空间站热泵—蓄冷组合排热系统及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间站规模的增大使废热排放量升高,用增加辐射器表面积的方法提高排热量要受到空间结构布局和系统重量的限制。采用热泵提高辐射器温度能增加辐射器排热能力,但系统重量将增加。本文根据空间站的供电特性,提出了一种新的热控排热方案——热泵—蓄冷组合排热系统,热泵仅在光照期间工作并蓄冷,而在阴影轨道期间超出辐射器排热能力的热负荷由蓄冰装置的释冷予以补偿,这种工作模式能大大减轻供电系统蓄电池重量。本文将部件研究和系统研究有机结合,对该方案进行了系统的分析和研究。
     首先,对组合排热系统进行了稳念分析,研究了影响系统重量的因素,结果表明组合排热系统存在最佳冷凝温度和最佳蓄冷速率,与单相流体排热系统相比,辐射器面积和系统重量分别减少30.0%和4.8%;与热泵排热系统相比,尽管辐射器面积增加了12.0%,但系统重量却能降低9.3%,表明组合排热系统是可行的。
     应用集总参数法建立了组合排热系统和单相流体排热系统的动态仿真模型,动态分析结果表明,与单相流体排热系统相比,辐射器面积和系统重量分别减少47.5%和18.3%,表明在动态条件下,热惯性效应使组合排热系统的减重效果更为理想。
     设计并搭建了组合排热系统实验台,实验测量了组合排热系统的工作性能。在设定实验工况下,压缩机制冷系数的实测值仅为2.14,与单相流体排热系统相比,辐射器面积减少22.8%,系统重量则增加了7.5%。该结论与稳态分析结果相符,也表明通过选择制冷系数更高的压缩机,完全可实现系统减重。与热泵排热系统所对应的最佳工况相比,组合排热系统的辐射器面积增加了23.2%,但系统重量降低了1.6%。实验还证实了组合排热系统具有良好的启动特性和运行平稳性,回舱流体温度的实测结果和数值模拟结果吻合较好,能满足舱内的热控要求。
     对系统关键部件—蓄冰装置的充释冷动态特性进行了数值模拟,对其结构进行了优化。设计加工了蓄冰装置,实验研究了充释冷动态特性,结果验证了数值模拟模型的正确性。在辐射器肋片结构的优化分析基础上,对辐射器管内制冷剂的两相流动与传热特性进行了分析,并应用分相建模和分布参数法建立了组合排热系统的优化设计模型,在此基础上,提出并数值证明了三种有利于减少辐射器面积和系统重量的设计方案。
     最后,进一步提出系统改进方案—双压缩双回路循环和压缩/喷射混合循环,这两种改进方案可提高压缩机入口工质压力,从而能有效提高系统的制冷系数。热力学分析结果表明,工质为R22的双压缩双回路循环组合排热系统综合性能最佳,与单相流体排热系统相比,其辐射器面积和系统重量分别减少33.0%和9.7%;与热泵排热系统相比,辐射器面积虽然增加约7.1%,但系统重量却降低了13.9%。
Heat rejection into space grows with the enlargement of space stations. To reject the increasing heat dissipation by larger radiator surface will encounter the difficulties in system design and payout of system weight. One can also enhance the rejection of heat by raising the surface temperature of the radiator by conventional heat pumps with a penalty of heavier system weight. This thesis suggests an innovative heat pump-cold storage heat rejection system (HPCSHRS) for space station based on the characteristics of power generation of space stations. When facing the sun the heat pump works to reject heat and charge cooling for the ice storage device. When in the shadow of the earth the stored ice helps to compensate the ability of the thermal radiator to complete the rated heat rejection. This operating mode of HPCSHRS can reduce the mass associated with electrical power storage devices. To verify the feasibility and operating characteristics of HPCSHRS, systematic investigations are conducted.Firstly, steady state analysis is performed to quantify the effects of sensitive parameters on the total mass of HPCSHRS. The results show that HPCSHRS has an optimum condensing temperature and an optimum cold storage rate. Under the optimum operation, the radiator area and total system mass of HPCSHRS are 4.8% and 30.0% less than those the single-phase fluid heat rejection system respectively. Compared with the conventional heat pump heat rejection system, the radiator area of HPCSHRS is 12.0% greater than that of the heat pump system but the total system mass of HPCSHRS reduces 9.3% than that of the heat pump system.Secondly, mathematical models describing the transient thermal behavior of HPCSHRS using lumped parameter methods are developed. A transient model of single-phase fluid loop is also developed for comparison. The simulation results show that radiator area and