脑电信号非线性分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别采用非线性动力学、小波变换、神经网络和混沌理论等现代分析方法对EEG信号的非线性特征进行了比较全面的分析和研究。这些分析方法都是当今非线性信号分析领域备受关注的新方法。随着信息科学和计算技术的发展,这些方法具有广阔的应用前景和潜在的优势。本文的主要贡献归纳如下:1)在小波变换的基础上,用150例EEG样本计算了表征EEG信号奇异性大小的Lipschitz指数。得出癫痫EEG的Lipschitz指数总体上比健康EEG小的结论,并分别作出健康EEG和癫痫EEG的Lipschitz指数谱。2)将基于高阶统计(HOS)的高阶奇异谱分析(HSSA)方法用于EEG信号的分析中,有效地克服了二阶奇异谱无法反映EEG信号非线性特征的缺陷。本文还利用小波多尺度信号分解和重构技术得出EEG的高阶奇异谱,实验结果表明该方法效果更好。3)在用PCA方法证实多通道EEG之间存在串扰的情况下,将ICA方法用于多通道EEG信号的盲源分离(BSS)。同时,将小波变换技术与ICA技术结合,有效地解决了现有ICA方法不能将噪声从信号中分离的问题。此外,为了提高算法的稳健性,本文提出采用双网络的方法并对ICA神经算法进行改进。4)提出相空间态密度和态方差的概念,并求出基于相对距离协方差矩阵的EEG奇异谱,求出基于相空间相对距离的EEG近似熵和信息熵。5)从相空间重构的角度解释了小波变换的物理本质,从而揭示:混沌时间序列的小波变换实质上是在重构的相空间中,混沌吸引子向小波滤波器向量所张的空间中的投影,这些结果与Packard等人提出的相空间重构方法本质上是一致的。本文还从小波空间导出延迟时间空间的向量方程。6)设计了两级Kohonen网络和小波网络的EEG信号分类的网络结构,并对算法进行详细的描述。
     此外,有参考价值的工作还有:1)提出EEG信号相空间中无标度区会随嵌入维数而发生移动的观点。2)对多通道EEG信号的混叠问题和“独立源”概念作出物理解释。3)提出从延迟时间空间到小波空间的空间旋转问题,为从两个空间寻找混沌吸引子相轨道的共同点提供新的途径。4)得出未发现EEG具有低维混沌的结论。本文所有的计算均采用工具软件Matlab完成。
We investigated the nonlinear features of EEG in a relatively all-sided way by using current analysis methods such as nonlinear dynamics, wavelet transform, neural network and chaos theory respectively. These new methods are now become more concerned in the area of nonlinear signal analysis, and have a wide application prospect and potential advantage with the development of information science and computation technology. The main contribution of this thesis include: 1) Based on the wavelet transform, we calculated the Lipschitz exponents of EEG of 150 subjects, which characterize the singularity of EEG, and concluded that the Lipschitz exponents of epileptic EEG is larger than the one of normal EEG. We also obtained the spectra of the Lipschitz exponent both normal EEG and epileptic EEG. 2) By using higher-order singular specturm analysis (HSSA) for the analysis of EEG, which is based on the higher-order statistics, hence, the deficiency that the second-order singular spectrum cann't characterize the nonlinearity of EEG is overcome effectively. Furthermore, we made the higher-order sepctrum of EEG by using wavelet transform techniques for multi-scale signal decomposition and reconstruction. The results show that the method proposed herein is better. 3) After verifying
    the fact that there are crosstalks exist among multi-channel EEGs by principle component analysis, we used ICA (Independent Component Analysis) technique for blind source separation (BSS) of EEG. To resolve the problem that ICA cann't separate noise from signal, we also combined the ICA with wavelet transform for BSS of EEG. Moreover, in order to improve the robustness of algorithm, a two-stage neural network was constructed and the algorithm of ICA was improved. 4) Proposed two new concepts, called state density and state variance, and drawed the singular spectrum of EEG based on
    
    
    
    the covariance matrix of relative distance. In addition, we calculated the approximate entropy(ApEn) and information entropy of EEG based on the relative distance in phasespace. 5) We explained the physical essence of wavelet transfrom from the viewpoint of phase reconstruction, i.e. the wavelet
    transform of chaotic time series is essentially a projection of strange attractor on the axis of the wavelet space that filter vectors open, which in correspondance with the method of phasespace reconstruction proposed by Packard and his Co-workers. Additionally, the vector equation of time-delay space was derived from wavelet space. 6) The architecture of two-stage Kohonen network and wavelet network were designed, which can be used for classifying EEG, and the corresponding algorithm was described in detail.
    Besides those mentioned above, other valuable work include: 1) A viewpoint was proposed that scale-invariant range of phasespace of EEG will be moved as the increase of the embedding dimension. 2) A physical explanation for both the aliasing and the "Independent Source" of EEG were given. 3) In order to seek a new approach to finding the common ground of phase trajectory of chaotic attractor between two spaces, the concept of phase space rotation between time-delay space and wavelet space was presented. 4) It was concluded that the low-dimension chaos in EEG isn't found in our works.
    All computation work in this thesis are made under Matlab.
引文
[1] Berger H. Ubet das elektroenkephalogram des Menschen[J]. Arch. Psychiatr. Nervenkrankheit., 1924, 87:527-570.
    [2] Zetterberg LH. Estimation of parameter for linear difference equation with application to EFG analysls[J]. Math. Biosci., 1969, 5: 227-275.
    [3] Levy WJ, Shapiro HM, Meathe E. The .identification of rhythmic EEG artifacts by power-spectrum analysis[J]. Anesthesiology, 1980, 53: 505-507.
    [4] Levy WJ. Effect of epoch length on power spectrum analysis of the EEG[J]. Anesthesiology, 1987, 66: 489-495.
    [5] Jansen BH, Hasman A, Lenten R. Piecewise analysis of EEGs using AR-modeling and clustering[J]. Comp Biomed. Res., 1981,14:168-178.
    [6] Madharan PC, stephans BE, kligberg D, et al. Analysis of rat EEG using autoregressive power spectra[J]. Journal of Neurosei. Meth, 1991,40: 91-100.
    [7] Franaszezuk P J, Bergey GK. Multichannel autoregressive analysis of mesial temporal seizures using the method of directed transfer functions[J]. Epilepsia, 1993,34 (Suppl 6): 125.
    [8] Schlgl A, Flotzinger D, Pfurtscheller G. Adaptive Autoregressive Modeling used for Single-trial EEG Classification[J]. Biomedizinische Technik, 1997, 42:162-167.
    [9] Franaszczuk P J, Bergey OK. An autoregressive method for the measurement of synchronization of multichannel interictal and ictal EEG signals[J]. Biol Cybernetics, 1999,81:3-9.
    [10] Paranjape RB, Mahovsky J, Benedicenti L. On AR Models and Other Metrics o f the EEG for Subject Identification[C]. Proceedings of the 5th
    
