromosomal protein [J]. The Journal of biological chemistry, 1975,250(18): 7182-7187.
    [67] Thorne AW, Sautiere P, Briand G, et al. The structure of ubiquitinated histone H2B [J]. The EMBO journal, 1987, 6(4): 1005-1010.
    [68] Chen HY, Sun JM, Zhang Y, et al. Ubiquitination of histone H3 in elongating spermatids of rat testes [J]. The Journal of biological chemistry, 1998, 273(21): 13165-13169.
    [69] Pham AD, Sauer F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila [J]. Science (New York, NY, 2000,289(5488): 2357-2360.
    [70] Barsoum J, Levinger L, Varshavsky A. On the chromatin structure of the amplified, transcriptionally active gene for dihydrofolate reductase in mouse cells [J]. The Journal of biological chemistry, 1982,257(9): 5274-5282.
    [71] Levinger L, Varshavsky A. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome [J]. Cell, 1982, 28(2): 375-385.
    [72] Baarends WM, Hoogerbrugge JW, Roest HP, et al. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis [J]. Developmental biology, 1999,207(2): 322-333.
    [73] Haas AL, Reback PB, Chau V. Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E2(20K) AND E2(32K) [J]. The Journal of biological chemistry, 1991, 266(8): 5104-5112.
    [74] Roest HP, van Klaveren J, de Wit J, et al. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification [J]. Cell, 1996, 86(5): 799-810.
    [75] Turner SD, Ricci AR, Petropoulos H, et al. The E2 ubiquitin conjugase Rad6 is required for the ArgR/Mcm1 repression of ARG1 transcription [J]. Molecular and cellular biology, 2002, 22(12): 4011-4019.
    [76] Briggs SD, Xiao T, Sun ZW, et al. Gene silencing: trans-histone regulatory pathway in chromatin [J]. Nature, 2002, 418(6897): 498.
    [77] Dover J, Schneider J, Tawiah-Boateng MA, et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6 [J]. The Journal of biological chemistry, 2002,277(32): 28368-28371.
    [78] Henry KW, Wyce A, Lo WS, et al. Transcriptional activation via sequentialhistone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8 [J]. Genes & development, 2003,17(21): 2648-2663.
    [79] Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, et al. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control [J]. Molecular cell, 2003,11(1): 261-266.
    [80] Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast [J]. Nature, 2002,418(6893): 104-108.
    [81] Wood A, Krogan NJ, Dover J, et al. Brel, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter [J]. Molecular cell, 2003,11(1): 267-274.
    [82] Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond [J]. Nature, 2003,425(6957): 475-479.
    [83] Li J, Lin Q, Yoon HG, et al. Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor [J]. Molecular and cellular biology, 2002,22(16): 5688-5697.
    [84] Maglich JM, Sluder A, Guan X, et al. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes [J]. Genome biology, 2001,2(8): RESEARCH0029.
    [85] Roeder RG. The role of general initiation factors in transcription by RNA polymerase II [J]. Trends in biochemical sciences, 1996,21(9): 327-335.
    [86] Ferdous A, Kodadek T, Johnston SA. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II [J]. Biochemistry, 2002, 41(42): 12798-12805.
    [87] LeRoy G, Loyola A, Lane WS, et al. Purification and characterization of a human factor that assembles and remodels chromatin [J]. The Journal of biological chemistry, 2000,275(20): 14787-14790.
    [88] Gillette TG, Gonzalez F, Delahodde A, et al. Physical and functional association of RNA polymerase II and the proteasome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 5904-5909.
    [89] Ahn SH, Kim M, Buratowski S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing [J]. Molecular cell, 2004, 13(1): 67-76.
    [90] Komarnitsky P, Cho EJ, Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription [J]. Genes & development, 2000,14(19): 2452-2460.
    [91] Mitsui A, Sharp PA. Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 6054-6059.
    [92] Shilatifard A, Conaway RC, Conaway JW. The RNA polymerase II elongation complex [J]. Annual review of biochemistry, 2003, 72(693-715.
    [93] Gerber M, Shilatifard A. Transcriptional elongation by RNA polymerase II and histone methylation [J]. The Journal of biological chemistry, 2003, 278(29): 26303-26306.
    [94] Hampsey M, Reinberg D. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation [J]. Cell, 2003,113(4): 429-432.
    [95] Ezhkova E, Tansey WP. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3 [J]. Molecular cell, 2004,13(3): 435-442.
    [96] Bregman DB, Halaban R, van Gool AJ, et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(21): 11586-11590.