total mass of HPCSHRS are 47.5% and 18.3% less than those of the single-phase fluid heat rejection system respectively, which demonstrates that HPCSHRS has better performance under transient operation.An experimental system is designed and set up for validating its feasibility and investigating its operation characteristics of HPCSHRS. The measured results indicate that the compressor COP is 2.14, which results in a 22.8% reduction of the radiator area, and an 7.5% increase system weight compared the single-phase fluid system. The result is close to the steady analysis and shows that HPCSHRS can indeed reduce not only radiator area but also system weight by choosing a compressor with higher COP. Compared with heat pump heat rejection system, the radiator area of HPCSHRS is increased by 23.2% and the
    total system mass of HPCSHRS is reduced by 1.6%. The experimentally obtained results also show that HPCSHRS has a preferred start-up characteristic and run stability, and can ensure the inlet water temperature of inner loop to meet thermal control requirements of the space station. The quantitative agreement between the simulation and the experiments in the inlet water temperature has verified the transient simulation model of HPCSHRS.A concentric circular pipe ice storage device is presented based on light-weighted design requirement. Charging and discharging characteristics of the device are analyzed by using heat enthalpy method, resulting in reasonable values of the structural parameter. The dynamic characteristics of charging and discharging of ice storage device is experimentally studied, showing that the theoretical and experimental results are in a good agreement. The two-phase flow and heat transfer characteristics of refrigerant in tubes of the radiator are numerically analyzed based on the optimum fin height of the radiator which is gained by numerical simulation. A system optimization model employing separated flow and distributed parameter method is also developed for assessing the influences of various design schemes on power consumption and the sizing of components by the efficient connection of the component models. Based on above investigation three different means are proposed for improving the performance of HPCSHRS.Finally, two improved thermodynamic cycle schemes, double compressor cycle and compression/ejection mixed cycle, are suggested to further reduce the power consumption by raising the compressor inlet pressure of refrigerants. The results of thermodynamic analysis show that the double compressor cycle can significantly lower power consumption of HPCSHRS by 29.4% with R22 as refrigerant. As a promising scheme, the radiator area and total system mass of the double compressor cycle of HPCSHRS are 33.0% and 9.7% less than those the single-phase fluid heat rejection system respectively. Compared with the heat pump system, radiator area increases by 7.1% but the system mass is reduces by 13.9%.
引文
[1] Ernst Messerschmid, Reinhold Bertrand. Space station: Systems and Utilization[M]. Springer-Verlag Berlin Heidelberg 1999.