    World Multiconference on Systemics, Cybernetics and Informatics ,2001 ,(SCI 2001).
    [11] Meinhold RJ, Singpurwalla ND. Understanding the Kalman-Filter[J]. The American Statistician, 1983,37:123-127.
    [12] Schlgl A, Anderer P, Roberts SJ, et al. Artifact detection in sleep eeg by the use of kalman filtering[C]. In Proceedings EMBEC'99,1999, Part Ⅱ, pages 1648-1649, Vienna, Austria..
    [13] Penny W, Roberts S. Dynamic models for nonstationary signal segmentation[J]. Computers and Biomedical Research, 1999, 32(6):483-502.
    [14] Rohál'ová M, Sykacek P, Dorffner G, et al. Detection of EEG Artifacts Using Kalman Filtering[C]. In Halici, Leblebicioglu, Atalay, and Nalcaci, editors, Proceedings of Brain Machine 2000 Workshop, 2000, 219-226.
    [15] Rohatova M, Sykacek P, Koska M, et al. Detection of the eeg artifacts by the means of the (extended) kalman filter[J]. Measurement Science Review, 2001,1(1):59-62.
    [16] Dumermuth G, Huber PJ, Kleiner B, et al. Analysis of the interrelations between frequency bands of the EEG by means of the bispectrum-a preliminary study[J]. Electroenph Clin. Neurophy, 1971,31:137-148.
    [17] Barnett TP, Johnson LC, Naitoh P et al. Bispectrum analysis of electroencephalogram signals during waking and sleeping[J]. Science,1971,172: 401-402.
    [18] Nigh T, Bronzino JD. Bispectral analysis of the rat EEG during various vigilance states[J].IEEE Trans Biomed Engng, 1989,36:497-499.
    [19] Ning T, Bronzino JD. Autoregresive and bispectral analysis techniques:EEG application[J]. IEEE EMB Magazine, 1990,9(1):47-50.
    [20] Sawtelle K, Rampil I. Bispectral EEG Index Predicts Awakening[J]. Anesthesiology, 1994,81 (3A): A213.
    [21] Sigl JC, Chamoun NG. An introduction to bispectral analysis for the
    
    electroencephalogram[J]. J. Clin Monit., 1994,10(6):392-404.
    [22] Liu J, Singh H, White PF. Electroencephalogram bispectral analysis predicts the depth of midazolam-induced sedation[J]. Anesthesiology, 1996, 84(1):64-69.
    [23] Sebel PS, Lang E, Rampil IJ, et al. A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect[J]. Anesth Analg.,1997, 84(4):891-899.
    [24] Wigner EP. The problem of measurement[J]. Am. J. Physics.,1963, 31: 6-15.
    [25] Claasen TACM, Mecklenbraker WFG. The Wigner Distribution-A Tool for Time Frequency Signal Analysis-Part Ⅰ: Continuous-time Signals[J]. Phillips J. Res.,1980, 35:217-250.
    [26] Morgan N, Gevins A. Wigner distributions of human event-related brain potentials[J]. IEEE Trans Biomed Eng, 1986,33:66-70.
    [27] Cohen L. Time-frequency distributions-A Review[C]. Proceedings of the IEEE,1989,77(7):941-981.
    [28] Durka PJ, Blinowska KJ. A unified time-frequency parametrization of EEG[J]. IEEE Engineering in Medicine and Biology Magazine, 2001,20(5):47-53.
    [29] Blinowska KJ, Durka PJ. Unbiased high resolution method of EEG analysis in timefrequency space[J].Acta Neurobiologiae Experimentalis, 2001,61: 157-174.
    [30] Novak P, Lepicovska V. Optimal of slow periodic modulation of EEG in a patient with Alzheimer's disease[J]. Physical Res, 1992,41(4):293-299.
    [31] Palus M. Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos[J]. Biological Cybernetics,1996, 75(5): 389-396.
    [32] Casdagli, M. C., Iasernidis, L. D., Sackellares, J C, et al. Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy[J].
    
    Physica D, 1996,99:381-399.
    [33] Casdagli, M. C., Iasemidis, L.D. Savit, R..et al. Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy[J]. Electroencephalogr. Clin. Neurophysiol., 1997, 102: 98-105.
    [34] Palus M., Komárek V., Hrncir Z. et al. Is nonlinearity relevant for detecting changes in EEG?[J]. Theory Biosci., 1999,118:179-188.
    [35] Babloyantz A., Salazar J.M., Nicolis C. Evidence of chaotic dynamics of brain activity during the sleep cycle[J]. Physics Letters A, 1985,111:152-156.
    [36] Soong A, Stuart C. Evidence of Chaotic Dynamics Underlying the Human Alpha Rhythm Electroencephalogram[J].Biological Cybernetics, 1989,62:58-62.
    [37] Rapp P.E., Bashore T.R., Martinerie J.M., et al. Dynamics of brain electrical activity[J]. Brain Topography., 1989, 2:99-118.
    [38] King C.. Fractal and Chaotic Dynamics in Nervous Systems[J]. Progress in Neurobiology, 1991,36:279-308.
    [39] Krajca V., Petranek S., Patakova I. et al. Automatic Identification of Significant Graphoelements in Multichannel EEG Recordings by Adaptive Segmentation and Fuzzy Clustering[J]. Int. J. Bio-Medical Computing, 1991,28:71-89.
    [40] Eberhart, R.C.; Dobbins, R.W.; Webber, W.R.S., CASENET: a neural network tool for EEG waveform classification[C]. In:Proc. Ⅱ Ann. IEEE Symp. Comput.-Based Med. Syst., Washington, DC: IEEE Comput. Soc. Press, 1989,60-68.
    [41] Pietil T., Vapaakoski S., Nousiainen U. et al. Evaluation of a computerized system for recognition of epileptic activity during long-term EEG monitoring, Electroencephalogr[J]. Clin. Neurophysiol., 1994,90: 438-443.
    [42] Zhang Tong, Yang Fu-sheng, Tang Qing-yu. Automatic Detection and Classification of Epileptic Waves in EEG[J]. Chinese Journal of
    