    [97] Huibregtse JM, Yang JC, Beaudenon SL. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(8): 3656-3661.
    [98] Beaudenon SL, Huacani MR, Wang G, et al. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae [J]. Molecular and cellular biology, 1999,19(10): 6972-6979.
    [99] Salvat C, Aquaviva C, Jariel-Encontre I, et al. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo? [J]. Molecular biology reports, 1999, 26(1-2): 45-51.
    [100] Robinson-Rechavi M, Carpentier AS, Duffraisse M, et al. How many nuclear hormone receptors are there in the human genome? [J]. Trends Genet, 2001, 17(10): 554-556.
    [101] Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade [J]. Cell, 1995, 83(6): 835-839.
     [102] Collingwood TN, Urnov FD, Wolffe AP. Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription [J]. Journal of molecular endocrinology, 1999, 23(3): 255-275.
    [103] Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription [J]. Biochimica et biophysica acta, 2004, 1677(1-3): 30-45.
    [104] Privalsky ML. The role of corepressors in transcriptional regulation by nuclear hormone receptors [J]. Annual review of physiology, 2004, 66(315-360.
    [105] Meek DW. Mechanisms of switching on p53: a role for covalent modification? [J]. Oncogene, 1999,18(53): 7666-7675.
    [106] Ismaili N, Garabedian MJ. Modulation of glucocorticoid receptor function via phosphorylation [J]. Annals of the New York Academy of Sciences, 2004, 1024(86-101.
    [107] Webster JC, Jewell CM, Bodwell JE, et al. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein [J]. The Journal of biological chemistry, 1997,272(14): 9287-9293.
    [108] Lange CA, Shen T, Horwitz KB. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3): 1032-1037.
    [109] Gianni M, Bauer A, Garattini E, et al. Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR gamma degradation and transactivation [J]. The EMBO journal, 2002, 21(14): 3760-3769.
    [110] Kopf E, Plassat JL, Vivat V, et al. Dimerization with retinoid X receptors and phosphorylation modulate the retinoic acid-induced degradation of retinoic acid receptors alpha and gamma through the ubiquitin-proteasome pathway [J]. The Journal of biological chemistry, 2000, 275(43): 33280-33288.
    [111] Blanquart C, Mansouri R, Fruchart JC, et al. Different ways to regulate the PPARalpha stability [J]. Biochemical and biophysical research communications, 2004, 319(2): 663-670.
    [112] Salghetti SE, Caudy AA, Chenoweth JG, et al. Regulation of transcriptional activation domain function by ubiquitin [J]. Science (New York, NY, 2001, 293(5535): 1651-1653.
    [113] Salghetti SE, Muratani M, Wijnen H, et al. Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3118-3123.
    [114] Shen T, Horwitz KB, Lange CA. Transcriptional hyperactivity of human progesterone receptors is coupled to their ligand-dependent down-regulation by mitogen-activated protein kinase-dependent phosphorylation of serine 294 [J]. Molecular and cellular biology, 2001,21(18): 6122-6131.
    [115] Molinari E, Gilman M, Natesan S. Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo [J]. The EMBO journal, 1999,18(22): 6439-6447.
    [116] Shao W, Keeton EK, McDonnell DP, et al. Coactivator AIB1 links estrogen receptor transcriptional activity and stability [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(32): 11599-11604.
    [117] Stoner M, Saville B, Wormke M, et al. Hypoxia induces proteasome-dependent degradation of estrogen receptor alpha in ZR-75 breast cancer cells [J]. Molecular endocrinology (Baltimore, Md, 2002,16(10): 2231-2242.
    [118] Wormke M, Stoner M, Saville B, et al. The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes [J]. Molecular and cellular biology, 2003, 23(6): 1843-1855.
    [119] Sengupta S, Wasylyk B. Ligand-dependent interaction of the glucocorticoid receptor with p53 enhances their degradation by Hdm2 [J]. Genes & development, 2001, 15(18): 2367-2380.
    [120] McKenna NJ, O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators [J]. Cell, 2002,108(4): 465-474.
    [121] Lonard DM, Tsai SY, O'Malley BW. Selective estrogen receptor modulators 4-hydroxytamoxifen and raloxifene impact the stability and function of SRC-1 and SRC-3 coactivator proteins [J]. Molecular and cellular biology, 2004, 24(1): 14-24.
    [122] Yan F, Gao X, Lonard DM, et al. Specific ubiquitin-conjugating enzymes promote degradation of specific nuclear receptor coactivators [J]. Molecular
    ?endocrinology (Baltimore, Md, 2003,17(7): 1315-1331.