    [2] Ewert M. K. Active thermal control systems for Lunar and Martian exploration. SAE Paper, 901243: 613-623
    [3] Michael K. Ewert. Investigation of Lunar base thermal control system options. SAE Paper, 932112: 829-840
    [4] Michael K. Ewert, John R. Keller, Brent Hughes. Conceptual design of a solar powered heat pump for Lunar base thermal control system. SAE Paper, 961535: 833-844
    [5] Darius Nikanpour, Lina De-parolis. Space-based heat pumps for a Lunar lander/rover thermal control. SAE Paper, 961536: 845-855
    [6] Muller R., Rieck U. Design and test of a honeycomb radiator panel with carbon fiber reinforced plastic facesheets and aluminum heat pipes. SAE Paper, 932302
    [7] David G. T. Curran, Tung T. Lam. Weight optimization for honeycomb radiators with embedded heat pipes. Journal of spacecraft and rockets, 1996, 33(6): 822-828
    [8] J. H. Ambrose, J. H. Tung, A. R. Field. Two-phase survivable thenrmal management -heat acquisition and transport components. SAE Paper, 921035
    [9] Chen Ing Youn, Chyu M. C. Two-phase active thermal control systems for spacecrafts. SAE Paper, 96269: 1488-1492
    [10] Helmut Kreeb, Hands Georg. Wulz. Two-phase thermal thermal systems for space applications-European Development and test results. SAE Paper, 871459
    [11] T. J. Bland, R. S. Downing, D. P. Rogers. A Two-phase thermal management system for large space platforms AIAA 84-1758
    [12] 闵桂荣,郭舜.航天器热控制(第二版).北京:科学出版社,1998
    [13] 何知朱.空间站热控的现状及发展.见:空间站概念研究组,编.空间站概念研究文集.北京:1996.63~75
    [14] Filippi F., Arcidiacono A. Design study of a liquid heat transfer loop for thermal conditioning of spacelab experiment payloads. ESA-CR(P)-1043, 1977
    [15] Schleicher M. Steinhauser H. Design study of an experiment cooling system with liquid/air heat exchanger for spacelab payloads. ESA-CR(P)-1002, 1977
    [16] 余后满.载人航天器液体同路主动热控技术.航大器工程,1994(12):54-60
    [17] 徐济万.美国航天飞机主动热控系统.航天器工程,1993(4):36-41
    [18] Ungar E. K. Single phase vs. two-phase active thermal control systems for space applications: a trade study. AIAA Paper, 95-0634
    [19] Masao Furudawa. An integrated computational method for pumped two-phase fluid loop system/subsystemdesign. AIAA Paper, 95-2068
    [20] Chen I. Y., Duffy R., Paramanathan S. Space station Freedom two-phase integrated thermal system flight test article design and analysis. AIAA Paper, 94-0447
    [21] J. Ku. Thermodynamic aspects of CPL operation. AIAA Paper, 94-2059
    [22] Yiding Cao, A. Faghri. Conjugate analysis of a flat-plate type evaporator for CPL with three-dimensional vapor flow in the groove. Int. J. Heat Mass Transfer,1994, 37(3): 401-409
    [23] D. Khrustalev, A. Faghri. Heat transfer in the inverted meniscus type evaporator at high heat fluxes. Int. J. Heat Mass Transfer, 1995, 38(16)
    [24] Triem Hoang, J. Ku. Start-up behaviors in the CAPL2 flight experiment. SAE Paper, 972328
    [25] N. Dunbar, W. Supper. Spacecraft CPL technology-towards a qualified thermal control tool. 10 th Int. Heat Pipe Conference, Sept. 1997, Stuttgart Germant
    [26] Masao, Furukawa. Static/Dynamic analyses for pumped two-phase fluid loop control. AIAA, Thermophysics Conference, 32nd, Atlanta, OA, 1997. AIAA Paper, 97-2468
    [27] 何知朱.载人航天器流体对流循环换热研究报告.航大部501部,1990
    [28] 张加迅.毛细抽吸两相回路关键技术的研究及其应用方案设想:[博士学位论文].北京:中国空间技术研究院总体设计部,1999
    [29] 候增祺,张加迅.毛细抽吸两相环的试验分析:毛细抽吸两相同路研究报告,1995
    [30] 曲伟,毛细抽吸两相同路的非稳态特性研究:[博士学位论文].哈尔滨:哈尔滨工业大学.1998
    [31] 邓强,毛细泵环蒸发器中的传热和流动研究:[博士学位论文].北京:中国科学院.1998
    [32] Berner F. Initial development of a vapor compressor for a heat pump to be used in spacecraft. ESA-CR(P)-1029, 1977
    [33] Bouchez J. P., Bussolino L. Study and design of a heat rejection system for advanced spacecraft and payload thermal control. SAE Paper, 820845
    [34] Jeffrey H. G., Thomas L, Michael K E., et al. High temperature lift heat pump refrigerant and thermodynamic cycle selection. SAE Paper, 941272
    [35] Scaringe R.P. Preliminary investigation of advanced heat pump augmented spacecraft heat rejection system. ASME of Annual Meeting, Proceedings of Int. Symposium on Thermal Problems in Space-based System, 1987, pp119-124
    [36] Edwards D.K., Richards R. F. Optimum heat rejection temperature for spacecraft heat pumps. Journal of Spacecraft and Rockets, 1989, 26(5):303-307
    [37] Dexter P.F,Haskin W.L. Analysis of heat pump augmented system for spacecraft control . AIAA84-1757.