    Biomedical Engineering, 1998,17(1): 1-11.
    [43] Broomhead DS, King GP. Extracting qualitative dynamics from experimental data[J]. Physica D, 1986,20: 217-236.
    [44] Vautard R, Yiou R, Ghil M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals[J], Physica D,1992, 58: 95-126.
    [45] Celka P, Colditz P. A computer aided detection of EEG seizures in infants: a singular spectrum approach and performance comparision[J]. IEEE Trans.on Biomed. Eng., 2002,49(5): 455-462.
    [46] Bhattacharya J. Complexity analysis of spontaneous EEG[J]. Acta Neurobiologiae Experimentalis,2000,60:495-501.
    [47] Zhang X, Roy RJ. Detecting Movement During Anesthesia by EEG Complexity Analysis[J]. Medical & Biological Engineering & Computing, 1999,37(3):327-334.
    [48] Zhang X, Roy RJ, Jensen EW. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed. Eng.,2001,48(12): 1424-1433.
    [49] Wang P, Zheng X, Peng C, et al. Analysis of EEG based on the complexity measure[J]. J.Biomed.Eng.(in Chinese),2002,19(2):229-231.
    [50] Kolmogorov AN. A new invariant for transitive dynamical systems[J]. Dokl. Akad. Nauk. USSR., 1958,119:861-864.
    [51] Fraser AM. Information and entropy in strange attractors[J]. IEEE Trans. On information theory, 1989,35(2): 245-262.
    [52] Pincus SM. Approximate entropy as a measure of system complexity[J]. Proc Natl Acad Sci USA ,1991,88:2297-2301.
    [53] Bruhn J, Ropcke H, Hoeft A. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia[J]. Anesthesiology, 2000,92(3):715-726.
    [54] Mallat S, A. theory of multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. on Pattern Analysis and
    
    Machine Intelligence(PAMI), 1989,11:674-693.
    [55] Senhadji et al. Wavelet Analysis of EEG Signal[C]. Proc-Annual Conference of IEEE BMES,1990,12(2): 811-812.
    [56] Mallat S, Hwang WL. Singularity detection and processing with wavelet[J]. IEEE Trans. On Information Theory, 1992,38(2):617-643.
    [57] Wahlberg P, Salomonsson G. Feature extraction and clustering of EEG epileptic spike[J].Computers and Biomedical research,1996,29:382-394.
    [58] Ktonas PY. Automated spike and sharp wave detection, in Methods of Analysis of brain electrical and magnetic signals[M]. Elesevier Science Publisher, 1987,211-241.
    [59] Bennetin G, Galgani L, Giogilli A, et al. Lyapunov characteristic exponents for smooth dynamical systems. a method for computing all of them. Part 1. Theory[J]. Meccanica., 1980,15: 9-20.
    [60] Grassberger P, Procaccia I. Characterization of Strange Attractors[J]. Phys. Rev. Lett., 1983,50 (5):346-349.
    [61] Takigawa M, Wang G. Event-related information entropy analysis on human EEG[J]. Neurosciences (Tokyo), 1990,16:277-282.
    [62] Pincus SM, Keefe DL. Quantification of hormone pulsatility via an approximate entropy algorithm[J]. American Journal of Physiology-Endocrinology and Metabolism.,1992, 262:E741-E754.
    [63] Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify?[J]. Am. J. Physiol., 1994,266: H1643-H1656.
    [64] Bhattacharya J.Complexity analysis of spontaneous EEG[J]. Acta Neurobiologiae Experimentalis ,2000,60:495-501.
    [65] Bezerianos A, Tong S, Thakor N. Time-Dependent Entropy Estimation of EEG Rhythm Changes Following Brain Ischemia[J]. Annals of Biomedical Engineering, 2003,31:221-232.
    [66] Lempel A, Ziv J. On the complexity of finite sequence[J]. IEEE Trans. Inf. Theory. ,1976,22(1):75-81.
    
    
    [67] Kasper E Schuster HG. Easily calculable measure for the complexity of spatiotemporal patterns[J]. Phys Rev. A, 1987,36(2):842-848.
    [68] Xu JH. Complexity and Brain Function[J]. Acta Biophysica Sinica,1991,7(1): 103-106.
    [69] D'Alessandor G, Politi A. Hierarchical approach to complexity with applications to dynamic systems[J]. Physics Review Letters, 1990,64:1609-1612.
    [70] Xu JH, Wu XB. Chaos, Solition and Fractals[J]. Science in China, (ser. B),1994,4(1):57-62.
    [71] Gabor J, Ralph M, Zsolt Horváth, et al. Pattern recognition of the electroencephalogram by artificial neural networks[J]. Electroencephalography and Clinical Neurophysiology, 1993, 86(2):100-109.
    [72] Pietil T, Vapaakoski S, Nousiainen U, et al. Evaluation of a computerized system for recognition of epileptic activity during long-term EEG monitoring[J]. Electroencephalogr. Clin. Neurophysiol, 1994,90:438-443.
    [73] Bankman IN, Sigillito VG, Wise RA, et al. Feature-Based Detection of the K-Complex Wave in the Human Electroencephalogram Using Neural Networks[J]. IEEE Transactions on Biomedical Engineering, 1992,39(12): 1305-1310.
    [74] Wahlberg P, Salomonsson G. Feature extraction and clustering of EEG epileptic spikes[J]. Computers and Biomedical Research, 1996,29(5):382-394.
    [75] Gabor AJ ,Seyal M. Automated interictal EEG spike detection using artificial neural networks[J]. Electroencephalography and Clinical Neurophysiology, 1992,83(5):271-280.
    [76] Webber WR, Lesser RP, Richardson RT, et al. An approach to seizure detection using an artificial neural network[J]. Electroencephalogr Clin Neurophysiol.,1996, 98(4):250-272.
    