    [123] Zhang X, Jeyakumar M, Petukhov S, et al. A nuclear receptor corepressor modulates transcriptional activity of antagonist-occupied steroid hormone receptor [J]. Molecular endocrinology (Baltimore, Md, 1998,12(4): 513-524.
    [124] Hoang T, Fenne IS, Cook C, et al. cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1 [J]. The Journal of biological chemistry, 2004,279(47): 49120-49130.
    [125] Poukka H, Aarnisalo P, Karvonen U, et al. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription [J]. The Journal of biological chemistry, 1999,274(27): 19441-19446.
    [126] Saji S, Okumura N, Eguchi H, et al. MDM2 enhances the function of estrogen receptor alpha in human breast cancer cells [J]. Biochemical and biophysical research communications, 2001,281(1): 259-265.
    [127] Fan M, Bigsby RM, Nephew KP. The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells [J]. Molecular endocrinology (Baltimore, Md, 2003, 17(3): 356-365.
    [128] Dennis AP, Haq RU, Nawaz Z. Importance of the regulation of nuclear receptor degradation [J]. Front Biosci, 2001, 6(D954-959.
    [129] Fraser RA, Rossignol M, Heard DJ, et al. SUG1, a putative transcriptional mediator and subunit of the PA700 proteasome regulatory complex, is a DNA helicase [J]. The Journal of biological chemistry, 1997, 272(11): 7122-7126.
    [130] Perissi V, Aggarwal A, Glass CK, et al. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors [J]. Cell, 2004, 116(4): 511-526.
    [131] Lin HK, Wang L, Hu YC, et al. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase [J]. The EMBO journal, 2002, 21(15): 4037-4048.
    [132] Cardozo CP, Michaud C, Ost MC, et al. C-terminal Hsp-interacting protein slows androgen receptor synthesis and reduces its rate of degradation [J]. Archives of biochemistry and biophysics, 2003,410(1): 134-140.
    [133] Connell P, Ballinger CA, Jiang J, et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins [J]. Nature cell biology, 2001, 3(1): 93-96.
    [134] Reid G, Hubner MR, Metivier R, et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling [J]. Molecular cell, 2003,11(3): 695-707.
    [135] Schaaf MJ, Cidlowski JA. Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity [J]. Molecular and cellular biology, 2003, 23(6): 1922-1934.
    [136] Stenoien DL, Patel K, Mancini MG, et al. FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent [J]. Nature cell biology, 2001, 3(1): 15-23.
     [137] Masuyama H, Hiramatsu Y. Involvement of suppressor for Gal 1 in the ubiquitin/proteasome-mediated degradation of estrogen receptors [J]. The Journal of biological chemistry, 2004,279(13): 12020-12026.
    
    [138] Chang C, Gonzalez F, Rothermel B, et al. The Gal4 activation domain binds Sug2 protein, a proteasome component, in vivo and in vitro [J]. The Journal of biological chemistry, 2001,276(33): 30956-30963.
    [139] Swaffield JC, Melcher K, Johnston SA. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein [J]. Nature, 1995, 374(6517): 88-91.
    [140] Kang Z, Pirskanen A, Janne OA, et al. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex [J]. The Journal of biological chemistry, 2002, 277(50): 48366-48371.
    [141] Metivier R, Penot G, Hubner MR, et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter [J]. Cell, 2003,115(6): 751-763.
    [142] Stavreva DA, Muller WG, Hager GL, et al. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes [J]. Molecular and cellular biology, 2004,24(7): 2682-2697.
    [143] Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription [J]. Cell, 2002, 108(4): 475-487.
    [144] Fletcher TM, Xiao N, Mautino G, et al. ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling [J]. Molecular and cellular biology, 2002,22(10): 3255-3263.
    [145] Fryer CJ, Archer TK. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex [J]. Nature, 1998, 393(6680): 88-91.
    [146] Shang Y, Hu X, DiRenzo J, et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription [J]. Cell, 2000,103(6): 843-852.
     [147] Kouzarides T. Histone methylation in transcriptional control [J]. Current opinion in genetics & development, 2002,12(2): 198-209.
    [148] Stallcup MR, Kim JH, Teyssier C, et al. The roles of protein-protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators [J]. The Journal of steroid biochemistry and molecular biology, 2003, 85(2-5): 139-145.