    [38] Merrigan M. A., Reid R.S. Heat pump augmented radiators for spacecraft thermal management. DE88-007890
    [39] Drolen B. L. Heat pump augmented radiator for high power spacecraft thermal control. AIAA paper, 89-0077
    [40] Scaringe R.P. Buckman J.AA. investigation of advanced heat pump augmented spacecraft heat rejection system. AIAA Paper, 89-0072
    [41] Grossman G. Heat pump for enhancement of heat rejection from spacecraft. J. Propulsion and power, 1990, 6: 635-644
    [42] Scaringe R.P, Haskin W. Spacecraft heat pump thermal bus development status & technical issues. Proceedings of the 25~(th) Intersociety Energy Conversion Conference, 1990, vol.2: 130-135
    [43] Sridhar K.R., Gottmann Matthias. Thermal control system for Lunar base cooling. J. of. Thermophysics and Heat Transfer, 1996, 10(3): 490-496
    [44] Aidoun Zine, Nikanpour D. Vapour compression heat pump for a lunar lander/rover thermal control. SAE961537.
    [45] Domijan A.J., Buchh T.A. PV array driven adjustable speed drive for a Lunar base heat pump. NASA/CR-95-2063
    [46] Sridhar K.R., Nanjundan Ashok, Gottmann Malthias. Evaluation of a reverse brayton cycle heat pump for Lunar base cooling. SAE Paper, 941271
    [47] Swanson T.D., Radermacher Reinhard. Low-temperature thermal control for a Lunar base. SAE Paper, 901242
    [48] Swanson T.D.,Sridhar K.R., Gottmann M. Moderate temperature control technology for a Lunar base. SAE Paper, 932114
    [49] Grossman G. Absorption heat pump for enhancement of heat rejection from spacecraft, IECEC, 1989, Pp51-56
    [50] Choi Hae-Jin, Mills Anthony F. Metal hydride heat pump for upgrading spacecraft waste heat. J.Therrnal Physics and heat transfer, 1991, 5:135-141
    [51] Lambert M. A. Conceptual design of a regenerative adsorption heat pump for a lunar base. AIAA Paper, 99-0465
    [52] Itoh Masaaki, Kogure Hiroshi, Miyagi Masahiro, et al. Development of an accordian-type offset-fin heat exchanger for air conditioners. Preview of Heat and Mass Transfer, 1995, 21(6): 545
    [53] Yun J. Y., Lee K. S. Investigation of heat transfer characteristics on various kinds of fin-and-tube heat exchangers with interrupted surfaces. Int. J. of Heat and Mass Transfer, 1999, 42(13): 2375-2385
    [54] Butrymowicz Dariusz, Trela Marian. Enhancement of condensation heat transfer by means of EHD condensate drainage. Int. J. of Thermal Sciences, 2002, 41(7): 646-657
    [55] 周乾纲.论变频空调的技术优势与节能机理.电机电器技术,2002(2): 26-29
    [56] Alexander Domijan Jr., Tariq A. Buchh. Photovoltaic array driven adjustable speed heat pump and power system scheme for a Lunar based habitat. IEEE Transactions on Energy Conversion, 1998, 13(4): 366-372
    [57] Kaushik S. C., Kumar P., Jain S. Performance evaluation of irreversible cascaded refrigeration and heat pump cycles. Energy Conversion and Management, 2002, 43(17): 2405-2424
    [58] Nguyen M., Riffat S. B., Whitman D. Solar/gas-driven absorption heat-pump systems. Applied Thermal Engineering, 1996, 16(4): 347-356
    [59] Wen-Lu Weng, Bin-Chang Huang. Thermodynamic performances of non-CFC working fluids in heat-pump cycles. Applied Thermal Engineering, 1996, 16(7): 571-578
    [60] Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament. Int. J. of Refrigeration, 1995, 18(3): 190-197
    [61] 丁国良,张春路.制冷空调装置仿真与优化.北京:科学出版社,2001
    [62] 黄国强,汽车空调系统动态仿真和优化研究:[博士学位论文].上海:上海交通大学,1994
    [63] 葛云亭,房间空间器系统仿真模型研究:[博士学位论文].北京:清华大学,1997
    [64] Haobo Jiang, Chris Borkowski, Reinhard Radermacher, et al. An experimental and computer simulation investigation of the performance of a heat pump for stratospheric balloon missions. Proceedings of the ASME, Advanced energy systems division-2000, New York p139-146.