    
    [77] Pradhan N, Sadasivan PK, Arunodaya GR. Detection of Seizure Activity in EEG by an Artificial Neural Network: A Preliminary Study[J]. Computers in Biomedical Research, 1996,29(4):303-313.
    [78] Vrri A, Neuvo Y, Loula P. et al. Computerized Classification of Long Term Recordings of Epileptic EEG[C]. Finnish Artificial Intelligence Symposium, STEP-88, University of Helsinki, 1988,53-62, 15-18,8.
    [79] Elo P, Saarinen J, Vrri A,et al. Classification of epileptic EEG by using self-organized maps[C]. Proc, of International Conference on Artificial Neural Networks (ICANN-92), Brighton, United Kingdom, September 1992, in Artificial neural networks, 2nd edition, Aleksander Ⅰ., Taylor J. (eds), Elsevier Science Publishers, 1992,1147-1150.
    [80] Anderson CW, Devulapalli SV, Stolz EA. EEG signal classification with different signal representations[J].Neural Networks for Signal Processing V,1995,475-483, IEEE Service Center, Piscataway, NJ.
    [81] Dorffner, G. Neural Networks for Time Series Processing[J]. Neural Network World, 1996,6 (4): 447-468.
    [82] Pfurtscheller G, Flotzinger D, Mohl W, et al. Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks[J].Electroencephalography, Clin Neurophysiol, 1992,82(4): 313-315.
    [83] Schetinin V, Solomakha A. Prediction of Postoperative Complications Using Neural Networks[J]. Biomedical Engineering, Kluwer Academic, ,2000,2:21-24.
    [84] Petrosian A, Prokhorov D, Lajara-Nanson W, et al. Recurrent Neural Network Based Approach for Early Recognition of Alzheimer's disease in EEG[J]. Clinical Neurophysiology, 2001,112(8): 1378-1387.
    [85] Nugent CD, Lopez JA, Smith AE, et al. Prediction models in the design of neural network based ECG classifiers: A neural network and genetic programming approach[J]. BMC Med Inform Decis Mak, 2002,2(1): 1.
    [86] Gabor D. Theory of communication[J]. J. Inst. Elec. Eng.,93(Part
    
    Ⅲ): 1964,429-457.
    [87] Goupillaud P, Grossmann A. Morlet J. Cycle-octave and related transforms in seismic signal analysis[J]. Geoexploration, 1984,23:85-102.
    [88] Mallat S, A, Compact Multiresolution Representation: The Wavelet Model[J]. IEEE Computer Society Workshop on Computer Vision (WCV), 1987,87:2-7.
    [89] Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Comm. On Pure and Appl. Math., 1988,41(7): 909-996.
    [90] Daubechies I. The Wavelet Transform. Time-Frequency Localization and Signal Analysis[J]. IEEE Trans. IT, 1990,36(5):961-1005.
    [91] Glover, JR, Ktonas PY, Rahavan N, et al. A multi-channel signal processor for the detection of epileptic sharp transients in the EEG[J]. IEEE Trans. Biomed. Eng., 1986,33:1121-1128.
    [92] Gotman J. Automatic seizures detection: improvements and evaluation, Electroenceph[J]. Clin. Neurophysiol, 1989,76:317-324.
    [93] Kalayci T, zdamar O. Wavelet preprocessing for automated neural network detection of EEG spikes[J]. IEEE Engineering in Medicine and Biology, 1995,14 (2):160-166.
    [94] Attellis CED, et al. Detection of Epileptic Events in Electroencephalograms Using Wavelet Analysis[J]. Annals of Biomedical Engineering, 1997,25:286-293.
    [95] Benedetto JJ, Pfander GE. Wavelet Detection of Periodic Behavior in EEG and ECoG Data[C]. Proceedings of the 15th IMACS World Congress, Berlin, August ,1997,1:75-80.
    [96] Geva AB, Kerem DH. Forecasting generalized eplileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering[J]. IEEE Transaction on Biomedical Engineering, 1998,45:1205-1216.
    [97] Herrmann CS, Reine F. Wavelet transform as feature extraction for
    
    medical diagnosis of EEGs[J]. In M. Jamshidi, M. Fathi und F. Pierrot (Hrsg.) Soft Computing Industrial Applications, 1996,5:313-318.
    [98] Petrosian A, Prokhorov D, Homan R, et al. Recurrent neural network based prediction of epileptic seizures in intra-and extracranial EEG[J]. Neurocomputing, 2000,30 (1-4): 201-218.
    [99] Sajda P, Spence C, Parra L, et al. Hierarchical Multi-Resolution Models for Object Reecognition: Applications to Mammographic Computer-aided Diagnosis[C]. In 29th Applied Imagery Pattern Recognition Workshop. J.V. Aanstoos, ed. IEEE Computer Society, 2000,159-165.
    [100] Quyen MLV, Martinerie J, Navarro V, et al. Anticipation of epileptic eizures from standard EEG recordings[J]. Lancet, 2001,357:183-188.
    [101] Geva AB, Pratt H, Zeevi YY. Spatio-Temporal Multiple Source Localization by Wavelet-Type Decomposition of Evoked Potentials[J]. Electroencephalography and Clinical Neurophysiology, 1995,96:278-286.
    [102] Li L, Mao F, Qian W et al. Wavelet transform for directional feature extraction in medical imaging[C]. (ICIP'97),Washington DC1997,3(set 3):26-29.
    [103] Geva AB, Pratt H, ZeeviY. Multichannel Wavelet-Type Decomposition of Evoked Potentials: Model-Based Recognition of Generator Activity[J]. Medical & Biological Engineering & Computing, 1997,35(1): 40-46.
    [104] Stefan Pittner, Sagar V. Kamarthi. Feature Extraction From Wavelet Coefficients for Pattern Recognition Tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(1): 83-88.
    [105] Browne M, Cutmore TRH. Adaptive wavelet filtering for analysis of event-related potentials from the electroencephalogram[J]. Medical and Biological Engineering and Computing ,2000,38(6):645-652.
    [106] Olkkonen H, Pesola P, Olkkonen J, et al. EEG noise cancellation by a
    