    [149] Li X, Wong J, Tsai SY, et al. Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification [J]. Molecular and cellular biology, 2003,23(11): 3763-3773.
    [150] Kim J, Jia L, Tilley WD, et al. Dynamic methylation of histone H3 at lysine 4 in transcriptional regulation by the androgen receptor [J]. Nucleic acids research, 2003, 31(23): 6741-6747.
    [151] Sedkov Y, Cho E, Petruk S, et al. Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila [J]. Nature, 2003, 426(6962): 78-83.
    [152] Liang G, Lin JC, Wei V, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(19): 7357-7362.
    [153] Schneider R, Bannister AJ, Myers FA, et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes [J]. Nature cell biology, 2004, 6(1): 73-77.
    
    [154] Roest HP, Baarends WM, de Wit J, et al. The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice [J]. Molecular and cellular biology, 2004,24(12): 5485-5495.
    [155] Muller WG, Walker D, Hager GL, et al. Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter [J]. The Journal of cell biology, 2001, 154(1): 33-48.
    [156] Krogan NJ, Dover J, Wood A, et al. The Pafl complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation [J]. Molecular cell, 2003,11(3): 721-729.
    [157] Ng HH, Dole S, Struhl K. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B [J]. The Journal of biological chemistry, 2003,278(36): 33625-33628.
    [158] Xiao B, Wilson JR, Gamblin SJ. SET domains and histone methylation [J]. Current opinion in structural biology, 2003,13(6): 699-705.
    [159] Morillon A, Karabetsou N, O'Sullivan J, et al. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II [J]. Cell, 2003,115(4): 425-435.
    [160] Santos-Rosa H, Schneider R, Bernstein BE, et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin [J]. Molecular cell, 2003,12(5): 1325-1332.
    [161] Corey LL, Weirich CS, Benjamin IJ, et al. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation [J]. Genes & development, 2003,17(11): 1392-1401.
    [162] Orphanides G, Wu WH, Lane WS, et al. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins [J]. Nature, 1999,400(6741): 284-288.
    [163] Mason PB, Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo [J]. Molecular and cellular biology, 2003,23(22): 8323-8333.
    [164] Saunders A, Werner J, Andrulis ED, et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo [J]. Science (New York, NY, 2003, 301(5636): 1094-1096.
    [165] Kitagawa H, Fujiki R, Yoshimura K, et al. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome [J]. Cell, 2003,113(7): 905-917.
    [166] Bhattacharjee RN, Banks GC, Trotter KW, et al. Histone H1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus transcription through chromatin remodeling [J]. Molecular and cellular biology, 2001, 21(16): 5417-5425.
    [167] Georgel PT, Fletcher TM, Hager GL, et al. Formation of higher-order secondary and tertiary chromatin structures by genomic mouse mammary tumor virus promoters [J]. Genes & development, 2003, 17(13): 1617-1629.
    [168] Bresnick EH, Bustin M, Marsaud V, et al. The transcriptionally-active MMTV promoter is depleted of histone H1 [J]. Nucleic acids research, 1992, 20(2): 273-278.
     [169] Deroo BJ, Archer TK. Glucocorticoid receptor-mediated chromatin remodeling in vivo [J]. Oncogene, 2001, 20(24): 3039-3046.
    [170] Hebbar PB, Archer TK. Chromatin remodeling by nuclear receptors [J]. Chromosoma, 2003,111(8): 495-504.
    [171] Lee HL, Archer TK. Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter [J]. The EMBO journal, 1998, 17(5): 1454-1466.
    [172] Banks GC, Deterding LJ, Tomer KB, et al. Hormone-mediated dephosphorylation of specific histone H1 isoforms [J]. The Journal of biological chemistry, 2001,276(39): 36467-36473.
    [173] Lin Q, Inselman A, Han X, et al. Reductions in linker histone levels are tolerated in developing spermatocytes but cause changes in specific gene expression [J]. The Journal of biological chemistry, 2004,279(22): 23525-23535.
    [174] Grossman SR, Deato ME, Brignone C, et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300 [J]. Science (New York, NY, 2003, 300(5617): 342-344.
    [175] Hook SS, Orian A, Cowley SM, et al. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13425-13430.
    [176] Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress [J]. Cell, 2003,115(6): 727-738.
    [177] Frasor J, Stossi F, Danes JM, et al. Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells [J]. Cancer research, 2004, 64(4): 1522-1533.
    [178] Wijayaratne AL, McDonnell DP. The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators [J]. The Journal of biological chemistry, 2001,276(38): 35684-35692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700