    [65] Haobo Jiang, Reinhard Radermacher. A distributed model for the transient performance of a space heat pump. Proceedings of the ASME, advanced energy systems division-2001 Nov., New York, p209-216.
    [66] Mcarther J. W., Grald E. W. Prediction of cyclic heat pump performance with a fully distributed model and a comparison with experimental data. ASHRAE Trans. 1987, part 2: 1159-1178
    [67] S. M. Sami, T. N. Duong. Dynamic performance of heat pumps using refrigerant R-134a. ASHRAE Trans. 1991, part 2: 41-47
    [68] Mei V. C., Domitrovic R. E., Chen F. C. Heat pulnp technology development for space station thermal management. Proceedings of hat. Conference on Life Support and Biosphere Science, 4th, Baltimore, MD, Aug. 6-9, 2000 (A00-42626 11-54), Life Support & Biosphere Science (1069-9422), vol. 7(1): 138
    [69] 果琳丽,朱永贵.空间实验室大系统论证报告.航天工业总公司一院一部,1999年7月
    [70] Brian E. Ames, Patricia A. Petete. Heat pump evaluation for space station ATCS evolution. SAE Paper, 911342
    [71] 华泽钊,刘道平,吴兆琳,等.蓄冷技术及其在空调工程中的应用.北京:科学出版社,1997
    [72] 方贵银.蓄冷空调工程实用新技术.北京:人民邮电出版社,2000年
    [73] 张寅平,邱国全.冰蓄冷研究的现状与展望.暖通空调,1997,27(6):25-30
    [74] Ho C. J., and Chen S. Numerical simulation of melting of ice around a horizontal cylinder. Int. J. heat Mass Transfer, 1986, 29(9): 1359-1368
    [75] Gilmore S. D., Guceri S. I. Three-dimensional solidification, A numerical approach. Numerical Heat Transfer, 1988: 165-186
    [76] Yeoh G H, Behnia M, Davis G De Vahl, et al. A numerical study of three-dimensional natural convection during freezing of water. Int. J. for Numerical Methods in Engineering, 1990, 30(4): 899-914
    [77] Voller V. R. Fast implicit finite-difference method for the analysis of phase change problems. Numerical Heat Transfer, part B, 1990,17(2): 155-169
    [78] Zeng X, Xin M D. An implicit enthaply solution for conduction control phase change problems of cyclinders and spheres. AIAA Paper, 91-4001
    [79] Cleland A C. Computer subroutines for rapid evaluation of refrigerant thermodynamic properties. Int J Refrig, 1986, 9(8), 346-351.
    [80] Cleland A C. Polynomial curve-fits for refrigerant thermodynamic properties: extension to include R134a. Int J Refrig, 1994, 17(4): 245-249.