    subspace method based on wavelet decomposition[J]. Med Sci Monit.,2002,8(11):199-204.
    [107] Roberts S, Chaumeron T, Magdolen J. Adaptive noise removal,from complex signals using the wavelet transform[J], in Signal Processing Ⅶ: Theories and Applications, 1994,1:66-69.
    [108] Quian Quiroga R. Obtaining single stimulus evoked potentials with Wavelet Denoising[J]. Physica D, 2000,145:278-292.
    [109] Perrin C, Walczak B, Massart DL. The use of wavelets for signal denoising in capillary electrophoresis[J]. Anal. Chem., 2001,73:4903-4917.
    [110] Daubechies I. The Wavelet Transform, Time-Frequency Localization and Signal Analysis[J]. IEEE Trans. Information Theory, 1990,36(5):961-1004.
    [111] Schiff SJ, Heller J, Weinstein SL, et al. Controlled Wavelet Transforms for EEG Spike and Seizure Localization[J]. SPIE: Wavelet Applications, 1994,2242:761.
    [112] Schiff SJ, Milton J, Heller J, et al. Wavelet Transforms and Surrogate Data for Elecroencephalographic Spike and Seizure Localization[J]. Optical Engineering, 1994,33(17): 2162.
    [113] Benke G, Bozek-Kuzmicki M, Colella D, et al. Wavelet-based analysis of EEG signals for detection and localization of epileptic seizures[C]. SPIE Proceedings Orlando, 1995,2491-73.
    [114] Theiler J, Eubank S, Longtin A, et al. Testing for nonlinearity in time series: the method of surrogate data[J]. Physica D, 1992,58:77-79.
    [115] Makeig S, Jung TP. Changes in alertness is principal component of variance in the EEG spectrum[R]. NeuroReport, 1995,7:213-216.
    [116] Casdagli MC, Iasemidis LD, Savit RS, et al. Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy[J]. Electroencephalogr. Clin. Neurophysiol.,1997, 102:98-105.
    [117] Stare CJ, Niclai J, Keunen RW. Nonlinear dynamical analysis of
    
    periodic lateralized epileptiform discharges[J]. Clin. Electroencephalography ,1998,29(2):101-105.
    [118] Kugiumtzis D. Complications in Applying the Method of Surrogate Data to EEG[C]. Proceedings of the 1999 Workshop "Chaos in Brain?", World Scientific, Singapore.2000, 230-233.
    [119] Stepien RA. Testing for non-linearity in EEG signal of healthy subjects[J]. Acta Neurobiol Exp (Warsz),2002,62(4):277-281.
    [120] Hughes J.R,EEG IN CLINICAL PRACTICE(马仁飞译),临床实用脑电图学.北京:人民卫生出版社,1997.
    [121] Freeman WJ. Simulation of chaotic EEG patterns with a dynamical model of the olfactory system[J]. Biol Cyber., 1987,56:139-150.
    [122] Skarda CA, Freeman WJ. How brain makes chaos in order to make sense of the world[J]. Behavioral and Brain Sciences, 1987,10:161-195.
    [123] Glass L, Kaplan DT. Time series analysis of complex dynamics in physiology and medicine [J]. Medical Progress through Technology, 1993,19:115-136.
    [124] Simm CW, Sawlay ML, Skiff F. On the analysis of experimental signals for evidence of deterministic chaos[J]. Heletica Phys. Acta, 1987,60:510.
    [125] Takens F.Detecting strange attractors in turbulence. Lecture Notes in Math, (Springer ,Berlin), 1980,898:365-381.
    [126] Packard NH. Crutchfield JP, Farmer JD, et al. Geometry from a time series. Phys Rev Lett, 1980,45(9): 712-716.
    [127] Kugiumtzis D. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series-the Role of the Time Window Length[J]. Physica D, 1996,95:13-28.
    [128] Broomhead DS, King GP. Extracting qualitative dynamics from experimental data[J]. Physica D, 1986,20:217-236.
    [129] You Rongyi, Xu Shenchu. Higher Order Singular Spectrum Analysis of EEG[J]. ACTA Biophysica Sinica, 2003,19(2): 147-150.
    
    
    [130] Babloyantz A, Salazar JM, Nicolis C. Evidence of chaotic dynamics[J]. Phys LettA, 1985,111(3): 152-156.
    [131] Basar E .Chaotic dynamics and resonance phenomena in brain function: Progress, perspectives and thoughts[M]. in Basar E. (Ed.) Chaos in Brain Function. Heidelberg: Springer-Verlag, 1990, 1-30
    [132] GrassbergerP, Procaccia I. Characterization of Strange Attractors[J]. Phys. Rev. Lett, 1983,50(5): 346-349.
    [133] Yang ZJ ,Zhao GZ. The phase space analysis of EMG signal[J].Acta Biophysica. Sin. (in Chinese),1998,14 257 [杨志家,赵光宙,生物物理学报,1998,14:257.
    [134] Yang SQ, Jia CY. Tow practical methods of phase space reconstruction[J]. Acta Phys. Sin. (in Chinese), 2002,51: 2452-2458.[杨绍清 贾传荧,物理学报,2002,51: 2452-2458.]
    [135] Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov Exponents from a Time Series[J]. Physica D, 1985,16:285-317.
    [136] Eckmann J, Karnphorst SO, Ruelle D, et al. Liapunov exponents from time series[J]. Physical Review A, 1986,34(6): 4971-4979.
    [137] Sato S, Sano M, Sawada Y. Practical Methods of Measuring the Generalized Dimension and the Largest Lyapunov Exponent in High Dimensional Chaotic Systems[J]. Progress of Theoretical Physics, 1987,77 (1):1-5.
    [138] Briggs K. An improved method for estimating Liapunov exponents of chaotic time series[J]. Phys. Lett. A ,1990,151: 27.
    [139] Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physiea D, 1993,65:117-134.
    [140] Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal[J]. Phys. Rev. A, 1983,28(4): 2591-2593.
    [141] Cohen A, Procaccia I. Computing the kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A,
    
    1985,31:1872-1882.
    [142] Abarbanel HDI. Analysis of Observed Chaotic Data[M]. (Springer-Verlag, New York Berlin Heidelberg, 1996,200-250.
    [143] 秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1994.
    [144] 李建平.小波分析与信号处理-理论,应用及软件实现.重庆:重庆出版社,1997.
    [145] 沈鼎烈.临床癫痫学.上海:上海科学技术出版社,1994.
    [146] Spatt J, Pelzl G, Mamoli B. Reliability of automatic and visual analysis of interictal spikes in lateralising and epileptic focus during video-EEG monitoring[J]. Electroencephalography and clinical Neurophysiology ,1997,103(4): 421-425.
    [147] Sartoretto F, Ermani M. Automatic detection of epileptiform activity by single-level wavelet analysis[J]. Clin Neurophysiol, 1999,110: 239-249.
    [148] Gotman J. Automatic detection of seizures and spikes[J]. Journal of Clinical Neurophysiology, 1999,16(2): 130-140.
    [149] Broomhead DS, King GP. On the qualitative analysis of experimental dynamical systems[M]. In: Sarkar S. (ed.) Nonlinear Phenomena and Chaos. Adam Hilger, Bristol, 1986,113-144.
    [150] Fraser AM. Reconstructing Attractors from Scalar Time Series: A Comparison of Singular System and Redundancy Criter[J]. Physica D, 1989,34:391-404.
    [151] Palus M, Dvorak I. Singular-value decomposition in attractor reconstruction. Pitfalls and precautions[J]. Physica D, 1992,55: 221-234.
    [152] Vautard R, Yiou P, Ghil M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals[J]. Physica D, 1992,58:95-126.
    [153] Fraedrich K, Wang R. Estimating the correlation dimension of an attractor from noisy and small data setsbased on reembedding[J]. Physica D, 1993,65:373-398.
    
    
    [154] Swami A, Giannakis G, Zhou G. Bibliography on Higher-Order Statistics[J]. Signal Processing, 1997,60(1): 65-126.
    [155] Hinich MJ. Higher Order Cumulants and Cumulant Spectra[J]. Circuits Systems Signal Process, 1994,13(4):391-402.
    [156] Nikias CL, Mendel J. Signal processing with higher order spectra[J]. IEEE Signal Processing Magazine,1993, 10:10-37.
    [157] Gabor D.Theory of Communication[J]. J.IEE(London), 1946,93(26): 429-457.
    [158] 徐佩霞,孙功宪.小波分析与应用实例.合肥:中国科学技术大学出版社,2001.
    [159] Jutten C, Herault J. Blind separation of sources. Part I: An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing,1991,24 (1): 1-10.
    [160] Tong L, Soon VC, Liu R, et al. Amuse. a new blind identification algorithm[C], in Proceedings of ISCAS'90, New Orleans, LA, 1990.
    [161] Tong T, Soon VC, Huang Y, et al. Indeterminacy and identifiability of blind identification[J]. IEEE Trans. CAS, 1991,38: 499-509.
    [162] Tong L, Soon VC, Huang Y, et al. A necessary and sufficient condition for the blind identification of memoryless systems[C]. In Proc. ISCAS, Singapore,1991,1:1-4.
    [163] Tong L, Inouye Y, Liu R. Waveform preserving blind estimation of multiple independent sources[J]. IEEE Tr. on SP, 1993,41(7):2461-2470
    [164] Lathauwer D, Moor BD, Vandewalle J. Blind source separation by higher order singular value decomposition[C]. In Proc. EUSIPCO, 1994,1:175-178.
    [165] Comon P. Independent Component Analysis-A New Concept?[J]. In Signal Processing 1994,36:287-314.
    [166] Bell A J, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7(6):1129-159.
    
    
    [167] Bell AJ, Sejnowski TJ. fast blind separation based on information theory[C], in Proc. Intern. Syrup. on Nonlinear Theory and Applications, 1995,1: 43-47.
    [168] Torkkola K. Blind Separation of Convolved Sources Based on Information Maximization[R]. IEEE Workshop on Neural Networks for Signal Processing,1996,4-6.
    [169] Amari S, Cichocki A, Yang H. A new learning algorithm for blind signal separation[R], in Advances in Neural Information Processing Systems, Denver (Colorado), 1996,757-763.
    [170] Zhang L, Cichocki A, Amari A. Natural gradient algorithm for blind separation of overdetermined mixtures with additive noise[J]. IEEE Signal Processing Letters, 1999,6(11):293-295.
    [171] Choi S, Cichocki A, Zhang L, et al. Approximate maximum likelihood source separation using the natural gradient[C]. Proc. IEEE Workshop on Signal Processing Advances in Vireless Communications, (Taoyuan, Taiwan),2001, 235-238.
    [172] Oja E, Karhunen J, Wang L, et al. Principal and independent components in neural networks-recent developments[C]. Proc. Ⅶ Italian Workshop on Neural Nets WIRN'95, 1995,18-20.
    [173] Oja E. The nonlinear PCA learning rule and signal separationmathematical analysis[R]. Helsinki University of Technology, Laboratory of Computer and Information Science, Report A26,1995.
    [174] Oja E. PCA, ICA, and nonlinear Hebbian learning[C]. Proc. Int. Conf. On Artificial Neural networks ICANN'95, Paris, 1995,89-94.
    [175] Oja E, Karhunen J. Signal separation by nonlinear Hebbian learning[R]. In M.Palaniswami, Y. Attikiouzel, R. Marks Ⅱ, D. Fogel, and T. Fukuda (Eds.), Computational Intelligence-a Dynamic System Perspective. New York: IEEE, 1995,83-97.
    [176] Attias H. Independent factor analysis[J]. Neural Computation, 1999,11(4):803-851.
    
    
    [177] V. David Sanchez A. PP, ICA. and PCA in BSS[J]. Advanced Computational Intelligent Systems, U.S.A. 2000,1-6.
    [178] Jain AK. A fast karhunen-loeve transform for a class of random processes[J]. IEEE Transaction on Communications, 1976, 24(9): 1023-1029.
    [179] Kitajima H,Shimone T. Some aspects of the fast Karhunen-Loeve ransform[J]. IEEE Trans. Commun. 1980, 28:1773-1776.
    [180] Kirby M, Sirovich L. Application of the KarhunenLoeve Procedure for the Characterization of Human Faces[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990,12(1): 103-107.
    [181] Durand F. Generalized principal component analysis with respect to instrumental variables via univariate spline transformations[J]. Computational Statistics and Data Analysis, 1993,16:423-440.
    [182] Coombes S, Taylor JG. Using generalized principal component analysis to achieve associative memory in a Hopfield net[J]. Network: Comput. Neural Syst. 1994,5:75-88.
    [183] Cardoso JF. Source separation using higher order moments[C]. In IEEE International Conf. on Acoustics, Speech and Signal Processing,,1989,2109-2112.
    [184] Cardoso JF. Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem[C]. In Proc. ICASSP, 2655-2658, Albuquerque, NM, USA, 1990, 3-6.
    [185] Cardoso JF. Iterative techniques for blind source separation using only fourthorder cumulants[C]. In Proc. EUSIPCO, 1992,739-742.
    [186] Lee TW, Girolami M, Sejnowski TJ. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural Computation, 1999,11(2):417-441.
    [187] Lee TW, Lewicki MS, Girolami M, et al. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE Signal Processing Letters, 1999,6(4):87-90.
    