    [81] 岳孝方,陈汝东.制冷技术与应用.上海:同学大学出版社,1992
    [82] Manohar R. Kulkarni. Compressor power modeling: Part 1 Thermodynamic efficiency determination from manufacturer's performance curves. Proceedings of the 36th Intersociety Energy Conversion Engineering Conference, July-August, 2001, Savannah Georgia, Vol.2: 721-726
    [83] Bittle R. R., Wolf D. A., Pate M. B. A generalized performance prediction method for adiabatic capillary tubes. HVAC & R Research, 1998, 4(1): 27-43
    [84] 庄友明.制冷装置设计.厦门:厦门大学出版社,1999:97
    [85] Bohdal Tadeusz, Charun Henryk, Czapp Marian, et al. An investigation of a condensation process efficiency in Freon air-cooled condenser coils. Recent advances in heat transfer, 1992, Elsevier Science publishers B.V., P33-343.
    [86] Parise J. A. R., Cratwright W. C. Local analysis of three-dimensional air-cooled condenser using a two-phase flow diagram. Heat transfer equipment design, 1988, p123-129
    [87] Lin S., Kwok C. C. K., Li R. Y., et al. Local frictional pressure drop during vaporization of R-12 through capillary tubes. Int. J. Multiphase Flow, 1991, 17(1): 95-102
    [88] Paliwoda Aleksander. Generalized method of pressure drop calculation across pipe components containing two-phase flow of refrigerants. Int. J. Refrig., 1992, 15(2): 119-125
    [89] Soliman H M, Azer N Z. Flow patterns during condensation inside a horizontal tube. ASHRAE Trans. 1971, 77(PartⅠ): 210-240
    [90] Soliman H M, Azer N Z. Visual studies of flow patterns during condensations inside horizontal tube. Proceedings of the 5th Int. heat transfer conf. 1974, vol.3, PP241-245.
    [91] Breber George. In tube condensation, heat exchangers, thermal-hydraulic fundamentals and design, 1981, Hemisphere Publishing Corporation, p451-473
    [92] Carey Van P. Liquid-vapour phase-change phenomena. Hemisphere Publishing Corporation, 1992.
    [93] Shah M. M. A general correlation for heat transfer during film condensation inside pipes. Int. J Heat Mass Transfer, 1979, 22(4): 547-556
    [94] Nakayama W., L. P. Xu. Enhanced fins for air-cooled heat exchangers-Heat transfer and friction factor correlation. Proceedings of the 1983 ASME-JSME Thermal Engineering Joint Conference, 1983, Vol. 1: 495-502
    [95] Muller Steinhagen H., Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Prog., 1986, 20(9): 297-308
    [96] 林宗虎.气液两相流和沸腾传热.西安:西安交通大学出版社,1987
    [97] 徐济鉴.沸腾传热和气液两相流.北京:原子能出版社,1993
    [98] 周强泰.两相流动和热交换.北京:水利电力出版社,1990
    [99] Teraga M., Guy R. W. Refrigeration side heat transfer and pressure drop estimates for direct expansion coil, A review of works in North American Use. Int. J. of Refrig., 1985, 8: 134-142
    [100] Bolstad M. M., Jordan R. C. Theory and use of the capillary tube expansion device. Refrigerating Engineering, 1948, pp519
    [101] Whitesel H. A. Capillary two-phase flow. Refrigerating Engineering, 1957, pp42.
    [102] Mikol E. P. Adiabatic single and two-phase flow in small bore tube. ASHRAE J. 1967, 5(11): 75-86
    [103] Pate M. B. and Tree D. R. An analysis of pressure and temperature measurements along a capillary tube-suction line heat exchanger. ASHRAE Trans., 1984a, vol.90, part2.
    [104] Pate M. B. and Tree D. R. A line quality model for capillary tube-suction line heat exchanger. ASHRAE Trans., 1984b, vol.90, part2.
    [105] Churchill S. W. Frictional equation spans all fluid flow regimes. Chemical engineering, 1977, 84: 91-92.
    [106] Yilmaz T., Unal S. General equation for the design of capillary tubes. ASME Journal of fluids engineering, 1996, 118(2): 150-154.
    [107] 李明海,任建勋,梁新刚,等.热泵-废热回收在空间站热管理中的应用.太阳能学报,2002,23(2):181-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700