    
    [188] Lee TW, Lewicki M, Sejnowski TJ. ICA mixture models for unsupervised classification of non-gaussian sources and automatic context switching in blind signal separation[J]. IEEE Trans. Pattern Recognition and Machine Intelligence,2000,22(10): 1-12.
    [189] Karhunen J, Oja E, Wang L, et al. A class of neural networks for independent component analysis[J]. IEEE Trans. on Neural Networks, 1997,8 (3): 486-504.
    [190] Hyvarinen A, Oja E. Simple neuron models for independent component analysis[J]. Int. Journal of Neural Systems, 1996,7(6):671-687.
    [191] Karhunen J, Wang L, Vigario R. Nonlinear PCA type approaches for source separation and independent component analysis[C]. Proceedings of the '95 IEEE International Conference on Neural Networks, ICNN '95, Perth, Australia, 1995,995-1000.
    [192] Karhunen J. Neural approaches to independent component analysis and source separation[C]. In ESANN'96, European Symposium on Articial Neural Networks, Bruges, Belgium, 1996,249-266.
    [193] Plumbley M. A Hebbian/Anti-Hebbian Network Which Optimizes Information Capacity by Orthonormalizing the Principal Subspace[C]. In Proc. IEE Conf. Artif. Neural Networks, Brighton, UK, 1993,86-90.
    [194] Laheld B,cardoso JF. Adaptive source separation with uniform performance[J]. Signal Processing Ⅶ: Theories and Applications (EUSIPCO), 1994,1:183-86.
    [195] Hyvarinen A. A family of fixed-point algorithms for independent component analysis[C]. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'97), 3917-3920, Munich, Germany, 1997.
    [196] Delfosse N, Loubaton P. Adaptive blind separation of independent sources: a deflation approach[J]. Signal Processing 1995, 45:59-83.
    [197] Amari S. Adaptive blind signal processing: Neural network approaches[J]. Proc. IEEE. 1998,86(10): 2026-2048.
    
    
    [198] Freisleben B, Hagen C, Borschbach M. A Neural Network for the Blind Separation of Non-Gaussian Sources[C]. In: Proceedings of IEEE World Congress, International Join Conference on Neural Networks IJCNN'98. 837-842, Anchorage IEEE Press 1998.
    [199] 汪富泉,罗朝盛,陈国先.G-P算法的改进及其应用[J].计算物理,1993,10(3):345-351.
    [200] Fraser AM,Swinney HL. Independent coordinates for strange attractors from mutual information[J]. Phys. Rew. A, 1986,33(2):1134-1140.
    [201] Freeman WJ. The physiology of perception[J]. Sci. Am.,1991, 264(2):34-41.
    [202] Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[J]. Biol Cybern ,1995,73:357-366.
    [203] Nan, X, Jinghua, X. The Fractal Dimension of EEG as a Physical Measure of Conscious Human Brain Activities[J]. Bulletin of Mathematical Biology, 1988,50:559-565.
    [204] Jinghua X,Wei L. The dynamics of a gila-modulated Neural network and its reletion to brain functions[J]. Lecture Notes in Biomathes., 1987,71:292-300.
    [205] 陈式刚.映象与混沌[M].北京:国防工业出版社,1992.
    [206] Duke DW, Pritchard WS, Coburn KL.Dimensional Analysis of Topographic EEG: Some Methodological Considerations[J]. in Chaos in the Human Brain, Singapore, 1991,181-198.
    [207] Boccaletti S, Grebogi C, Lai YC, et al.The control of chaos: theory and applications[R]. Physics Reports-Review Section Of Physics Letters, 2000,329:103-197.
    [208] Das A, Das P, Roy AB. Applicability Of Lyapunov Exponent In EEG Data Analysis[J]. Draft Manuscript, Complexity International ,2001.
    [209] Babloyantz A, Destexhe A. Low-dimensional chaos in an instance of
    
    epilepsy[C]. Proceedings of the National Academy of Sciences USA, 1986,83:3513-3517.
    [210] Babloyantz A. Chaotic Dynamics in Brain Activity[M]. Basar E. (Ed.) Chaos in Brain Function. Springer-Verlag, Berlin Heidelberg New York, 1990,42-48.
    [211] Palus M. Nonlinear dynamics in the EEG analysis:Disappointment and Perspectives[R]. Nonlinear dynamics and brain functioning, pradhan N, Rapp PE, Screenivasan R,(Eds.), New York, 1999.
    [212] Theiler J. On the evidence for low-dimensional chaos in an epileptic electroencephalogram[J]. Phys. Lett A., 1995,196:335-341.
    [213] Theiler J, Rapp R Re-examination of the evidence for low-dimensional nonlinear structure in the human electroencephalogram[J]. Electroencephalogy Clin. Neurophisiol, 1996,98:213-222.
    [214] Pritchard WS, Duke DW, Krieble KK. Dimensional analysis of resting human EEG. Ⅱ: Surrogate-data testing indicates nonlinearity but not lowdimensional chaos[J]. Psychophysiol, 1995,32:486-91.
    [215] Palus M. Chaotic measures and real-world systems. Nonlinear analysis of physiological data[R]. Kantz H., Kurths J. & Mayer-Kress G. (Eds.), Springer, Berlin, 1998.
    [216] Schreiber T. Interdisciplinary application of nonlinear time series methods[J]. Phys. Rep.,1999, 308:1-64.
    [217] Mayer-Kress G, Layne S P. Dimensionality of the human electroencephalogram[J]. Annals of N. Y. Sc. Acad. of Sc. 1987,504: 62-86.
    [218] Grassberger P, Procaccia I. Measuring the Strangeness of Strange Attractors[J]. Physica D, 1983,9:189-208.
    [219] Palus M. Kolmogorov entropy from time series using information-theoretic functionals[J]. Neural Network World, 1997, 7(3): 269-292.
    [220] Wang A L, and Yang C X. Acta Phys. Sin. 51:2719-2729,2002 (in
    
    Chinese)[王安良 杨春信 2002物理学报 51 2719]
    [221] Quian Quiroga R, Arnhold J, Lehnertz K,et al.Kullback-Leibler and Renormalized Entropy: Applications to EEGs of Epilepsy Patients[J]. Phys Rev. E, 2000,62:8380-8386.
    [222] Quian Quiroga R, Rosso O, Schurmann M, et al. Wavelet entropy in event-related potentials: a new method shows frequency tuning of EEG-oscillations[J]. Biological Cybernetics, 2001,84:291-299.
    [223] Breakspear M, Brammer M, Bullmore E, et al. Characterizing functional connectivity and estimating background spatio-temporal correlations in brain imaging data: A wavelet approach[J].Neuroimage, 2003,19: 43.
    [224] Krystal AD, Greenside AD, Weiner RD,et al. A comparison of EEG signal dynamics in waking, after anesthesia induction and during electroconvulsive therapy seizures[J]. EEG Clin. Neurophysiol., 1996,99(2): 129-140.
    [225] Luders H, Acharya J, Baumgartner C. Semiological seizure classification[J]. Epilepsia., 1998, 39(9): 1006-1013.
    [226] Gevins AS, Remond A. Methods of Analysis of Brain Electrical and Magnetic Signals, volume 1 of Handbook of Electroencephalography and Clinical Neurophysiology (revised series)[M]. Elsevier Science Publishers B.V., New York, NY, 1987.
    [227] Eberhart RC, et al. Casenet: A neural network tool for EEG waveform classification[C]. Proc of 2nd Annual Symposium on computer based medical systems, 1989,60-68.
    [228] Masic N, Pfurtscheller G. Neural Network Based Classification of Single-Trial EEG Data[J]. Artificial Intelligence in Medicine, 1993,5(6), 503-513.
    [229] Anderson C,Sijercie Z. Classification of EEG Signals from four subjects during five mental tasks[C]. In Proceedings of the conference on engineering applications in neural networks (EANN'96),Systems
    
    Engineering Association, 1996,407-414.
    [230] Galicki M, Witte H, Drschel J, et al. Common Optimization of Adaptive Preprocessing Units and a Neural Network During the Learning[J]. Application in EEG Pattern Recognition. J. Neural Networks,1997,10:1153-1163.
    [231] Tarassenko L, Khan YU, Holt MRG. Identification of interictal spikes in the EEG using neural network analysis[J]. IEE Proc.-Sci. Meas. Technol., 1998,145 (6):270-278.
    [232] Krajca V, Petranek S, Patakova I, et al. Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering[J]. International Journal of Bio-Medical Computing, 1991,28:1-2,71-89.
    [233] Cosic D,Loncaric S. New methods for cluster selection in unsupervised fuzzy clustering[C], in Proceedings of the 41th Anniversary Conference KoREMA, 1996,4:1-3.
    [234] Petridis V, Kehagias A. Predictive modular fuzzy systems for time-series classification[J]. IEEE Trans. on Fuzzy Systems, 1997,5:381-397.
    [235] Oropesa E, Cycon HL, Jobert M. Sleep Stage Classification using Wavelet Transform and Neural Network[R]. 1999.
    [236] Pittner S, Kamarthi SV. Feature Extraction From Wavelet Coefficients for Pattern Recognition Tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(1): 83-88.
    [237] Heuser U, Goppert J, Rosenstiel W, Stevens A. Classification of human brain waves using self-organizing maps[C]. ECAI'96, Budapest, Hungary, August 1996.
    [238] Hively LM, Protopopescu VA, Gailey PC.Timely detection of dynamical change in scalp EEG signals[J].Chaos,2000,10(4): 864-875.
    [239] Graben P beim, Saddy JD, Schlesewsky M, Kurths J. Symbolic
    
    dynamics of event-related brain potentials[J]. Physical Review E,2000, 62(4): 5518-5541.
    [240] Freeman W.J. A proposed name.[or aperiodic brain activity: stochastic chaos[J]. Neural Networks ,2000,13:11-13.
    [241] Das A, Das P, Roy AB. Chaos in a Three-Dimensional General Model of Neural Network[J]. International Journal of Bifurcation and Chaos, 2002,12(10), 2271-2281.
    [242] Millán J. del R, Mourino J, Cincotti F, et al. Local neural classifier for EEG-based recognition of mental tasks[C]. IEEE-INNS-ENNS International Joint Conference on Neural Networks. Como, Italy. Outstanding Paper,2000.
    [243] Babiloni F, Cincotti F, Lazzarini L, et al. Linear Classification of Low-Resolution EEG Patterns produced by Imagined Hand Movements[J]. IEEE Transactions on Rehabilitation Engineering, 2000,8(2): 186-187.
    [244] 阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000
    [245] 徐庐生.微机神经网络[M].北京:中国医药科技出版社,1996.
    [246] Caudill M. Neural Networks Primer[M]. Part Ⅳ, AI Expert, San Francisco, CA: Miller Freeman Publications,1988,61-67.
    [247] Pandya AS, MacY RB. Pattern Recognition with Neural Networks in C++,1999[徐勇,荆涛等译.神经网络模式识别及其实现.北京:电子工业出版社,1999]
    [248] McCulloch WS, Pitts WH. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943,5:115-133.
    [249] Pati Y, Krishnaprasad P. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations[J]. IEEE Trans. on Neural Networks, 1993,4:73-85.
    [250] Zhang Qinghua, Benveniste A. Wavelet networks[J]. IEEE NN,1992,3
    
    (6):889-898.
    [251] Szu H, Telfer B, Kadambe S. Neural network adaptive wavelets for signal representation and classification[J].Optical Engineering, 1992,31(9): 1907-1961.
    [252] You Rongyi, Xu Shenchu. Analysis on Design of Kohonen-network System Based on Classification of Complex Signals[J]. SEMICONDUCTOR PHOTONICS AND TECHNOLOGY, 2002,8(3): 174-178.
    [253] Brazier M. A study of the electrical fields at the surface of the head[J]. Electroencephalography and Clinical Neurophysiology, 1949,2:38-52.
    [254] Schneider M. A multistage process for computing virtual dipolar sources of EEGdischarges from surface information[J]. IEEE Trans. on Biomed. Eng., 1972,19:1-19.
    [255] Wolpaw J, McFarland D,Neat D,et al. An EEG-based Brain-Computer Interface for Cursor Control[J]. Electroencephalography and Clinical Neurophysiology,1991,78:252-259.
    [256] Pfurtscheller G, Flotzinger D, Kalcher J. Brain-Computer Interface-a new communication device for handicapped people[J], Journal of Microcomputer Applications, 1993,16:293-299.
    [257] McFarland D, Neat G, Read R, Wolpaw J. An EEG-based method for graded cursor control[J]. Psychobiology. 1993,21(1): 77-81.
    [258] Roberts S, Penny W, Rezek I. Temporal and Spatial Complexity measures for EEG-based Brain-Computer Interfacing[J]. Medical and Biological Engineering & Computing, 1998, 37(1): 93-99.
    [259] Vaughn TM, Wolpaw JR, Donchin E. EEG-Based Communication. Prospects and Problems[J]. IEEE Trans. on Rehabilitation Engineering, 1996,4(4):425-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700